1
|
Qiu L, Zhou Y, Zhao Z, Wang Q, Chu L, Wen S. Constructing Self-Healing Polydimethylsiloxane through Molecular Structure Design and Metal Ion Bonding. Polymers (Basel) 2024; 16:1309. [PMID: 38794502 PMCID: PMC11124844 DOI: 10.3390/polym16101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Self-healing polydimethylsiloxane (PDMS) has garnered significant attention due to its potential applications across various fields. In this study, a functionalized modification of PDMS containing di-aminos was initially conducted using 2,6-pyridinedicarbonyl chloride to synthesize pyridine-PDMS (Py-PDMS). Subsequently, rare earth metal europium ions (Eu3+) were incorporated into Py-PDMS. Due to the coordination interaction between Eu3+ and organic ligands, a coordination cross-linking network was created within the Py-PDMS matrix, resulting in the fabrication of Eu3+-Py-PDMS elastomer. At a molar ratio of Eu3+ to ligands of 1:1, the tensile strength of Eu3+-Py-PDMS reached 1.4 MPa, with a fracture elongation of 824%. Due to the dynamic reversibility of coordination bonds, Eu3+-Py-PDMS with a metal-to-ligand molar ratio of 1:2 exhibited varying self-healing efficiencies at different temperatures. Notably, after 4 h of repair at 60 °C, its self-healing efficiency reached nearly 100%. Furthermore, the gas barrier properties of Eu3+-Py-PDMS with a molar ratio of 1:1 was improved compared with that of Eu3+-Py-PDMS with a molar ratio of 1:1. This study provides an effective strategy for the design and fabrication of PDMS with high mechanical strength, high gas barrier properties, and exceptional self-healing efficiency.
Collapse
Affiliation(s)
- Lvchao Qiu
- State Grid Zhejiang Electric Power Co., Ltd., Research Institute, Hangzhou 310014, China
| | - Yutong Zhou
- State Grid Zhejiang Electric Power Co., Ltd., Research Institute, Hangzhou 310014, China
| | - Zhoufeng Zhao
- State Grid Zhejiang Electric Power Co., Ltd., Research Institute, Hangzhou 310014, China
| | - Qi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijun Chu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shipeng Wen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Deng S, Chen C, Li K, Chen X, Xia K, Li S. Structure-Based Multilevel Descriptors for High-throughput Screening of Elastomers. J Phys Chem B 2023; 127:10077-10087. [PMID: 37942925 DOI: 10.1021/acs.jpcb.3c06025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
To discover new materials, high-throughput screening (HTS) with machine learning (ML) requires universally available descriptors that can accurately predict the desired properties. For elastomers, experimental and simulation data in current descriptors may not be available for all candidates of interest, hindering elastomer discovery through HTS. To address this challenge, we introduce structure-based multilevel (SM) descriptors of elastomers derived solely from molecular structure that is universally available. Our SM descriptors are hierarchically organized to capture both local soft and hard segment structures as well as the global structures of elastomers. With the SM-Morgan Fingerprint (SM-MF) descriptor, one of our SM descriptors, a machine learning model accurately predicts elastomer toughness with a remarkable accuracy of 0.91. Furthermore, an HTS pipeline is established to swiftly screen elastomers with targeted toughness. We also demonstrate the generality and applicability of SM descriptors by using them to construct HTS pipelines for screening elastomers with a targeted critical strain or Young's modulus. The user-friendliness and low computational cost of SM descriptors make them a promising tool to significantly enhance HTS in the search for novel materials.
Collapse
Affiliation(s)
- Siyan Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chao Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xi Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kelin Xia
- School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
3
|
Utrera-Barrios S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Self-Healing Elastomers: A sustainable solution for automotive applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Azadi Namin P, Booth P, Treviño Silva J, Voigt LJ, Zelisko PM. Transparent and Thermoplastic Silicone Materials Based on Room-Temperature Diels–Alder Reactions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paria Azadi Namin
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| | - Phoebe Booth
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Julio Treviño Silva
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| | - Laura J. Voigt
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| | - Paul M. Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| |
Collapse
|
5
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
6
|
Cazacu M, Dascalu M, Stiubianu GT, Bele A, Tugui C, Racles C. From passive to emerging smart silicones. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.
