1
|
Eddine Attar A, Chaker H, Djennas M, Ondarts M, Fourmentin S. Investigation of Doehlert matrix conception in novel intrinsically conducting polymers based on selenium nanoparticles for wastewater treatment: Synthesis, characterization, kinetic and chemometric study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124562. [PMID: 38823245 DOI: 10.1016/j.saa.2024.124562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The synthesis of robust intrinsically conducting polymers (ICPs) based on nanoparticles is becoming increasingly attractive to the research community due to the unique properties of these nanocomposites. Indeed, as organic semiconductors, ICPs combine both polymer and metal properties in a single structure. This study presents an innovative approach in which the Doehlert Matrix (DM) is applied to a novel ICP nanocomposite based on polyaniline (Pani) coupled with selenium (Se) loaded mesoporous titania (TiO2) for wastewater treatment by photocatalysis. It includes both the elaboration routes of ICP nanocomposites, characterization of materials by X-ray diffraction (XRD), BET analysis, thermogravimetric analysis (TGA), RAMAN spectroscopy and Fourier transform infrared spectroscopy (FTIR) and photodegradation of methylene blue (MB) as a representative of dye pollutant. In addition, the photocatalytic process has been optimized by a novel DM conception. The effect of the pH of the solution, the catalyst dosage and the initial pollutant concentration was investigated. The optimum conditions were found to be: initial MB concentration of 15 mg/L, the catalyst dosage of 69 mg and pH of 9.6 with an operating time of 75 min, with a coefficient of determination R2 equal to 0.9985. The removal efficiency of BM was close to 97 %. The study shows that the new ICP nanocomposites improve the photocatalytic efficiency compared to pure titania and/or pure Pani. In addition, as the ternary Pani-Se-TiO2 nanocomposite could be obtained from a low-cost synthesis, it is a very promising material for use in wastewater treatment.
Collapse
Affiliation(s)
- Alaa Eddine Attar
- Laboratoire de Catalyse et Synthèse en Chimie Organique BP 119, Université de Tlemcen, Tlemcen 13000, Algérie; Université Belhadj Bouchaib de Ain Temouchent, BP 284, 46000, Ain Temouchent, Algérie
| | - Hanane Chaker
- Laboratoire de Catalyse et Synthèse en Chimie Organique BP 119, Université de Tlemcen, Tlemcen 13000, Algérie; Université Belhadj Bouchaib de Ain Temouchent, BP 284, 46000, Ain Temouchent, Algérie.
| | - Mustapha Djennas
- Faculté des sciences économiques, BP 226, Université de Tlemcen, Tlemcen 13000, Algérie
| | - Michel Ondarts
- Université Savoie Mont Blanc, CNRS, Laboratoire des Procédés Énergétiques du Bâtiment, 73000 Chambéry, France
| | - Sophie Fourmentin
- Université Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| |
Collapse
|
2
|
Paz CV, Fereidooni M, Hamd W, Daher EA, Praserthdam P, Praserthdam S. Analysis of Ag-DP25/PET plasmonic nano-composites as a visible-light photocatalyst for wastewater treatment: Experimental/theoretical studies, and the DFT-MB degradation mechanism. ENVIRONMENTAL RESEARCH 2024; 252:119081. [PMID: 38714221 DOI: 10.1016/j.envres.2024.119081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
The development of polymeric-composites Agx%DP25-PET (x = 0,1,2,3) may significantly boost the potential application of Agx%DP25 (x = 0,1,2,3) photocatalytic powders. Producing large-scale nano-composites with hybrid-surfaces, that are also flexible materials and easy to employ in a variety of environments. A set of photocatalytic nan-composites embedded with the polymeric binder poly (acrylonitrile-co-butadiene)-dicarboxy terminated (C7H9N) were performed and evaluated for wastewater treatment applications. The results reveal that the flexible polymeric composites (Agx%DP25-PET, x = 0,1,2,3) have photocatalytic activity in aqua media to degrade methylene blue (MB) under visible-light. The addition of C7H9N to immobilize photocatalytic powders on the PET surface reduces photo-generated electron-hole recombination. The materials were characterized by HR-TEM, SEM/EDX, XRD, FT-IR, UV-Vis DRS and PL. The Agx%DP25-PET (x = 0,1,2,3) photocatalytic reactions exhibited productive discoloration/degradation rates, in both aerobic (AE) and anaerobic (AN) environments. The superior photodegradation of Ag2%DP25-PET was attributed to a combination of two effects: LSPR (localized surface plasmon resonance) and Ag-TiO2/environment affinities. The findings of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) provide significant insight into the photocatalytic requirements for MB discoloration/degradation. The experimental/theoretical analysis aimed to offer an in-depth understanding of medium/surface interactions on decorated TiO2 materials, as well as how these interactions affect overall degradation behavior.
