1
|
Alali I, Ibrahim MA, Roushdy N, Badran AS, Alsirhani AM, Farag A. Synthesis, spectral analysis, and DFT studies of the novel pyrano[3,2- c] quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance. Heliyon 2024; 10:e39468. [PMID: 39498074 PMCID: PMC11533592 DOI: 10.1016/j.heliyon.2024.e39468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.
Collapse
Affiliation(s)
- Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf ,72341, Saudi Arabia
| | - Magdy A. Ibrahim
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| | - N. Roushdy
- Electronics Materials Dep. Advanced Technology& New Materials Research Inst, City of Scientific Research & Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Al-Shimaa Badran
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf ,72341, Saudi Arabia
| | - A.A.M. Farag
- Thin-film Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| |
Collapse
|
2
|
Malik AN, Ali A, Ashfaq M, Tahir MN, Alam MM, Mostafa MS, Kuznetsov A. A synthetic approach towards drug modification: 2-hydroxy-1-naphthaldehyde based imine-zwitterion preparation, single-crystal study, Hirshfeld surface analysis, and computational investigation. RSC Adv 2024; 14:6476-6493. [PMID: 38390507 PMCID: PMC10879849 DOI: 10.1039/d3ra08727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The current work is about the modification of primary amine functionalized drugs, pyrimethamine and 4-amino-N-(2,3-dihydrothiazol-2-yl)benzenesulfonamide, via condensation reaction with 2-hydroxy-1-naphthaldehyde to produce new organic zwitterionic compounds (E)-1-(((4-(N-(2,3-dihydrothiazol-2-yl)sulfamoyl)phenyl)iminio)methyl)naphthalen-2-olate (DSPIN) and (E)-1-(((4-amino-5-(4-chlorophenyl)-6-ethylpyrimidin-2-yl)iminio)methyl)naphthalen-2-olate (ACPIN) in methanol as a solvent. The crystal structures of both compounds were confirmed to be imine-based zwitterionic products via single-crystal X-ray diffraction (SC-XRD) analysis which indicated that the stabilization of both crystalline compounds is achieved via various noncovalent interactions. The supramolecular assembly in terms of noncovalent interactions was explored by the Hirshfeld surface analysis. Void analysis was carried out to predict the crystal mechanical response. Compound geometries calculated in the DFT (Density Functional Theory) study showed reasonably good agreement with the experimentally determined structural parameters. Frontier molecular orbital (FMO) analysis showed that the DSPIN HOMO/LUMO gap is by 0.15 eV smaller than the ACPIN HOMO/LUMO gap due to some destabilization of the DSPIN HOMO and some stabilization of its LUMO. The results of the charge analysis implied formation of intramolecular hydrogen bonds and suggested formation of intermolecular hydrogen bonding and dipole-dipole and dispersion interactions.
Collapse
Affiliation(s)
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha Sargodha 40100 Pakistan
| | | | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University Abha 61421 Saudi Arabia
| | - Mohamed S Mostafa
- Department of Physical Sciences, College of Science, Jazan University P.O. Box 114 Jazan 45142 Saudi Arabia
| | - Aleksey Kuznetsov
- Departamento de Química, Campus Santiago Vitacura, Universidad Tecnica Federico Santa María Av. Santa María 6400 Vitacura 7660251 Chile
| |
Collapse
|
3
|
Jamil S, Gondal HY, Ali A, Hussain A, Akram N, Nisar M, Tahir MN, Ashfaq M, Raza AR, Muhammad S, Cheema ZM, Mustafai A, Sameeh MY. Benzimidazolium quaternary ammonium salts: synthesis, single crystal and Hirshfeld surface exploration supported by theoretical analysis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231094. [PMID: 38356872 PMCID: PMC10864785 DOI: 10.1098/rsos.231094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Owing to the broad applications of quaternary ammonium salts (QAS), we present the synthesis of benzimidazolium-based analogues with variation in the alkyl and alkoxy group at N-1 and N-3 positions. All the compounds were characterized by spectroscopic techniques and found stable to air and moisture both in the solid and solution state. Moreover, molecular structures were established through single-crystal X-ray diffraction studies. The crystal packing of the compounds was stabilized by numerous intermolecular interactions explored by Hirshfeld surface analysis. The enrichment ratio was calculated for the pairs of chemical species to acquire the highest propensity to form contacts. Void analysis was carried out to check the mechanical response of the compounds. Furthermore, theoretical investigations were also performed to explore the optoelectronic properties of compounds. Natural population analysis (NPA) has been conducted to evaluate the distribution of charges on the synthesized compounds, whereas high band gaps of the synthesized compounds by frontier molecular orbital (FMO) analysis indicated their stability. Nonlinear optical (NLO) analysis revealed that the synthesized QAS demonstrates significantly improved NLO behaviour than the standard urea.
