1
|
Manikandan M, Manikandan E, Swetha V, Kurpaa S, Vijay S, Kiruthika V. Nickel-copper-cobalt mixed oxide electrode material for high performance asymmetric supercapacitor. Sci Rep 2024; 14:10821. [PMID: 38734707 PMCID: PMC11088663 DOI: 10.1038/s41598-024-61625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Nickel copper cobalt oxide (NiCuCoO) ternary metal oxide nanoparticles were synthesized by employing the hydrothermal method. NiCuCoO electrode demonstrates a specified capacity of 596 C g-1 at 1 A g-1, high capacitance retaining of 99% even if 1000 sequences at the density of current 10 A g-1, and significant extended cyclic strength over 1000 sequences. The gathered asymmetric supercapacitor (ASC) tool via NiCuCoO as the cathode and activated carbon as anode materials achieve a specified capacity of 168 C g-1 at a current density of 1 Ag-1, an excellent capacity retaining of 95% even later than 5000 sequences at a density of current 10 A g-1. The fabricated device exhibits a high density of energy and power is 96 Wh kg-1 and 841 W kg-1. The prepared material confirms an excellent capacitance routine, so this work represents for a next-generation energy storage device.
Collapse
Affiliation(s)
- M Manikandan
- Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai, 600127, India
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - E Manikandan
- Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai, 600127, India.
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India.
| | - V Swetha
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - S Kurpaa
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - Sukkrishvar Vijay
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - V Kiruthika
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| |
Collapse
|
2
|
Zhao H, Hu X, Kang H, Feng F, Guo Y, Lu Z. Microwave Construction of NiSb/NiTe Composites on Ni-Foam for High-Performance Supercapacitors. ACS OMEGA 2024; 9:2597-2605. [PMID: 38250415 PMCID: PMC10795113 DOI: 10.1021/acsomega.3c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
In this paper, NiSb/NiTe/Ni composites were smoothly developed via the microwave method for supercapacitors. The synthesis of NiSb/NiTe crystals was revealed by X-ray photoelectron spectroscopy and X-ray diffraction. The analytic results of scanning electron microscopy and energy dispersive spectroscopy uncover the microscopic morphology as well as the constituent elements of the composites. Self-supported NiSb/NiTe is a supercapacitor cathode that combines high capacitance with excellent cycling stability. The obtained composite electrode displayed remarkable electrochemical properties, presenting a special capacitance of 1870 F g-1 (1 A g-1) and 81.5% of the original capacity through 30,000 times (10 A g-1) of the charging/discharging process. Further, an asymmetric supercapacitor was prepared employing NiSb/NiTe as a cathode and activated carbon as an anode. NiSb/NiTe//AC exhibited a high energy density of 224.6 uW h cm-2 with a power density of 750 μW cm-2 and provided a favorable cycling stability of 83% after 10,000 cycles.
Collapse
Affiliation(s)
- Haidong Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Xiaoyan Hu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Hongjie Kang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Yong Guo
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Zhen Lu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| |
Collapse
|
3
|
Khan AJ, Sajjad M, Khan S, Khan M, Mateen A, Shah SS, Arshid N, He L, Ma Z, Gao L, Zhao G. Telluride-Based Materials: A Promising Route for High Performance Supercapacitors. CHEM REC 2024; 24:e202300302. [PMID: 38010947 DOI: 10.1002/tcr.202300302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.
