1
|
Wu J, Shu C, Li Z, Noble A, Aggarwal VK. Photoredox-Catalyzed Decarboxylative Bromination, Chlorination and Thiocyanation Using Inorganic Salts. Angew Chem Int Ed Engl 2023; 62:e202309684. [PMID: 37522816 PMCID: PMC10952529 DOI: 10.1002/anie.202309684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Decarboxylative halogenation reactions of alkyl carboxylic acids are highly valuable reactions for the synthesis of structurally diverse alkyl halides. However, many reported protocols rely on stoichiometric strong oxidants or highly electrophilic halogenating agents. Herein, we describe visible-light photoredox-catalyzed decarboxylative halogenation reactions of N-hydroxyphthalimide-activated carboxylic acids that avoid stoichiometric oxidants and use inexpensive inorganic halide salts as the halogenating agents. Bromination with lithium bromide proceeds under simple, transition-metal-free conditions using an organic photoredox catalyst and no other additives, whereas dual photoredox-copper catalysis is required for chlorination with lithium chloride. The mild conditions display excellent functional-group tolerance, which is demonstrated through the transformation of a diverse range of structurally complex carboxylic acid containing natural products into the corresponding alkyl bromides and chlorides. In addition, we show the generality of the dual photoredox-copper-catalyzed decarboxylative functionalization with inorganic salts by extension to thiocyanation with potassium thiocyanide, which was applied to the synthesis of complex alkyl thiocyanates.
Collapse
Affiliation(s)
- Jingjing Wu
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSBristolUK
- Current address: Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringZhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityNo. 429, Zhangheng Road200213ShanghaiChina
| | - Chao Shu
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSBristolUK
- Current address: National Key Laboratory of Green PesticideCollege of ChemistryCentral China Normal University (CCNU)152 Luoyu Road430079WuhanHubeiChina
| | - Zhihang Li
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSBristolUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSBristolUK
| | | |
Collapse
|
2
|
He MX, Yao Y, Ai CZ, Mo ZY, Wu YZ, Zhou Q, Pan YM, Tang HT. Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Org Chem Front 2022. [DOI: 10.1039/d1qo01458g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We reported an electrocatalytic C–H activation method to construct novel highly functionalized tetrasubstituted furan derivatives, which uses allenes and 1,3-dicarbonyl compounds as substrates.
Collapse
Affiliation(s)
- Mu-Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zu-Yu Mo
- Pharmacy School, Guilin Medical University, Guilin 541004, China
| | - Yu-Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qi Zhou
- Adesis Inc. A Universal Display company, New Castle, Delaware 19720, USA
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hao-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Xi Z, Liu Y, Wang H, Guan D, Liu Y, Sun B, Tian H, Liang S. A Convenient Method for α‐Chlorination of 1,3‐Diketones and β‐Keto Esters with DMSO or Ph
2
SO/(COCl)
2. ChemistrySelect 2021. [DOI: 10.1002/slct.202102985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zeyu Xi
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Yuanjian Liu
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Hao Wang
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Di Guan
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Yongguo Liu
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Baoguo Sun
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Hongyu Tian
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| | - Sen Liang
- Department Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Key Laboratory of Flavor Chemistry Institution Beijing Technology and Business University Fucheng Road 11#, Haidian District Beijing China 100048
| |
Collapse
|
4
|
Liu S, Su YL, Sun TY, Doyle MP, Wu YD, Zhang X. Precise Introduction of the -CH nX 3-n (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. J Am Chem Soc 2021; 143:13195-13204. [PMID: 34374531 DOI: 10.1021/jacs.1c05208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Addition of halomethyl radicals to form bioactive molecules has recently become an efficient strategy. The reaction has a bottleneck, however, which is the effective and selective generation of the proper halomethyl •CHnX3-n radical by combining CHnX4-n with a carbon radical. Understanding the reactivity and selectivity of carbon radicals in the hydrogen atom transfer (HAT) and halogen atom transfer (XAT) reactions of CHnX4-n is key to the development of such an attractive method. With the help of the emerging data-driven strategy, DFT calculations were used to explore various correlations. For selectivity, the relative energy barriers between HAT and XAT reactions (ΔG⧧H - ΔG⧧X) correlate reasonably well with the three parameters ΔGH, ΔGX, and IP, and the correlation studies reveal that the calculated IPinver and the experimental ΔBDE can be used to conveniently predict the selectivity. Predicted selectivities are consistent with experimental determinations. This work not only provides a possibility for selecting carbon radicals with the known or easily obtained physicochemical data but also demonstrates that the informatic workflow such as generating data and identifying correlations has potential applications in mining reaction rules.
Collapse
Affiliation(s)
- Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|