Collapse
Affiliation(s)
- Sajid Jamil
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, 38000 Faisalabad Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Multan, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, 38000 Faisalabad Pakistan
| | - Muhammad Nisar
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha, 40100 Pakistan
| | - Abdul Rauf Raza
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia
| | - Zain M. Cheema
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Aleena Mustafai
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Multan, Pakistan
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia
| |
Collapse
|
4
|
Rasool F, Wu G, Shafiq I, Kousar S, Abid S, Alhokbany N, Chen K. Heterocyclic Donor Moiety Effect on Optical Nonlinearity Behavior of Chrysene-Based Chromophores with Push-Pull Configuration via the Quantum Chemical Approach. ACS OMEGA 2024; 9:3596-3608. [PMID: 38284097 PMCID: PMC10809687 DOI: 10.1021/acsomega.3c07596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Organic-based nonlinear optical (NLO) materials may be used in many optical-electronic systems and other next-generation defense technologies. With the importance of NLO materials, a series of push-pull architecture (D-π-A) derivatives (DTMD2-DTMD6) were devised from DTMR1 through structural alteration of different efficient donor heterocyclic groups. Density functional theory-based computations were executed at the MPW1PW91/6-31G(d,p) level to explore the NLO behavior of the derivatives. To investigate the optoelectronic behavior of the said compounds, various analyses like the frontier molecular orbital (FMO), global reactivity parameters, density of state (DOS), absorption spectra (UV-vis), natural bond orbital, and transition density matrix (TDM) were performed. The derivatives have a smaller band gap (2.156-1.492 eV) and a larger bathochromic shift (λmax = 692.838-969.605 nm) as compared to the reference chromophore (ΔE = 2.306 eV and λmax = 677.949 nm). FMO analysis revealed substantial charge conduction out of the donor toward the acceptor via a spacer that was also shown by TDM and DOS analyses. All derivatives showed promising NLO results, with the maximum amplitude of linear polarizability ⟨α⟩ and first (βtotal) and second (γtotal) hyperpolarizabilities over their reference chromophore. DTMD2 contained the highest βtotal (7.220 × 10-27 esu) and γtotal (1.720 × 10-31 esu) values corresponding with the reduced band gap (1.492 eV), representing potential futures for a large NLO amplitude. This structural modification through the use of various donors has played a significant part in achieving promising NLO behavior in the modified compounds.
Collapse
Affiliation(s)
- Faiz Rasool
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Gang Wu
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Iqra Shafiq
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Shehla Kousar
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Saba Abid
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Norah Alhokbany
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ke Chen
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Tahir MN, Ashfaq M, Munawar KS, Khan AU, Asghar MA, Ahamad T, Ojha SC. Synthesis, Characterizations, Hirshfeld Surface Analysis, DFT, and NLO Study of a Schiff Base Derived from Trifluoromethyl Amine. ACS OMEGA 2024; 9:2325-2338. [PMID: 38250356 PMCID: PMC10795116 DOI: 10.1021/acsomega.3c05199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
We synthesized an imine-based (Schiff base) crystalline organic chromophore, i.e., (E)-2-ethoxy-6-(((3-(trifluoromethyl)phenyl)imino)methyl)phenol (ETPMP), and explored its nonlinear optical (NLO) properties. The crystalline structure of ETPMP was determined by the XRD technique and equated with the associated structures utilizing a Cambridge Structural Database search. The supramolecular assembly of ETPMP was investigated regarding intermolecular interactions and short contacts by Hirshfeld surface analysis. Void analysis was performed to check the mechanical response of the crystal. Supramolecular assembly was further inspected by interaction energy calculations that were performed with the B3LYP/6-31G(d,p) functional. Besides this, the NLO properties of ETPMP and other already reported crystal TFMOS were explored utilizing the M06/6-31G(d,p) functional of the DFT approach. An excellent agreement was observed between XRD and DFT results of geometric parameters of the above-mentioned crystals. Narrow band gap along with bathochromic shift (3.489 eV and 317.225 nm, respectively) were investigated in TFMOS than that of ETPMP. Owing to these unique properties, TFMOS possesses higher linear (⟨a⟩ = 3.835 × 10-23 esu) and nonlinear (γtot. = 1.346 × 10-34 esu) response as compared to ETPMP. The outcomes explicitly show the higher nonlinearity in TFMOS, highlighting its importance in potential NLO applications.