Collapse
Affiliation(s)
- Maria Cazacu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Mihaela Dascalu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - George-Theodor Stiubianu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Adrian Bele
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Codrin Tugui
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Carmen Racles
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| |
Collapse
|
7
|
Chaudhary K, Kandasubramanian B. Self-Healing Nanofibers for Engineering Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kritika Chaudhary
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| |
Collapse
|
8
|
Self-Healing Silicones for Outdoor High Voltage Insulation: Mechanism, Applications and Measurements. ENERGIES 2022. [DOI: 10.3390/en15051677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper discusses the state of the art in the application of self-healing silicone-based materials for outdoor high-voltage insulation. Both the dynamic behavior of the dimethyl side groups of silicone rubber and the diffusion of a bulk siloxane to maintain low surface energy are respectively reported as intrinsic mechanisms responsible for the self-healing of silicone rubber. Localization, temporality, mobility, and the type of synthesis are the aspects defining the efficiency of the self-healing ability of silicone rubber. In addition, the deterioration of the self-healing ability with filler loaded into silicone rubber insulation housing composites is discussed. Taking the self-healing property into consideration among the other properties of silicone rubber insulators, such as tracking and erosion resistance, can be a useful design practice at the material development stage. Hydrophobicity retention, recovery, and transfer measurements are discussed as useful indicators of the self-healing ability of silicone rubber. Nevertheless, there remains a need to standardize them as design tests at the material development stage. The paper is intended to shed the light on the hydrophobicity recovery, a key material design parameter in the development of silicone rubber outdoor insulating composites, similar to the tracking and erosion resistance.
Collapse
|
9
|
Zeng Y, Zhou N, Xiong C, Huang Z, Du G, Fan Z, Chen N. Highly stretchable silicone rubber nanocomposites incorporated with oleic
acid‐modified Fe
3
O
4
nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.51476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Zeng
- School of Materials Science and Engineering Nanchang University Nanchang China
| | - Neng Zhou
- School of Materials Science and Engineering Nanchang University Nanchang China
| | - Chenhan Xiong
- School of Materials Science and Engineering Nanchang University Nanchang China
| | - Zhiyong Huang
- School of Materials Science and Engineering Nanchang University Nanchang China
| | - Guoping Du
- School of Materials Science and Engineering Nanchang University Nanchang China
| | - Zhaoyang Fan
- School of Electrical, Computer and Energy Engineering Arizona State University Tempe Arizona USA
| | - Nan Chen
- School of Materials Science and Engineering Nanchang University Nanchang China
| |
Collapse
|
10
|
Dai S, Li M, Yan H, Zhu H, Hu H, Zhang Y, Cheng G, Yuan N, Ding J. Self-Healing Silicone Elastomer with Stable and High Adhesion in Harsh Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13696-13702. [PMID: 34758614 DOI: 10.1021/acs.langmuir.1c02356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adhesive and self-healing elastomers are urgently needed for their convenience and intelligence in biological medicine, flexible electronics, intelligent residential systems, etc. However, their inevitable use in harsh environments results in further enhancement requirements of the structure and performance of adhesive and self-healing elastomers. Herein, a novel self-healing and high-adhesion silicone elastomer was designed by the synergistic effect of multiple dynamic bonds. It revealed excellent stretchability (368%) and self-healing properties at room temperature (98.1%, 5 h) and in a water environment (96.4% for 5 h). Meanwhile, the resultant silicone elastomer exhibited high adhesion to metal and nonmetal and showed stable adhesion in harsh environments, such as under acidic (pH 1) and alkaline (pH 12) environments, salt water, petroleum ether, water, etc. Furthermore, it was applied as a shatter-proof protective layer and a rust-proof coating, proving its significant potential in intelligent residential system applications.
