1
|
Benzi A, Bianchi L, Giorgi G, Maccagno M, Petrillo G, Spinelli D, Tavani C. An Easy Access to Furan-Fused Polyheterocyclic Systems. Molecules 2022; 27:molecules27103147. [PMID: 35630623 PMCID: PMC9143548 DOI: 10.3390/molecules27103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Nitrostilbenes characterized by two different or differently substituted aryl moieties can be obtained from the initial ring-opening of 3-nitrobenzo[b]thiophene with amines. Such versatile building blocks couple the well-recognized double electrophilic reactivity of the nitrovinyl moiety (addition to the double bond, followed by, e.g., intramolecular replacement of the nitro group) with the possibility to exploit a conjugated system of double bonds within an electrocyclization process. Herein, nitrostilbenes are reacted with different aromatic enols provided by a double (carbon and oxygen) nucleophilicity, leading to novel, interesting naphthodihydrofurans. From these, as a viable application, aromatization and electrocyclization lead in turn to valuable polycondensed, fully aromatic O-heterocycles.
Collapse
Affiliation(s)
- Alice Benzi
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Lara Bianchi
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro, 53100 Siena, Italy;
| | - Massimo Maccagno
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Giovanni Petrillo
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Domenico Spinelli
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum-University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy;
| | - Cinzia Tavani
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
- Correspondence:
| |
Collapse
|
2
|
Kurteva V. Recent Progress in Metal-Free Direct Synthesis of Imidazo[1,2- a]pyridines. ACS OMEGA 2021; 6:35173-35185. [PMID: 34984250 PMCID: PMC8717391 DOI: 10.1021/acsomega.1c03476] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
This Mini-Review highlights the most effective protocols for metal-free direct synthesis of imidazo[1,2-a]pyridines, crucial target products and key intermediates, developed in the past decade. The emphases is given on the ecological impact of the methods and on the mechanistic aspects as well. The procedures efficiently applied in the preparation of important drugs and promising drug candidates are also underlined.
Collapse
Affiliation(s)
- Vanya Kurteva
- Institute of Organic Chemistry
with Centre of Phytochemistry, Bulgarian
Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
A Nitrocarbazole as a New Microtubule-Targeting Agent in Breast Cancer Treatment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.
Collapse
|
4
|
Petrillo G, Tavani C, Bianchi L, Benzi A, Cavalluzzi MM, Salvagno L, Quintieri L, De Palma A, Caputo L, Rosato A, Lentini G. Densely Functionalized 2-Methylideneazetidines: Evaluation as Antibacterials. Molecules 2021; 26:3891. [PMID: 34202191 PMCID: PMC8271477 DOI: 10.3390/molecules26133891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/27/2023] Open
Abstract
Twenty-two novel, variously substituted nitroazetidines were designed as both sulfonamide and urethane vinylogs possibly endowed with antimicrobial activity. The compounds under study were obtained following a general procedure recently developed, starting from 4-nitropentadienoates deriving from a common β-nitrothiophenic precursor. While being devoid of any activity against fungi and Gram-negative bacteria, most of the title compounds performed as potent antibacterial agents on Gram-positive bacteria (E. faecalis and three strains of S. aureus), with the most potent congener being the 1-(4-chlorobenzyl)-3-nitro-4-(p-tolyl)azetidine 22, which displayed potency close to that of norfloxacin, the reference antibiotic (minimum inhibitory concentration values 4 and 1-2 μg/mL, respectively). Since 22 combines a relatively efficient activity against Gram-positive bacteria and a cytotoxicity on eucharyotic cells only at 4-times higher concentrations (inhibiting concentration on 50% of the cultured eukaryotic cells: 36 ± 10 μM, MIC: 8.6 μM), it may be considered as a promising hit compound for the development of a new series of antibacterials selectively active on Gram-positive pathogens. The relatively concise synthetic route described herein, based on widely available starting materials, could feed further structure-activity relationship studies, thus allowing for the fine investigation and optimization of the toxico-pharmacological profile.
Collapse
Affiliation(s)
- Giovanni Petrillo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Cinzia Tavani
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Lara Bianchi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Alice Benzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| |
Collapse
|
5
|
Petrillo G, Benzi A, Bianchi L, Maccagno M, Pagano A, Tavani C, Spinelli D. Recent advances in the use of conjugated nitro or dinitro-1,3-butadienes as building-blocks for the synthesis of heterocycles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|