Collapse
Affiliation(s)
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | - Ahsan Ullah Khan
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Almehmadi M, Alsaiari AA, Allahyani M, Alsharif A, Aljuaid A, Saha S, Asif M. Computational Studies and Antimicrobial Activity of 1-(benzo[d]oxazol-2- yl)-3,5-diphenylformazan Derivatives. Curr Comput Aided Drug Des 2024; 20:835-846. [PMID: 37403393 DOI: 10.2174/1573409919666230703103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Due to the biological importance of the benzoxazole derivatives, some 1- (benzo[d]oxazol-2-yl)-3,5-diphenyl-formazans 4a-f were synthesized and screened for in-silico studies and in-vitro antibacterial activity. METHODS The benzo[d]oxazole-2-thiol (1) was prepared by reacting with 2-aminophenol and carbon disulfide in the presence of alcoholic potassium hydroxide. Then 2-hydrazinylbenzo[d] oxazole (2) was synthesized from the reaction of compound 1 with hydrazine hydrate in the presence of alcohol. Compound 2 was reacted with aromatic aldehydes to give Schiff base, 2-(2- benzylidene-hydrazinyl)benzo[d]oxazole derivatives 3a-f. The title compounds, formazan derivatives 4a-f, were prepared by a reaction of benzene diazonium chloride. All compounds were confirmed by their physical data, FTIR, 1H-NMR, and 13CNMR spectral data. All the prepared title compounds were screened for in-silico studies and in-vitro antibacterial activity on various microbial strains. RESULTS Molecular docking against the 4URO receptor demonstrated that molecule 4c showed a maximum dock score of (-) 8.0 kcal/mol. MD simulation data reflected the stable ligand-receptor interaction. As per MM/PBSA analysis, the maximum free binding energy of (-) 58.831 kJ/mol was exhibited by 4c. DFT calculation data confirmed that most of the molecules were soft molecules with electrophilic nature. CONCLUSION The synthesized molecules were validated using molecular docking, MD simulation, MMPBSA analysis, and DFT calculation. Among all the molecules, 4c showed maximum activity. The activity profile of the synthesized molecules against tested micro-organisms was found to be 4c>4b>4a>4e>4f>4d.
Collapse
Affiliation(s)
- Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Supriyo Saha
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, 248007, India
| | - Mohammad Asif
- Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India
| |
Collapse
|
7
|
Riaz M, Ali A, Ashfaq M, Ibrahim M, Akram N, Tahir MN, Kuznetsov A, Rodríguez L, Sameeh MY, Assiri MA, Torre AFDL. Polymorphs of Substituted p-Toluenesulfonanilide: Synthesis, Single-Crystal Analysis, Hirshfeld Surface Exploration, and Theoretical Investigation. ACS OMEGA 2023; 8:35307-35320. [PMID: 37779999 PMCID: PMC10536877 DOI: 10.1021/acsomega.3c04957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Polymorphism is an exciting feature of chemical systems where a compound can exist in different crystal forms. The present investigation is focused on the two polymorphic forms, triclinic (MSBT) and monoclinic (MSBM), of ethyl 3-iodo-4-((4-methylphenyl)sulfonamido)benzoate prepared from ethyl 4-amino-3-iodobenzoate. The prepared polymorphs were unambiguously confirmed by single-crystal X-ray diffraction (SC-XRD) analysis. According to the SC-XRD results, the molecular configurations of both structures are stabilized by intramolecular N-H···I and C-H···O bonding. The crystal packing of MSBT is different as compared to the crystal packing of MSBM because MSBT is crystallized in the triclinic crystal system with the space group P1̅, whereas MSBM is crystallized in the monoclinic crystal system with the space group P21/c. The molecules of MSBT are interlinked in the form of dimers through N-H···O bonding to form R22(8) loops, while the MSBM molecules are connected with each other in the form of an infinite chain through C-H···O bonding. The crystal packing of both compounds is further stabilized by off-set π···π stacking interactions between phenyl rings, which is found stronger in MSBM as compared to in MSBT. Moreover, Hirshfeld surface exploration of the polymorphs was carried out, and the results were compared with the closely related literature structure. Accordingly, the supramolecular assembly of these polymorphs is mainly stabilized by noncovalent interactions or intermolecular interactions. Furthermore, a density functional theory (DFT) study was also carried out, which provided good support for the SC-XRD and Hirshfeld studies, suggesting the formation of both intramolecular and intermolecular interactions for both compounds.