Collapse
Affiliation(s)
- Abdul Jabbar Khan
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Muhammad Sajjad
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shaukat Khan
- College of Engineering, Dhofar University, Salalah, 211, Sultanate of, Oman
| | - Muhammad Khan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Abdul Mateen
- Department of Physics, Beijing Normal University, Beijing, 100084, P. R. China
| | - Syed Shaheen Shah
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8520, Japan
| | - Numan Arshid
- School of Engineering and Technology, Sunway University, Bandar Sunway, 47500, Malaysia
| | - Liang He
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zeyu Ma
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Gao
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Guowei Zhao
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
4
|
Iqbal H, Nazim A, Haq MU, Hassan A, Mahmood S, Muhammad Z, Iqbal MF. Electrochemical Characteristics of Polyaniline Nanofibers and Active Chromium Sulfide Nanoparticles for Asymmetric Supercapacitor Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hifza Iqbal
- Department of Physics Lahore Garrison University, Sector C, DHA Phase-VI Lahore Pakistan
| | - Amina Nazim
- Department of Physics Lahore Garrison University, Sector C, DHA Phase-VI Lahore Pakistan
| | - Mahmood Ul Haq
- College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Ather Hassan
- Department of Physics Allama Iqbal Open University Islamabad Pakistan
| | - Sajid Mahmood
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Zahir Muhammad
- Hefei Innovation Research Institute School of Microelectronics Beihang University Hefei 230013 PR China
| | - Muhammad Faisal Iqbal
- College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| |
Collapse
|
5
|
Manikandan M, Manikandan E, Alshgari RA, Karami AM, Ahmad A. NiTe Magnetic Semiconductor Nanorods for Optical Limiting and Hydrogen Peroxide Sensor. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Farshadnia M, Ensafi AA, Mousaabadi KZ, Rezaei B, Demir M. Facile synthesis of NiTe 2-Co 2Te 2@rGO nanocomposite for high-performance hybrid supercapacitor. Sci Rep 2023; 13:1364. [PMID: 36693890 PMCID: PMC9873789 DOI: 10.1038/s41598-023-28581-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The design of bimetallic tellurides that exhibit excellent electrochemical properties remains a huge challenge for high-performance supercapacitors. In the present study, tellurium is consolidated on CoNi2@rGO for the first time, to synthesize NiTe2-Co2Te2@rGO nanocomposite by using a facile hydrothermal method. As-prepared NiTe2-Co2Te2@rGO nanocomposite was characterized by EDS, TEM, FESEM, Raman, BET, XRD, and XPS techniques to prove the structural transformation. Upon the electrochemical characterization, NiTe2-Co2Te2@rGO has notably presented numerous active sites and enhanced contact sites with the electrolyte solution during the faradic reaction. The as-prepared nanocomposite reveals a specific capacity of 223.6 mAh g-1 in 1.0 M KOH at 1.0 A g-1. Besides, it could retain 89.3% stability after 3000 consecutive galvanostatic charge-discharge cycles at 1.0 A g-1 current density. The hybrid supercapacitor, fabricated by activated carbon as an anode site, and NiTe2-Co2Te2@rGO as a cathode site, presents a potential window of 1.60 V with an energy density of 51 Wh kg-1 and a power density of 800 W kg-1; this electrode is capable of lighting up two red LED lamps and a yellow LED lamp for 20 min, which is connected in parallel. The present work opens new avenues to design and fabrication of nanocomposite electrode materials in the field of supercapacitors.
Collapse
Affiliation(s)
- Maziar Farshadnia
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran. .,Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| | | | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey.,Tubitak Marmara Research Center, Material Institute, Gebze, 41470, Turkey
| |
Collapse
|
7
|
FeTe:Fe2TeO5 nanodots embedded MWCNTs: Nanocomposite electrode towards supercapacitor application. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Rani P, Alegaonkar AP, Biswas R, Jewariya Y, Kanta Haldar K, Alegaonkar PS. Reduced graphene oxide doped tellurium nanotubes for high performance supercapacitor. Front Chem 2022; 10:1027554. [PMID: 36329860 PMCID: PMC9623563 DOI: 10.3389/fchem.2022.1027554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Supercapacitors have been achieving great interest in energy storage systems for the past couple of decades. Such devices with superior performance, mainly, depending on the material architecture of the electrodes. We report on the preparation of Tellurium nanotubes (Te-tubes diameter ∼100 nm and length ∼700 nm), with variable doping of conducting network reduced graphene oxide (rGO) to fabricate high-performance electrode characteristics of rGO @ Te. The prepared material was characterized using XRD, FTIR, FESEM, and Raman spectroscopy techniques, including Brunauer-Emmett-Teller, Barrett-Joyner-Halenda measurements. FTIR study revealed that 15% rGO @ Te has a wide C-O vibration band at ∼ 1,100–1,300 cm−1, over other compositions. FESEM study shows the Te-tubes dispersion in rGO layers. The EDX study revealed that 15% of the composition has an optimistic concentration of C and O elements. In other compositions, either at lower/higher rGO concentration, an uneven count of C and O is observed. These support efficient charge dynamics to achieve superior ultra-capacitor characteristics, thereby achieving specific capacitance Csp 170 + F/g @ 10 mV/s in a symmetric configuration. The reported values are thirty times higher than pristine Te-tubes (∼5 F/g). This finding suggests that rGO @ Te is a promising candidate for supercapacitor.
