1
|
Sanz de León A, Pulido JA, Fernández-Delgado N, Delgado FJ, Molina SI. Chitin Nanocomposites for Fused Filament Fabrication: Flexible Materials with Enhanced Interlayer Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35554-35565. [PMID: 38941240 PMCID: PMC11247426 DOI: 10.1021/acsami.4c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In this work, we present a series of nanocomposites for Fused filament fabrication (FFF) based on polycaprolactone (PCL) and chitin nanocrystals (ChNCs). The ChNCs were synthesized by acid hydrolysis using HCl or lactic acid (LA). The approach using LA, an organic acid, makes the ChNCs synthesis more sustainable and modifies their surface with lactate groups, increasing their compatibility with the PCL matrix. The ChNCs characterization by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that both ChNCs presented similar morphologies and crystallinity, while differential scanning calorimetry and thermogravimetric analysis proved that they can bear temperatures up to 210 °C without degrading, which allows their processing in the manufacturing of PCL composites by twin-screw extrusion. Therefore, PCL composites in the form of filaments containing 0.5-1.0 wt % ChNCs were produced and used as feedstock in FFF, and standard tensile and flexural specimens were printed at different temperatures, up to 170 °C, to assess the influence of the ChNCs in the mechanical properties of the material. The tensile testing results showed that the presence of ChNCs enhances the strength and ductility of the PCL matrix, increasing the elongation at break around 20-50%. Moreover, the vertically printed flexural specimens showed a very different bending behavior, such that the pure PCL specimens presented a brittle fracture at 7% strain, while the ChNCs composites were able to bend over themselves. Hence, this work proves that the presence of ChNCs aims to improve the interlayer adhesion of the objects manufactured by FFF due to their good adhesive properties, which is currently a concern for the scientific community and the industrial sector.
Collapse
Affiliation(s)
- Alberto Sanz de León
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Jose A Pulido
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Natalia Fernández-Delgado
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Francisco J Delgado
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| | - Sergio I Molina
- Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain
| |
Collapse
|
2
|
Sandoval-Gío JJ, Cervantes-Uc JM, Rivera-Muñoz G, Alvarado-López CJ. Comparative physicochemical analysis of chitin quality of the two tagmata in the exoskeleton of the horseshoe crab Limulus polyphemus. Int J Biol Macromol 2023; 246:125563. [PMID: 37364812 DOI: 10.1016/j.ijbiomac.2023.125563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Recently, chitin biopolymer has received much attention as a wide variety of biomedical application for this and its derivatives have been reported, in fact, the study of non-conventional species as alternative sources of them compounds has taken particular interest. Here, we present a comparative physicochemical survey of the two tagmata in the exoskeleton of the horseshoe crab Limulus polyphemus: the prosoma and the opisthosoma, collected in Yucatán, Mexico. The characterization included CHNSO analysis, FTIR, TGA, DSC, XRD, and SEM. The CHNSO analysis revealed that C is present in the highest proportion (∼45 %) and that chemical composition did not show significant differences (P < 0.05) between the two tagmata. FTIR spectra of two tagmata presented a wide characteristic band of the chitin between 3600 and 3000 cm-1, confirming the presence of this biopolymer in the exoskeleton studied. TGA and DTGA profiles resulted very similar for both tagmata being the residual mass at 650 °C of around 30 % for both samples; these values were associated to the presence of minerals. SEM micrographs showed a porous matrix with infinite large number of irregularly shaped particles. Results show that both tagmata are made up of chitin, and they seem to have a high mineral content.
Collapse
Affiliation(s)
- Juan José Sandoval-Gío
- Tecnológico Nacional de México, Instituto Tecnológico de Tizimín C. 29, Col. Santa Rita, CP 97702 Tizimín, Yucatán, Mexico.
| | - José Manuel Cervantes-Uc
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, CP 97205 Mérida, Yucatán, Mexico.
| | - Gerardo Rivera-Muñoz
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Avenida Tecnológico S/N Km. 4.5, CP 97118 Mérida, Yucatán, Mexico.
| | - Carlos Juan Alvarado-López
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Avenida Tecnológico S/N, CP 97345 Conkal, Yucatán, Mexico.
| |
Collapse
|
3
|
Ma Y, Guo C, Shen J, Wang Y. Analysis of the topological motifs of the cellular structure of the tri-spine horseshoe crab ( Tachypleus tridentatus) and its associated mechanical properties. BIOINSPIRATION & BIOMIMETICS 2022; 17:066013. [PMID: 36103869 DOI: 10.1088/1748-3190/ac9207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Topological motifs in pore architecture can profoundly influence the structural properties of that architecture, such as its mass, porosity, modulus, strength, and surface permeability. Taking the irregular cellular structure of the tri-spine horseshoe crab as a research model, we present a new approach to the quantitative description and analysis of structure-property-function relationships. We employ a robust skeletonization method to construct a curve-skeleton that relies on high-resolution 3D tomographic data. The topological motifs and mechanical properties of the long-range cellular structure were investigated using the Grasshopper plugin and uniaxial compression test to identify the variation gradient. Finite element analysis was conducted for the sub-volumes to obtain the variation in effective modulus along the three principal directions. The results show that the branch length and node distribution density varied from the tip to the base of the sharp corner. These node types formed a low-connectivity network, in which the node types 3-N and 4-N tended to follow the motifs of ideal planar triangle and tetrahedral configurations, respectively, with the highest proportion of inter-branch angles in the angle ranges of 115-120° and 105-110°. In addition, mapping the mechanical gradients to topological properties indicated that narrower profiles with a given branch length gradient, preferred branch orientation, and network connectedness degree are the main factors that affect the mechanical properties. These factors suggest significant potential for designing a controllable, irregularly cellular structure in terms of both morphology and function.
Collapse
Affiliation(s)
- Yaopeng Ma
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Ce Guo
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Jingyu Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Yu Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| |
Collapse
|
4
|
Exceptional properties of hyper-resistant armor of a hydrothermal vent crab. Sci Rep 2022; 12:11816. [PMID: 35821397 PMCID: PMC9276715 DOI: 10.1038/s41598-022-15982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Animals living in extreme environments, such as hydrothermal vents, would be expected to have evolved protective shells or exoskeletons to maintain homeostasis. The outer part of the exoskeleton of vent crabs (Austinograea sp.) in the Indian Ocean hydrothermal vent was one of the hardest (approximately 7 GPa) biological materials ever reported. To explore the exoskeletal characteristics of vent crabs which enable them to adapt to severe environments, a comparative analysis was conducted with the Asian paddle crab (Charybdis japonica) living in coastal areas. Nanoindentation, thermogravimetric analysis, scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy were used to analyze the mechanical properties, thermal stability, structure, surface components, and the composition of compounds, respectively. Though both species have four-layered exoskeletons, the outermost layer of the vent crab, a nano-granular structure, was much thicker than that of the coastal crab. The proportions of aluminum and sulfur that constitute the epicuticle of the exoskeleton were higher in the vent crab than in the coastal crab. There was a lack of water or volatile substances, lots of CaCO3, and no carotenoid-based compounds in the exoskeleton of the vent crab. These might have improved the mechanical properties and thermal stability of the hydrothermal species.
Collapse
|