Collapse
Affiliation(s)
- Mehreen Riaz
- Department
of Applied Chemistry, Government College
University Faisalabad, 38000 Faisalabad, Pakistan
| | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, 40100 Sargodha, Pakistan
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University Faisalabad, 38000 Faisalabad, Pakistan
| | - Nadia Akram
- Department
of Chemistry, Government College University
Faisalabad, 38000 Faisalabad, Pakistan
| | | | - Aleksey Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María, Vitacura 7660251, Chile
| | - Lyanne Rodríguez
- Department
of Clinical Biochemistry and Immunohaematology, Thrombosis Research
Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Manal Y. Sameeh
- Chemistry
Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia
| | - Mohammed A. Assiri
- Research
center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | |
Collapse
|
8
|
Malik A, Tahir MN, Ali A, Ashfaq M, Ibrahim M, Kuznetsov AE, Assiri MA, Sameeh MY. Preparation, Crystal Structure, Supramolecular Assembly, and DFT Studies of Two Organic Salts Bearing Pyridine and Pyrimidine. ACS OMEGA 2023; 8:25034-25047. [PMID: 37483210 PMCID: PMC10357529 DOI: 10.1021/acsomega.3c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
The effective preparation of two new pyrimidine- and pyridine-based organic crystalline salts with substituted acidic moieties (i.e., (Z)-4-(naphthalen-2-ylamino)-4-oxobut-2-enoic acid (DCNO) and 2-hydroxy-3,5-dinitrobenzoic acid (PCNP)) using methanol as a solvent has been reported. These molecular salts have ionic interactions that are responsible for their structural stabilization in their solid-state assemblies. The crystal structures of DCNO and PCNP were determined by the single-crystal X-ray diffraction (SCXRD) technique. The SCXRD study inferred that cations and anions are strongly packed due to N-H···O, N-H···N, and C-H···O noncovalent interactions in DCNO, whereas in PCNP, N-H···N noncovalent interactions are absent. The noncovalent interactions in both organic crystalline salts were comprehensively investigated by Hirshfeld surface analysis. Further, a detailed density functional theory (DFT) study of both compounds was performed. The optimized structures of both compounds supported the existence of the H-bonding and weak dispersion interactions in the synthesized organic crystalline salt structures. Both compounds were shown to have large and noticeably different HOMO/LUMO energy gaps. The atomic charge analysis results supported the SCXRD and HSA results, showing the formation of intermolecular noncovalent interactions in both organic crystalline salts. The results of the natural bond orbital (NBO) analysis confirmed the existence of (relatively weak) noncovalent interactions between the cation and anion moieties of their organic crystalline salts. The global reactivity parameters (GRPs) analysis showed that both organic crystalline salts' compounds should be quite thermodynamically stable and that DCNO should be less reactive than PCNP. For both compounds, the molecular electrostatic potential (MEP) analysis results support the existence of intermolecular electrostatic interactions in their organic crystalline salts.
Collapse
Affiliation(s)
| | | | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University Faisalabad, 38000 Faisalabad, Pakistan
| | - Aleksey E. Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Tecnica Federico Santa María, Av. Santa María 6400, Vitacura 7660251, Chile
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Manal Y. Sameeh
- Department
of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
9
|
K S, T N MM, Asiri AM, Alamry KA, Asad M. Green synthesis of heterocyclic alkenes using MCM 41 supported perchloric acid catalytic system: characterization and DFT studies. J Mol Model 2023; 29:244. [PMID: 37439878 DOI: 10.1007/s00894-023-05635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
CONTEXT In this work, a series of heterocyclic alkenes were prepared by the reaction of 2-hydroxy-1-naphthaldehyde with various heterocyclic active methylene compounds via Knoevenagel condensation reaction using mesoporous silica, MCM 41, supported perchloric acid as an efficient green catalytic system under solvent-free conditions. A comparative study of the conventional method vs the green method was also reported with the same raw materials. 1H NMR, 13C NMR, IR, and mass spectroscopic techniques were used for the characterization of synthesized compounds. METHODS Computational study was performed for these compounds by applying density functional theory (DFT) at M06 functional and 6-311G (d,p) basis set to interpret the electronic structures and counter check the experimental findings. The frequency analysis with aforementioned levels of DFT was performed to confirm the stability associated with optimized geometries. The true minimum for the optimized geometries for 1, 2, and 3 was achieved as indicated by the absence of negative eigenvalues in all the calculated frequencies. Additionally, natural bond orbitals (NBOs) and nonlinear optical (NLO) properties were explored utilizing the aforementioned level and basis set combination via DFT, whereas the frontier molecular orbitals (FMOs) evaluation was done at time-dependent density functional theory TDDFT at M06/6-311G(d,p). The global reactivity parameters were also calculated using the FMO data. These computation-based outcomes were found in good agreement with the experimental findings.