Collapse
Affiliation(s)
- C V Paz
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - M Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - W Hamd
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, P.O. Box 33, 1355, El-Koura, Lebanon.
| | - E A Daher
- Petrochemical Engineering Department, Faculty of Engineering III, CRSI, Lebanese University, Rafic Hariri Campus, 1533, Hadat, Lebanon; Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005, Paris, France.
| | - P Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - S Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| |
Collapse
|
3
|
Salahshoori I, Yazdanbakhsh A, Baghban A. Machine learning-powered estimation of malachite green photocatalytic degradation with NML-BiFeO 3 composites. Sci Rep 2024; 14:8676. [PMID: 38622235 PMCID: PMC11018770 DOI: 10.1038/s41598-024-58976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This study explores the potential of photocatalytic degradation using novel NML-BiFeO3 (noble metal-incorporated bismuth ferrite) compounds for eliminating malachite green (MG) dye from wastewater. The effectiveness of various Gaussian process regression (GPR) models in predicting MG degradation is investigated. Four GPR models (Matern, Exponential, Squared Exponential, and Rational Quadratic) were employed to analyze a dataset of 1200 observations encompassing various experimental conditions. The models have considered ten input variables, including catalyst properties, solution characteristics, and operational parameters. The Exponential kernel-based GPR model achieved the best performance, with a near-perfect R2 value of 1.0, indicating exceptional accuracy in predicting MG degradation. Sensitivity analysis revealed process time as the most critical factor influencing MG degradation, followed by pore volume, catalyst loading, light intensity, catalyst type, pH, anion type, surface area, and humic acid concentration. This highlights the complex interplay between these factors in the degradation process. The reliability of the models was confirmed by outlier detection using William's plot, demonstrating a minimal number of outliers (66-71 data points depending on the model). This indicates the robustness of the data utilized for model development. This study suggests that NML-BiFeO3 composites hold promise for wastewater treatment and that GPR models, particularly Matern-GPR, offer a powerful tool for predicting MG degradation. Identifying fundamental catalyst properties can expedite the application of NML-BiFeO3, leading to optimized wastewater treatment processes. Overall, this study provides valuable insights into using NML-BiFeO3 compounds and machine learning for efficient MG removal from wastewater.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Baghban
- Department of Process Engineering, NISOC Company, Ahvaz, Iran.
| |
Collapse
|
4
|
Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, Kumar A, Kumar S, Kyzas GZ. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169815. [PMID: 38184262 DOI: 10.1016/j.scitotenv.2023.169815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO2 NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance. Recent research efforts have specifically focused on understanding the anatase and rutile phases of TiO2 NPs and evaluating their potential in various domains, including photocatalytic processes, antibacterial properties, antioxidant effects, and nanohybrid applications. The hypothesis guiding this research is that by exploring different synthesis methods, particularly chemical and environmentally friendly approaches, and incorporating doping and co-doping techniques, the properties of TiO2 NPs can be significantly improved for diverse applications. The study employs a comprehensive approach, investigating the effects of nanoparticle size, shape, dose, and exposure time on performance. The synthesis methods considered encompass both conventional chemical processes and environmentally friendly alternatives, with a focus on how doping and co-doping can enhance the properties of TiO2 NPs. The research unveils valuable insights into the distinct phases of TiO2 NPs and their potential across various applications. It sheds light on the improved properties achieved through doping and co-doping, showcasing advancements in photocatalytic processes, antibacterial efficacy, antioxidant capabilities, and nanohybrid applications. The study concludes by emphasizing regulatory aspects and offering suggestions for product enhancement. It provides recommendations for the reliable application of TiO2 NPs, addressing a comprehensive spectrum of critical aspects in TiO2 NP research and application. Overall, this research contributes to the evolving landscape of TiO2 NP utilization, offering valuable insights for the development of innovative and high-performance products.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India.
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India
| | - Anil Kumar
- School of chemical and metallurgical engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Susheel Kalia
- Department of Chemistry, ACC Wing (Academic Block) Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, Shahpur, Himachal Pradesh 176206, India
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, Kavala, Greece.
| |
Collapse
|
5
|
Jonidi Jafari A, Moslemzadeh M. The effect of TiO 2 nanoparticles on bacterial growth: the effect of particle size and their structure - a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:697-707. [PMID: 36592384 DOI: 10.1080/09603123.2022.2163990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
One of the widely used microbiological methods to determine the toxicity of chemicals, catalysts, and other types of materials is the minimum inhibitory concentration (MIC) test. The present study aims to investigate the influence of composition of composite materials based on TiO2 and their particle size as well as bacterial type and shape based on the MIC values reported in the literature. The results show that among the 36 articles selected, most of the studies used Escherichia coli (E. coli) (26) and Staphylococcus aureus (S. aureus) (19) bacteria to determine MIC values. This study revealed that the MIC in values below 70 µg ml-1 for S. aureus was lower than that for E. coli bacteria (below 200 µg ml-1). Importantly, MIC value decreased from 60.6 to 7.66 µg ml-1 with decrease in the size of nanoparticles. It follows from the increased surface area for smaller-sized particles, thus increased interaction with bacteria during MIC test.