Collapse
Affiliation(s)
- Pinki Rani
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Rathindranath Biswas
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Yogesh Jewariya
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Krishna Kanta Haldar
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Prashant S. Alegaonkar
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
- *Correspondence: Prashant S. Alegaonkar,
| |
Collapse
|
9
|
Kristl M, Gyergyek S, Škapin SD, Kristl J. Solvent-Free Mechanochemical Synthesis and Characterization of Nickel Tellurides with Various Stoichiometries: NiTe, NiTe 2 and Ni 2Te 3. NANOMATERIALS 2021; 11:nano11081959. [PMID: 34443790 PMCID: PMC8401634 DOI: 10.3390/nano11081959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
The paper reports the synthesis of nickel tellurides via a mechanochemical method from elemental precursors. NiTe, NiTe2, and Ni2Te3 were prepared by milling in stainless steel vials under nitrogen, using milling times from 1 h to 12 h. The products were characterized by powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), UV-VIS spectrometry, and thermal analysis (TGA and DSC). The products were obtained in the form of aggregates, several hundreds of nanometers in size, consisting of smaller nanosized crystallites. The magnetic measurements revealed a ferromagnetic behavior at room temperature. The band gap energies calculated using Tauc plots for NiTe, NiTe2, and Ni2Te3 were 3.59, 3.94, and 3.70 eV, respectively. The mechanochemical process has proved to be a simple and successful method for the preparation of binary nickel tellurides, avoiding the use of solvents, toxic precursors, and energy-consuming reaction conditions.
Collapse
Affiliation(s)
- Matjaž Kristl
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia;
- Correspondence:
| | - Sašo Gyergyek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia;
- Synthesis of Materials Department K8, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Srečo D. Škapin
- Advanced Materials Department K9, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Janja Kristl
- Faculty of Agriculture and Life Sciences, University of Maribor, 2000 Maribor, Slovenia;
| |
Collapse
|
10
|
Beltrán-Suito R, Forstner V, Hausmann JN, Mebs S, Schmidt J, Zaharieva I, Laun K, Zebger I, Dau H, Menezes PW, Driess M. A soft molecular 2Fe-2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation. Chem Sci 2020; 11:11834-11842. [PMID: 34123210 PMCID: PMC8162750 DOI: 10.1039/d0sc04384b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/07/2020] [Indexed: 12/03/2022] Open
Abstract
An unprecedented molecular 2Fe-2As precursor complex was synthesized and transformed under soft reaction conditions to produce an active and long-term stable nanocrystalline FeAs material for electrocatalytic water oxidation in alkaline media. The 2Fe2As-centred β-diketiminato complex, having an unusual planar Fe2As2 core structure, results from the salt-metathesis reaction of the corresponding β-diketiminato FeIICl complex and the AsCO- (arsaethynolate) anion as the monoanionic As- source. The as-prepared FeAs phase produced from the precursor has been electrophoretically deposited on conductive electrode substrates and shown to act as a electro(pre)catalyst for the oxygen evolution reaction (OER). The deposited FeAs undergoes corrosion under the severe anodic alkaline conditions which causes extensive dissolution of As into the electrolyte forming finally an active two-line ferrihydrite phase (Fe2O3(H2O) x ). Importantly, the dissolved As in the electrolyte can be fully recaptured (electro-deposited) at the counter electrode making the complete process eco-conscious. The results represent a new and facile entry to unexplored nanostructured transition-metal arsenides and their utilization for high-performance OER electrocatalysis, which are also known to be magnificent high-temperature superconductors.
Collapse
Affiliation(s)
- Rodrigo Beltrán-Suito
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Viktoria Forstner
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - J Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Johannes Schmidt
- Department of Chemistry: Functional Materials, Technische Universität Berlin Hardenbergstraße 40 Berlin 10623 Germany
| | - Ivelina Zaharieva
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Konstantin Laun
- Institut für Chemie, Max-Volmar-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin Straße des 17 Juni 135 Berlin 10623 Germany
| | - Ingo Zebger
- Institut für Chemie, Max-Volmar-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin Straße des 17 Juni 135 Berlin 10623 Germany
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
11
|
Xiao M, Su Y, Zhao M, Du B. Synthesis of CoTe nanowires: a new electrode material for supercapacitor with high stability and high performance. NANOTECHNOLOGY 2020; 31:055706. [PMID: 31614344 DOI: 10.1088/1361-6528/ab4dbf] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly dispersed CoTe electrode material were successfully prepared by using a facile one-step solvothermal process without any surfactants. Compared with the conventional hydrothermally prepared irregularly-shaped CoTe, a regular nanowire-formed CoTe can be obtained by a solvothermal process using ethylene glycol as a solvent. The prepared CoTe nanowire electrode can exhibit a relatively high specific capacity of 643.6 F g-1 at a current density of 1 A g-1 and remarkable cyclic stability with 76.9% of its specific capacitance retention after 5000 cycles at a high current density of 5 A g-1. Besides, even at the high current density of 20 A g-1, the specific capacitance of CoTe nanowire electrode still has 90.2% retention relative to 1 A g-1, showing an excellent rate performance. In order to enlarge the potential window to increase the energy density, an asymmetric supercapacitor (ASC) is assembled by applying CoTe nanowires and activated carbon as the positive electrode and the negative electrode in 3 M KOH, which can enlarge the operating voltage to as high as 1.6 V, and shows a specific capacity of 92.5 F g-1 with an energy density of 32.9 Wh kg-1 and power density of 800.27 W kg-1 at 1 A g-1, and even after 5000 cycles of charge/discharge at 5 A g-1, the ASC still retains 90.5% of its initial specific capacitance, showing excellent cycle stability.