Collapse
Affiliation(s)
- Shengping Dai
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Meng Li
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hao Yan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hao Zhu
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongwei Hu
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixing Zhang
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Guanggui Cheng
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jianning Ding
- Institute of Intelligent flexible Mechatronics, Jiangsu University, Zhenjiang 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
11
|
Wang M, Yuan Y, Zhao C, Diao S, Duan B. Preparation of fluorosilicone rubber containing perfluorocyclobutyl aryl ether. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingying Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Yan Yuan
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Caide Zhao
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Shen Diao
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Baorong Duan
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| |
Collapse
|
12
|
Behera PK, Mohanty S, Gupta VK. Self-healing elastomers based on conjugated diolefins: a review. Polym Chem 2021. [DOI: 10.1039/d0py01458c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The introduction of dynamic covalent and physical crosslinks into diolefin-based elastomers improves mechanical and self-healing properties. The presence of dynamic crosslinks also helps in the reprocessing of elastomers.
Collapse
Affiliation(s)
- Prasanta Kumar Behera
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| | - Subhra Mohanty
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| | - Virendra Kumar Gupta
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| |
Collapse
|
13
|
Li S, Zhou X, Dong Y, Li J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol Rapid Commun 2020; 41:e2000444. [PMID: 32996221 DOI: 10.1002/marc.202000444] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robots, and artificial skin. The introduction of self-healing performance has made a positive contribution to the lifetime and stability of flexible sensors. At present, many self-healing flexible sensors with high sensitivity have been developed to detect the signal of organism activity. The sensitivity, reliability, and stability of self-healing flexible sensors depend on the conductive network and mechanical properties of flexible materials. This review focuses on the latest research progress of self-healing flexible sensors. First, various repair mechanisms of self-healing flexible materials are reviewed because these mechanisms contribute to the development of self-healing flexible materials. Then, self-healing elastomer flexible sensor and self-healing hydrogel flexible sensor are introduced and discussed respectively. The research status and problems to be solved of these two types of flexible sensors are discussed in detail. Finally, this rapidly developing and promising field of self-healing flexible sensors and devices is prospected.
Collapse
Affiliation(s)
- Shaonan Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanmao Dong
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jihang Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
14
|
Wang M, Li R, Feng X, Dang C, Dai F, Yin X, He M, Liu D, Qi H. Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27545-27554. [PMID: 32458678 DOI: 10.1021/acsami.0c04907] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic conductors are normally prepared from water-based materials in the solid form and feature a combination of intrinsic transparency and stretchability. The sensitivity toward humidity inevitably leads to dehydration or deliquescence issues, which will limit the long-term use of ionic conductors. Here, a novel ionic conductor based on natural bacterial cellulose (BC) and polymerizable deep eutectic solvents (PDESs) is developed for addressing the abovementioned drawbacks. The superstrong three-dimensional nanofiber network and strong interfacial interaction endow the BC-PDES ionic conductor with significantly enhanced mechanical properties (tensile strength of 8 × 105 Pa and compressive strength of 6.68 × 106 Pa). Furthermore, compared to deliquescent PDESs, BC-PDES composites showed obvious mechanical stability, which maintain good mechanical properties even when exposed to high humidity for 120 days. These materials were demonstrated to possess multiple sensitivity to external stimulus, such as strain, pressure, bend, and temperature. Thus, they can easily serve as supersensitive sensors to recognize physical activity of humans such as limb movements, throat vibrations, and handwriting. Moreover, the BC-PDES ionic conductors can be used in flexible, patterned electroluminescent devices. This work provides an efficient strategy for making cellulose-based sustainable and functional ionic conductors which have broad application in artificial flexible electronics and other products.
Collapse
Affiliation(s)
- Ming Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Renai Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao Feng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chao Dang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fanglin Dai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xueqiong Yin
- Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640, China
| |
Collapse
|