Collapse
Affiliation(s)
- Snigdha K
- Research & Postgraduate Department of Chemistry, MES Kalladi College (Affiliated to University of Calicut), Mannarkkad, Kerala, 678583, India
| | - Mohammed Musthafa T N
- Research & Postgraduate Department of Chemistry, MES Kalladi College (Affiliated to University of Calicut), Mannarkkad, Kerala, 678583, India.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, 80203, Jeddah, 21589, Saudi Arabia
| | - Khalid A Alamry
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, 80203, Jeddah, 21589, Saudi Arabia
| | - Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589, Saudi Arabia.
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
10
|
Mustafa G, Shafiq I, Shaikh QUA, Mustafa A, Zahid R, Rasool F, Asghar MA, Baby R, Alshehri SM, Haroon M. Quantum Chemical Exploration of A-π 1-D 1-π 2-D 2-Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties. ACS OMEGA 2023; 8:22673-22683. [PMID: 37396273 PMCID: PMC10308399 DOI: 10.1021/acsomega.3c01472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1-DBTD6) with an A-π1-D1-π2-D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap values was DBTR > DBTD1 > DBTD2 > DBTD3 > DBTD4 > DBTD5 > DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the βtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10-27 and 1.331 × 10-32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Iqra Shafiq
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Qurat-ul-ain Shaikh
- Institute
of Chemistry, Shah Abdul Latif University
Khairpur, Khairpur 66111, Pakistan
| | - Ayesha Mustafa
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Romaisa Zahid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Faiz Rasool
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Rabia Baby
- Department
of education, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan
| | - Saad M. Alshehri
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Muhammad Haroon
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
11
|
Arumugam A, Shanmugam R, Munusamy S, Muhammad S, Algarni H, Sekar M. Study of the Crystal Architecture, Optoelectronic Characteristics, and Nonlinear Optical Properties of 4-Amino Antipyrine Schiff Bases. ACS OMEGA 2023; 8:15168-15180. [PMID: 37151560 PMCID: PMC10157849 DOI: 10.1021/acsomega.2c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Two Schiff bases, (E)-4-((2-chlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (4AAPOCB) and (E)-4-((4-chlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (4AAPPCB), have been synthesized and grown as single crystals. Single-crystal X-ray diffraction analysis was employed to determine the crystal structure of the compounds, and the results suggest that the compounds crystallized into an orthorhombic crystal system having P212121 and Pbca space groups, respectively. Further, the crystallinity of the compounds was analyzed by the PXRD technique. The UV-vis-NIR spectra of the compounds demonstrate excellent transmittance in the entire visible region. The lower cutoff wavelengths of the compounds were determined to be 338 and 333 nm, respectively; additionally, optical band gaps of the compounds found were 4.60 and 4.35 eV. FTIR and NMR (1H and 13C) spectral techniques were utilized to analyze the molecular structure of the compounds. The compounds emit photoluminescence with broad emission bands with centers at 401 and 418 nm. The thermal stability and phase transitions were assessed through thermogravimetric methods. The phase transition prior to melting was indicated by the endothermic event at around 190 °C in the DTA curves of both crystals, and the same was observed in the DSC curves. The second harmonic efficiencies of the powdered compounds I and II were found to be 3.52 and 1.13 times better than that of the standard reference KDP. The 4AAPOCB and 4AAPPCB compounds showed isotropic polarizability amplitudes of 46.02 × 10-24 and 46.52 × 10-24 esu, respectively. The calculation of linear polarizability and NLO second-order polarizability (β) along with other optical parameters was performed for optimized geometries. The nonzero amplitudes of the average β values for compounds 4AAPOCB and 4AAPPCB were found to be 14.74 × 10-30 and 8.10 × 10-30 esu, respectively, which show a decent potential of the synthesized molecules for NLO applications. The calculated β amplitudes were further explained based on calculated electronic parameters like molecular electrostatic potentials, frontier molecular orbitals, molecular orbital energies, transition energies, oscillator strengths, and unit spherical representation of NLO polarizability. The current analysis emphasizes the significance of synthesized compounds as prospective candidates for optical and NLO applications through the use of experiments and quantum computations.