Collapse
Affiliation(s)
- Mi Xiao
- School of Electrical and Information Engineering & Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Manikandan M, Subramani K, Sathish M, Dhanuskodi S. Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor. RSC Adv 2020; 10:13632-13641. [PMID: 35493025 PMCID: PMC9051561 DOI: 10.1039/c9ra08692g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/14/2020] [Indexed: 01/08/2023] Open
Abstract
Cobalt telluride nanostructured materials have demonstrated various applications, particularly in energy generation and storage. A high temperature and reducing atmosphere are required for the preparation of cobalt telluride-based materials, which makes this a difficult and expensive process. The development of a facile route for producing the desirable nanostructure of cobalt telluride remains a great challenge. We demonstrated a simple hydrothermal method for preparing cobalt telluride nanorods (CoTe NRs) and telluride nanorods (Te NRs) for supercapacitor applications. The morphology of CoTe NRs and Te NRs was analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The prepared CoTe NR electrode material exhibited a high specific capacity of 170 C g−1 at a current density of 0.5 A g−1 with an exceptional cyclic stability. The asymmetric supercapacitor was assembled using CoTe NRs and orange peel-derived activated carbon (OPAA-700) as a positive and negative electrode, respectively. The fabricated device delivered a high energy density of 40.7 W h kg−1 with a power density of 800 W kg−1 at 1 A g−1 current density. When the current density was increased to 30 A g−1, the fabricated device delivered a high power density of 22.5 kW kg−1 with an energy density of 16.3 W h kg−1. The fabricated asymmetric supercapacitor displayed a good cyclic stability performance for 10 000 cycles at a high current density of 30 A g−1 and retained 85% of its initial capacity for after 10 000 cycles. The prepared materials indicate their applicability for high performance energy storage devices. A one-step hydrothermal derived cobalt telluride nanorods and activated carbon-based hybrid asymmetric supercapacitor delivered a high energy (40.7 W h kg−1) and power density (22.5 kW kg−1) with an electrochemical stability of 85% for 10000 cycles.![]()
Collapse
Affiliation(s)
- M. Manikandan
- School of Physics
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| | - K. Subramani
- Electrochemical Power Sources Division
- CSIR-CECRI
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - M. Sathish
- Electrochemical Power Sources Division
- CSIR-CECRI
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - S. Dhanuskodi
- School of Physics
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| |
Collapse
|
13
|
Gu Y, Du W, Darrat Y, Saleh M, Huang Y, Zhang Z, Wei S. In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01234-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Lin J, Xu Y, Wang J, Zhang B, Li L, Wang X, He S, Zhu J. A pH‐Tailored Anodic Deposition of Hydrous RuO
2
for Supercapacitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Lin
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
- Shaanxi Engineering Research Center of Advanced Energy Materials & DevicesXi'an Jiaotong University, Xi'an 710049 PR China
| | - Youlong Xu
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
- Shaanxi Engineering Research Center of Advanced Energy Materials & DevicesXi'an Jiaotong University, Xi'an 710049 PR China
| | - Jie Wang
- Beijing Institute of Nanoenergy and NanosystemChinese Academy of Sciences Beijing 100083 PR China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 PR China
| | - Baofeng Zhang
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
| | - Liang Li
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
| | - Xinzhi Wang
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
| | - Shengnan He
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
| | - Jianbo Zhu
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University, Xi'an 710049 PR China
| |
Collapse
|
15
|
Sun Z, Yang X, Lin H, Zhang F, Wang Q, Qu F. Bifunctional iron disulfide nanoellipsoids for high energy density supercapacitor and electrocatalytic oxygen evolution applications. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01230j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeS2, prepared using a rapid microwave assisted method, exhibits excellent electrochemical performance for supercapacitor and OER applications.
Collapse
Affiliation(s)
- Zhiqin Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Xue Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Qian Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| |
Collapse
|