1
|
Swanson J, El Jamal SE, Hartman T, Stewart OC, Glaser P, Biacchi AJ, Henry D, Liu A, Stoll SL. Solution Synthesis of NdTe 3 Magnetic Nanosheets. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7056-7068. [PMID: 39070667 PMCID: PMC11270740 DOI: 10.1021/acs.chemmater.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Neodymium tritelluride is a layered van der Waals material, with correlated electronic properties including high electronic mobility, charge density waves, and antiferromagnetism. We developed a solution synthesis method to form free-standing nanosheets of NdTe3, with nanosheet lateral dimensions of 200-400 nm. The morphology of the nanosheet was influenced by the neodymium precursor. When Nd[(N(SiMe3)2]3 was used as the metal source the nanosheet thickness average was 12 ± 2.5 nm, alternatively the combination of NdCl3 and Li(N(SiMe3)2) led to thicker nanosheets, approximately 19 ± 2.4 nm. We believe that the difference in thickness and changes in surface chemistry point to the role of chloride in accelerating nanocrystal growth for the synthesis with NdCl3 (and Li(N(SiMe3)2). Both types of nanosheets exhibit charge density wave (CDW) distortions as measured using electron diffraction and investigated using variable temperature Raman scattering. Interestingly, the magnetic studies suggest a distinct change in properties between 12 and 19 nm thickness in antiferromagnetic NdTe3.
Collapse
Affiliation(s)
- Joel Swanson
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Salah Eddin El Jamal
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Tyler Hartman
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Orlando C. Stewart
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Priscilla Glaser
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Adam J. Biacchi
- Nanoscale
Device Characterization Division, National
Institute of Standards and Technology (NIST), 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - DaVonne Henry
- Department
of Physics, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Amy Liu
- Department
of Physics, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Sarah L. Stoll
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| |
Collapse
|
2
|
Mousavi M, Ghasemian MB, Baharfar M, Tajik M, Chi Y, Mao G, Kalantar-Zadeh K, Tang J. Liquid Metal Interface for Two-Precursor Autogenous Deposition of Metal Telluride-Tellurium Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47394-47404. [PMID: 37755698 DOI: 10.1021/acsami.3c10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Liquid metal-electrolyte can offer electrochemically reducing interfaces for the self-deposition of low-dimensional nanomaterials. We show that implementing such interfaces from multiprecursors is a promising pathway for achieving nanostructured films with combinatory properties and functionalities. Here, we explored the liquid metal-driven interfacial growth of metal tellurides using eutectic gallium-indium (EGaIn) as the liquid metal and the cation pairs Ag+-HTeO2+ and Cu2+-HTeO2+ as the precursors. At the EGaIn-electrolyte interface, the precursors were reduced and self-deposited autogenously to form interconnected nanoparticle networks. The deposited materials consisted of metal telluride and tellurium with their relative abundance depending on the metal ion type (Ag+ and Cu2+) and the metal-to-tellurium ion ratios. When used as electrode modifiers, the synthesized materials increased the electroactive surface area of unmodified electrodes by over 10 times and demonstrated remarkable activity for model electrochemical reactions, including HexRu(III) responses and dopamine sensing. Our work reveals the promising potential of the liquid metal-templated deposition method for synthesizing complex material systems for electrochemical applications.
Collapse
Affiliation(s)
- Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad Tajik
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| |
Collapse
|
3
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Mycogenic Oxide and Chalcogenide Nanoparticles: A Review. Biomimetics (Basel) 2023; 8:224. [PMID: 37366819 DOI: 10.3390/biomimetics8020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Collapse
Affiliation(s)
- Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Maria A Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
4
|
Senthamil C, Hemalatha J, Nandhabala S, Nivetha A, Sakthivel C, Prabha I. Multifunctionalized Metal Chalcogenides and Their Roles in Catalysis and Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | - Inbaraj Prabha
- Department of Chemistry Bharathiar University Coimbatore 641 046 India
| |
Collapse
|
5
|
Desai ND, Patil VL, Patil SS, Patil PS, Bhosale PN. Morphological Tuning of Bi
2
Se
3
Thin Films for Photoelectrochemical Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202202965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Neha D. Desai
- Department of Chemistry Karmaveer Bhaurao Patil Mahavidyalaya Pandharpur 413304
| | | | - Satish S. Patil
- Materials Research Laboratory Department of Chemistry Shivaji University Kolhapur 416004
| | | | - Popatrao N. Bhosale
- Materials Research Laboratory Department of Chemistry Shivaji University Kolhapur 416004
| |
Collapse
|
6
|
Tellurium-Ligated Pd(II) Complex of Bulky Organotellurium Ligand as a Catalyst of Suzuki coupling: First Report on In Situ Generation of Bimetallic Alloy ‘Telluropalladinite’ (Pd9Te4) Nanoparticles and Role in Highly Efficient Catalysis. Catal Letters 2022. [DOI: 10.1007/s10562-021-03769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
9
|
Arora A, Oswal P, Rao GK, Kumar S, Singh AK, Kumar A. Catalytically active nanosized Pd 9Te 4 (telluropalladinite) and PdTe (kotulskite) alloys: first precursor-architecture controlled synthesis using palladium complexes of organotellurium compounds as single source precursors. RSC Adv 2021; 11:7214-7224. [PMID: 35423283 PMCID: PMC8695049 DOI: 10.1039/d0ra08732g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
Several intermetallic binary phases of Pd-Te including Pd3Te2, PdTe, PdTe2, Pd9Te4, Pd3Te, Pd2Te, Pd20Te7, Pd8Te3, Pd7Te2, Pd7Te3, Pd4Te and Pd17Te4 are known, and negligible work (except few studies on PdTe) has been done on exploring applications of such phases and their fabrication at nanoscale. Hence, Pd(ii) complexes Pd(L1)Cl2 and Pd(L2-H)Cl (L1): Ph-Te-CH2-CH2-NH2 and L2: HO-2-C6H4-CH[double bond, length as m-dash]N-CH2CH2-Te-Ph were synthesized. Under similar thermolytic conditions, complex Pd(L1)Cl2 with bidentate coordination mode of ligand provided nanostructures of Pd9Te4 (telluropalladinite) whereas Pd(L2-H)Cl with tridentate coordination mode of ligand yielded PdTe (kotulskite). Bimetallic alloy nanostructures possess high catalytic potential for Suzuki coupling of aryl chlorides, and reduction of 4-nitrophenol. They are also recyclable upto six reaction cycles in Suzuki coupling.
Collapse
Affiliation(s)
- Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun Uttarakhand 248012 India
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun Uttarakhand 248012 India
| | - Gyandshwar K Rao
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana (AUH) Gurgaon Haryana 122413 India
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun Uttarakhand 248012 India
| | - Ajai K Singh
- Department of Chemistry, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun Uttarakhand 248012 India
| |
Collapse
|
10
|
Nakaya K, Nakaoka T. Single-crystalline Ag2Te nanorods prepared by room temperature sputtering of GeTe. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03406-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Bhat KS, Nagaraja HS. Recent trends and insights in nickel chalcogenide nanostructures for water-splitting reactions. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14328917.2019.1703523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Karthik S. Bhat
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| | - H. S. Nagaraja
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| |
Collapse
|