1
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
2
|
Yu X, Ma Z, Zhu W, Liu H, Zhang Z, Liu Y, Zhang M, Zhao J, Zhang P, Xia C. Tandem Reduction, Ammonolysis, Condensation, and Deamination Reaction for Synthesis of Benzothiadiazines and 1-(Phenylsulfonyl)-1 H-benzimidazoles. J Org Chem 2022; 87:14738-14752. [PMID: 36269195 DOI: 10.1021/acs.joc.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel route for a SnCl2-promoted tandem reduction, ammonolysis, condensation, and deamination reaction which uses nitrile and 2-nitro-N-phenylbenzenesulfonamide/N-(2-nitrophenyl)benzenesulfonamide to synthesize derivatives of benzothiadiazine/1-(phenylsulfonyl)-1H-benzimidazole has been developed. The method features convenient operation and good functional group tolerance. In addition, it employs unsensitive and inexpensive SnCl2/i-PrOH as the reaction reagent and provides a direct approach for the synthesis of pharmaceutically important targets.
Collapse
Affiliation(s)
- Xiao Yu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhihong Ma
- Biotalk Co., Ltd., Shanghai 200092, China
| | - Wenjing Zhu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Hongyan Liu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zenghui Zhang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yi Liu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Mei Zhang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jinbo Zhao
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Chengcai Xia
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
3
|
Rao MS, Hussain S. TEMPO-mediated aerobic oxidative synthesis of 2-aryl benzoxazoles via ring-opening of benzoxazoles with benzylamines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1949476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| |
Collapse
|
4
|
Thurow S, Abenante L, Anghinoni JM, Lenardão EJ. SELENIUM AS A VERSATILE REAGENT IN ORGANIC SYNTHESIS: MORE THAN ALLYLIC OXIDATION. Curr Org Synth 2021; 19:331-365. [PMID: 34036912 DOI: 10.2174/1570179418666210525152001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/07/2021] [Accepted: 03/20/2021] [Indexed: 11/22/2022]
Abstract
For many years since its discovery, Selenium has played the role of a bad boy who became a hero in organic transformations. Selenium dioxide, for instance, is one of the most remembered reagents in allylic oxidations, having been applied in the synthesis of several naturally occurring products. The main goal of this review is to show the recent advances in the use of classical and new selenium reagents in organic synthesis. As demonstrated through around 60 references discussed in this study, selenium can go even forward as a versatile reagent. We bring a collection of selenium reagents and their transformations that are still hidden from most synthetic organic chemists.
Collapse
Affiliation(s)
- Samuel Thurow
- Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato, 270, 13083-862, Campinas, SP, Brazil
| | - Laura Abenante
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - João Marcos Anghinoni
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
5
|
Solvent-dependent metal-free chemoselective synthesis of benzimidazoles and 1,3,5-triarylbenzenes from 2-amino anilines and aryl alkyl ketones catalyzed by I2. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Zhang X, Wang Y, Alduma AL, Arif S. H U, Wang X, Quan Z. Selenium‐Mediated Cyclization Reaction of 2‐Vinylanilines with/without Isonitriles: Efficient Synthesis of 2‐Aminoquinoline/ 3‐Aryl‐1
H
‐indole Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xi Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional MaterialsCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Yong‐Qing Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional MaterialsCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Anwar L. Alduma
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional MaterialsCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Ullah Arif S. H
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional MaterialsCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Xi‐Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional MaterialsCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Zheng‐Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional MaterialsCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 People's Republic of China
| |
Collapse
|
7
|
Nguyen TT, Thi Le NP, Nguyen TT, Tran PH. An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Adv 2019; 9:38148-38153. [PMID: 35541774 PMCID: PMC9075852 DOI: 10.1039/c9ra08074k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 09/01/2020] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
A mild and highly efficient reaction for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetically supported Lewis acidic deep eutectic solvent on magnetic nanoparticles (LADES@MNP) has been developed via one-pot multicomponent processes under solvent-free sonication. These reactions have good to excellent yields, mild conditions, and work-up simplicity. This method represents a new method for the preparation of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. More importantly, LADES@MNP can be easily recovered by magnetic separation and reused five times without significant loss of catalytic activity. A mild and highly efficient method for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a Lewis acidic deep eutectic solvent on magnetic nanoparticles (LADES@MNP).![]()
Collapse
Affiliation(s)
- Thanh Thi Nguyen
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 721337
| | - Ngoc-Phuong Thi Le
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 721337
| | - The Thai Nguyen
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 721337
| | - Phuong Hoang Tran
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 721337
| |
Collapse
|