Collapse
Affiliation(s)
- Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moslemzadeh
- Department of Environmental Health Engineering, School of Public Health, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. Cefotaxime degradation by the coupled binary CdS-PbS: characterization and the photocatalytic process kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33725-33736. [PMID: 36495433 DOI: 10.1007/s11356-022-24613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Increased water pollution due to discharging industrial/urban/hospital wastewater has been adopted to introduce/develop novel removal techniques/catalyst/adsorbent. The hexagonal (wurtzite) CdS and the cubic PbS nanoparticles (NPs) were synthesized, coupled, and supported onto clinoptilolite NPs (CNP). Then, the sample was characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR), and a scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX) techniques. The average crystallite size for CdS NPs, PbS NPs, CNP, and CdS-PbS/CNP samples was obtained at about 24, 36, 27, and 14 nm using the Scherrer formula value of nanometer, by the W-H formula, 31, 17, 39, and 51, respectively. Only a detectable slope can be observed from the DRS spectra for CdS NPs at 591 nm corresponding to an Eg value of 2.1 eV. PbS NPs have a broad abruption peak that begins from the visible region and extends to the IR region of the light. A boosted photocatalytic activity of the supported binary catalysts towards cefotaxime (CT) was reached. An apparent first kinetic model was reached with a k-value of 0.021 min-1 corresponding to the t1/2 value of 33 min. A decreased COD trend for the photodegraded CT solutions was reached, and the chemical oxygen demand (COD) results in the Hinshelwood model showed a k-value of 0.016 min-1, corresponding to a t1/2 value of 43 min.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
7
|
Jaffari ZH, Abbas A, Lam SM, Park S, Chon K, Kim ES, Cho KH. Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130031. [PMID: 36179629 DOI: 10.1016/j.jhazmat.2022.130031] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
This study focuses on the potential capability of numerous machine learning models, namely CatBoost, GradientBoosting, HistGradientBoosting, ExtraTrees, XGBoost, DecisionTree, Bagging, light gradient boosting machine (LGBM), GaussianProcess, artificial neural network (ANN), and light long short-term memory (LightLSTM). These models were investigated to predict the photocatalytic degradation of malachite green from wastewater using various NM-BiFeO3 composites. A comprehensive databank of 1200 data points was generated under various experimental conditions. The ten input variables selected were the catalyst type, reaction time, light intensity, initial concentration, catalyst loading, solution pH, humic acid concentration, anions, surface area, and pore volume of various photocatalysts. The MG dye degradation efficiency was selected as the output variable. An evaluation of the performance metrics suggested that the CatBoost model, with the highest test coefficient of determination (0.99) and lowest mean absolute error (0.64) and root-mean-square error (1.34), outperformed all other models. The CatBoost model showed that the photocatalytic reaction conditions were more important than the material properties. The modeling results suggested that the optimized process conditions were a light intensity of 105 W, catalyst loading of 1.5 g/L, initial MG dye concentration of 5 mg/L and solution pH of 7. Finally, the implications and drawbacks of the current study were stated in detail.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ather Abbas
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Sze-Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Sanghun Park
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu 59626, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Skiba M, Vorobyova V. Evaluation of antibacterial, antioxidant, photocatalytic activities of silver-decorated TiO2 comparison green and classic capping agent. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-022-02748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Chemometric study in plasmonic photocatalytic efficiency of gold nanoparticles loaded mesoporous TiO2 for mineralization of ibuprofen pharmaceutical pollutant : Box Behnken Design conception. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33013-33032. [PMID: 35018594 DOI: 10.1007/s11356-021-17569-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