Collapse
Affiliation(s)
- Amsaveni Arumugam
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
| | - Ramesh Shanmugam
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
- Department
of Chemistry, Adithya Institute of Technology, Coimbatore 641 107, Tamil Nadu, India
| | - Saravanabhavan Munusamy
- Department
of Chemistry, KPR Institute of Engineering
and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413,Saudi Arabia
| | - Hamed Algarni
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413,Saudi Arabia
| | - Marimuthu Sekar
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
| |
Collapse
|
12
|
Tahir MN, Ali A, Khalid M, Ashfaq M, Naveed M, Murtaza S, Shafiq I, Asghar MA, Orfali R, Perveen S. Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules 2023; 28:molecules28072967. [PMID: 37049730 PMCID: PMC10096040 DOI: 10.3390/molecules28072967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Two aminobenzoic acid based crystalline imines (HMBA and DHBA) were synthesized through a condensation reaction of 4-aminobenzoic acid and substituted benzaldehydes. Single-crystal X-ray diffraction was employed for the determination of structures of prepared Schiff bases. The stability of super molecular structures of both molecules was achieved by intramolecular H-bonding accompanied by strong, as well as comparatively weak, intermolecular attractive forces. The comparative analysis of the non-covalent forces in HMBA and DHBA was performed by Hirshfeld surface analysis and an interaction energy study between the molecular pairs. Along with the synthesis, quantum chemical calculations were also accomplished at M06/6-311G (d, p) functional of density functional theory (DFT). The frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), natural bond orbitals (NBOs), global reactivity parameters (GRPs) and natural population (NPA) analyses were also carried out. The findings of FMOs found that Egap for HMBA was examined to be smaller (3.477 eV) than that of DHBA (3.7933 eV), which indicated a greater charge transference rate in HMBA. Further, the NBO analysis showed the efficient intramolecular charge transfer (ICT), as studied by Hirshfeld surface analysis.
Collapse
Affiliation(s)
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Mubashir Naveed
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
13
|
Shahzad Munawar K, Ali S, Ashfaq M, Nawaz Tahir M, Muhammad S, Alarfaji SS, Ahmed G, Al‐Sehemi AG. Synthesis, Characterization, Crystal Structure and Computational Study of Third‐Order NLO Properties of Schiff bases. ChemistrySelect 2022. [DOI: 10.1002/slct.202203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Khurram Shahzad Munawar
- Institute of Chemistry University of Sargodha Sargodha 40100 Pakistan
- Department of Chemistry University of Mianwali Mianwali 42200 Pakistan
| | - Saqib Ali
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha 40100 Pakistan
| | | | - Shabbir Muhammad
- Department of Chemistry College of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Saleh S. Alarfaji
- Department of Chemistry College of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Gulzar Ahmed
- School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Chemistry University of Mianwali Mianwali 42200 Pakistan
| | - Abdullah G. Al‐Sehemi
- Department of Chemistry College of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
14
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Ashfaq M, Ali A, Tahir MN, Kuznetsov A, Munawar KS, Muhammad S. Synthesis, single-crystal exploration, hirshfeld surface analysis, and DFT investigation of the thiosemicarbazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Akram W, Nadeem E, Ayub K, Iqbal J, Al-Buriahi M, Alomairy S, Katubi KM, Ibraheem AA. Enhanced Non-Linear Optical Response of Alkali Metal-Doped Nitrogenated Holey Graphene (C2N). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Computational investigation, effects of polar and non-polar solvents on optimized structure with topological parameters (ELF, LOL, AIM, and RDG) of three glycine derivative compounds. Struct Chem 2022. [DOI: 10.1007/s11224-022-01930-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Robust Magnetic γ-Fe2O3/Al–ZnO Adsorbent for Chlorpyriphos Removal in Water. WATER 2022. [DOI: 10.3390/w14071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this research, the removal of the pesticide chlorpyriphos (CPE) from water by adsorption using a novel adsorbent made of γ-Fe2O3/Al-ZnO nanocomposite was studied. The adsorbent was characterized using Fourier-transformed infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and vibrating sample magnetometry (VSM). The main parameters affecting the adsorption process, including the initial pH (2–12), the concentration of pesticide (10–70 ppm), the %Fe2O3 of the adsorbent, and the adsorption time (£60 min), were studied. The results demonstrated that the adsorption of CPE depended on the pH, with a maximum removal of 92.3% achieved at around neutral pH. The adsorption isotherm was modelled and the results showed that the Freundlich model fitted the experimental data better than the Langmuir and Temkin models. The kinetics of adsorption were also studied and modelled using the pseudo-first-order and pseudo-second-order models, with the former being found more suitable. Energy dispersive X-ray (EDX) analysis confirmed the adsorption of CPE on γ-Fe2O3/Al-ZnO, while FTIR analysis suggested that the hydroxyl, N-pyridine, and chloro functional groups governed the adsorption mechanism. Furthermore, VSM analysis revealed that the magnetization saturation of γ-Fe2O3/Al-ZnO nanocomposite, after CPE adsorption, was slightly lower than that of fresh γ-Fe2O3/Al-ZnO but remained adequate for the efficient separation of the adsorbent simply using a magnet. This study demonstrates that binary γ-Fe2O3/Al-ZnO magnetic nanocomposites are effective for the removal of chlorpyriphos and could be highly promising materials for the removal of emerging pollutants in wastewater.
Collapse
|
19
|
Ashfaq M, Khalid M, Tahir MN, Ali A, Arshad MN, Asiri AM. Synthesis of Crystalline Fluoro-Functionalized Imines, Single Crystal Investigation, Hirshfeld Surface Analysis, and Theoretical Exploration. ACS OMEGA 2022; 7:9867-9878. [PMID: 35356686 PMCID: PMC8943585 DOI: 10.1021/acsomega.2c00288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
This investigation is focused on the synthesis of two halo-functionalized crystalline Schiff base (imine) compounds: (E)-2-methoxy-6-(((3-(trifluoromethyl)phenyl)imino)methyl)phenol (MFIP) and (E)-1-(((2-fluorophenyl)imino)methyl)naphthalen-2-ol (FPIN) by the condensation reaction of substituted benzaldehydes and substituted aniline. The crystal structures of MFIP and FPIN were determined unambiguously by single-crystal X-ray diffraction (SC-XRD) studies. Intermolecular interactions and the role of fluorine atoms in the stabilization of the crystal packing are explored for both compounds using Hirshfeld surface analysis. Accompanied with experimental studies, quantum chemical calculations were also performed for comprehensive structure elucidation at the M06/6-311G(d,p) level of theory. A comparison of experimental and density functional theory results for geometrical parameters exhibited excellent agreement. Interestingly, Frontier molecular orbitals and natural bond orbital (NBO) findings revealed that intramolecular charge transfer and hyper-conjugation interactions had played a significant role to stabilize the molecules. Both compounds exhibited a relatively larger value of hardness with a smaller global softness, which, as proposed by the SC-XRD and NBO study, shows a higher stability. Nonlinear optical (NLO) findings showed that FPIN manifested a larger value of linear polarizability (<a> = 293.06 a.u.) and second-order hyperpolarizability (<γ> = 3.31 × 105 a.u.) than MFIP (<a> = 252.42 and <γ> = 2.08 × 105 a.u.) due to an extended conjugation. The above-mentioned findings of the entitled compounds may play a crucial role in NLO applications.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589 P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589 P.O. Box 80203, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589 P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589 P.O. Box 80203, Saudi Arabia
| |
Collapse
|
20
|
Ali A, Kuznetsov A, Ashfaq M, Tahir MN, Khalid M, Imran M, Irfan A. Synthesis, single-crystal exploration, and theoretical insights of arylsulfonylated 2-amino-6-methylpyrimidin derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Ali A, Khalid M, Din ZU, Asif HM, Imran M, Tahir MN, Ashfaq M, Rodrigues-Filho E. Exploration of structural, electronic and third order nonlinear optical properties of crystalline chalcone systems: Monoarylidene and unsymmetrical diarylidene cycloalkanones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
2-Amino-6-methylpyridine based co-crystal salt formation using succinic acid: Single-crystal analysis and computational exploration. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Ashfaq M, Ali A, Kuznetsov A, Tahir MN, Khalid M. DFT and single-crystal investigation of the pyrimethamine-based novel co-crystal salt: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium-4-methylbenzoate hydrate (1:1:1) (DEMH). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129445] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Ali A, Khalid M, Rehman MA, Anwar F, Zain-Ul-Aabidin H, Akhtar MN, Khan MU, Braga AA, Assiri MA, Imran M. An Experimental and Computational Exploration on the Electronic, Spectroscopic, and Reactivity Properties of Novel Halo-Functionalized Hydrazones. ACS OMEGA 2020; 5:18907-18918. [PMID: 32775892 PMCID: PMC7408231 DOI: 10.1021/acsomega.0c02128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Herein, halo-functionalized hydrazone derivatives "2-[(6'-chloroazin-2'-yl)oxy]-N'-(2-fluorobenzylidene) aceto-hydrazone (CPFH), 2-[(6'-chloroazin-2'-yl)oxy]-N'-(2-chlorobenzylidene) aceto-hydrazones (CCPH), 2-[(6'-chloroazin-2'-yl)oxy]-N'-(2-bromobenzylidene) aceto-hydrazones (BCPH)" were synthesized and structurally characterized using FTIR, 1H-NMR, 13C-NMR, and UV-vis spectroscopic techniques. Computational studies using density functional theory (DFT) and time dependent DFT at CAM-B3LYP/6-311G (d,p) level of theory were performed for comparison with spectroscopic data (FT-IR, UV-vis) and for elucidation of the structural parameters, natural bond orbitals (NBOs), natural population analysis, frontier molecular orbital (FMO) analysis and nonlinear optical (NLO) properties of hydrazones derivatives (CPFH, CCPH, and BCPH). Consequently, an excellent complement between the experimental data and the DFT-based results was achieved. The NBO analysis confirmed that the presence of hyper conjugative interactions was pivotal cause for stability of the investigated compounds. The energy gaps in CPFH, CCPH, and BCPH were found as 7.278, 7.241, and 7.229 eV, respectively. Furthermore, global reactivity descriptors were calculated using the FMO energies in which global hardness revealed that CPFH was more stable and less reactive as compared to BCPH and CCPH. NLO findings disclosed that CPFH, CCPH, and BCPH have superior properties as compared to the prototype standard compound, which unveiled their potential applications for optoelectronic technology.
Collapse
Affiliation(s)
- Akbar Ali
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Farooq Anwar
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Muhammad Nadeem Akhtar
- Department
of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | | | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
25
|
Khalid M, Ali A, Rehman MFU, Mustaqeem M, Ali S, Khan MU, Asim S, Ahmad N, Saleem M. Exploration of Noncovalent Interactions, Chemical Reactivity, and Nonlinear Optical Properties of Piperidone Derivatives: A Concise Theoretical Approach. ACS OMEGA 2020; 5:13236-13249. [PMID: 32548510 PMCID: PMC7288701 DOI: 10.1021/acsomega.0c01273] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 05/05/2023]
Abstract
The organic compounds with a π-bond system lead to electric charge delocalization which enables them to reveal fascinating nonlinear optical properties. Mono-carbonyl curcuminoids also have an appealing skeleton from the conjugation view point. Interesting chemical structures of the 3,5-bis(arylidene)-N-benzenesulfonyl-4-piperidone derivatives motivated us to perform density functional theory (DFT)-based studies. Therefore, computations using the B3LYP/6-311G(d,p) functional of DFT were executed to explore geometric parameters, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, and natural bond orbital (NBO) analyses. Moreover, three different functionals such as HF, B3LYP, and M06 with the 6-311G(d,p) basis set were used to investigate the average polarizability ⟨α⟩ and first hyperpolarizability (βtot)-based properties of all compounds. A good concurrence among calculated and experimental parameters was obtained through root mean square error calculations. The molecular stability of piperidone derivatives was examined using the Hirshfeld surface and NBO analyses. Natural population analysis was also performed to obtain insights about atomic charges. Calculated HOMO-LUMO energies showed that charge transfer interactions take place within the molecules. Moreover, global reactivity parameters including electronegativity, chemical hardness, softness, ionization potential, and electrophilicity were calculated using the HOMO and LUMO energies. The average polarizability ⟨α⟩ and first hyperpolarizability (βtot) values of all compounds were observed to be larger in magnitude at the aforesaid functional than the standard compound.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Akbar Ali
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha Bhakkar Campus, Bhakkar 30000, Pakistan
| | - Shehbaz Ali
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Sumreen Asim
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Naseeb Ahmad
- Department of Physics, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Saleem
- Department of Physics, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|