A boosted photocatalytic activity was observed for the CdS-AgBr nanocomposite in the degradation of methylene blue (MB). The experimental design method based on the response surface methodology (RSM) approach used to study the simultaneous interaction effects between the influencing variables. Analysis of variance (ANOVA) of the results confirmed a significant model for processing the data because an F value of 32.34 for the suggested model was higher than that of the critical value of F0.05, 14, 13 = 2.55 at 95% confidence interval. This analysis also showed a non-significant lack of fit (LOF) (as a measure of the randomness of the deviations around the obtained data) because the LOF F value of 8.27 was smaller than that of the critical value of F0.05, 10, 3 = 8.79. R2 values near to unity were achieved (the multiple correlation coefficients R2 (R2 = 0.9627), adjusted R2 (adj-R2 = 0.9226), and predicted R2 (pred-R2 = 0.7423)). Six center points suggested by the model included the following conditions: pH, 6.1; CMB, 3.5 mg/L; a dose of the catalyst, 0.68 g/L; and irradiation time, 40.5 min. During the center point runs, the degradation efficiencies were obtained in the range of 38 to 43%. The optimal run included pH, 9; catalyst dosage, 1 g/L; irradiation time, 60 min; and CMB, 2 mg/L, and the best removal efficiency of 98% was achieved during these conditions.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
11
|
Hossain O, Rahman E, Roy H, Azam MS, Ahmed S. Synthesis, characterization, and comparative assessment of antimicrobial properties and cytotoxicity of graphene-, silver-, and zinc-based nanomaterials. ANALYTICAL SCIENCE ADVANCES 2022; 3:54-63. [PMID: 38716059 PMCID: PMC10989569 DOI: 10.1002/ansa.202100041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2024]
Abstract
Zinc oxide (ZnO) and graphene oxide (GO) nanoparticles, silver/zinc zeolite (Ag/Zn-Ze), and graphene oxide-silver (GO-Ag) nanocomposites were synthesized and characterized with X-ray powder Diffraction, Field Emission Scanning Electron Microscope and Fourier Transform-Infrared Spectroscopy. The antibacterial efficacy of these nanoparticles was evaluated against E. coli. by shake flask method and plate culture method for different concentrations. For 105 cells/mL initial bacterial concentration, minimum inhibitory concentration (MIC) were <160, <320, <320, and >1280 μg/mL, and antibacterial concentration at which 50% cells are inhibited (IC50) were 47, 90, 78, and 250 μg/mL for Ag/Zn-Ze, GO, GO-Ag, and ZnO, respectively. Therefore, the shake flask method showed that for all nanoparticle concentrations, Ag/Zn-Ze, and GO-Ag exhibited greater inhibition efficacy, which was also highly dependent on initial bacterial concentration. However, in case of the plate culture method, similar range of inhibition capacity was found for Ag/Zn-Ze, GO-Ag, and ZnO, whereas GO showed lower potency to inhibit E. coli. In addition, GO-Ag nanocomposite exhibited more efficacy than Ag/Zn-Ze when the antibacterial surface was prepared with those. However, Ag/Zn-Ze showed no toxicity on Vero cells, whereas GO-Ag exhibited severe toxicity at higher concentrations. This study establishes GO-Ag and Ag/Zn-Ze as potent antimicrobial agents; however, their application dosage should carefully be chosen based on cytotoxic effects of GO-Ag in case of any possible physiological interaction.
Collapse
Affiliation(s)
- Oindrila Hossain
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Ehsanur Rahman
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Hridoy Roy
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Md. Shafiul Azam
- Department of ChemistryBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Shoeb Ahmed
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| |
Collapse
|
12
|
Sukhadeve G, Shaileshkumar, Janbandhu Y, Kumar R, Gedam RS. Ag‐Doped TiO
2
Nanoparticles as an Effective Photocatalyst for Degradation of Indigo Carmine Dye under Visible Light. ChemistrySelect 2021. [DOI: 10.1002/slct.202103629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gaurav Sukhadeve
- Department of Physics Visvesvaraya National Institute of Technology Nagpur 440010 India E-mail: rupesh
| | - Shaileshkumar
- Department of Physics Visvesvaraya National Institute of Technology Nagpur 440010 India E-mail: rupesh
| | - Y. Janbandhu
- Department of Physics Visvesvaraya National Institute of Technology Nagpur 440010 India E-mail: rupesh
| | - Rahul Kumar
- Department of Physics Visvesvaraya National Institute of Technology Nagpur 440010 India E-mail: rupesh
| | - Rupesh S. Gedam
- Department of Physics Visvesvaraya National Institute of Technology Nagpur 440010 India E-mail: rupesh
| |
Collapse
|
13
|
Singh P, Ullah Mirza A, Ahmad Bhat S, Kareem A, Nishat N. Synthesis, Characterization and Evaluation of Thermal, Adsorption and Antioxidant Studies of Amino Functionalized Poly(methyl methacrylate)/Titanium dioxide Nanocomposites. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Tang L, Xiao J, Mao Q, Zhang Z, Yao Z, Zhu X, Zhong Q. One-step direct synthesis of nano bismuth vanadate from bismuth oxide and sodium metavanadate via liquid phase ball-milling method: A novel and environmentally friendly process. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Silver nanoparticles modified mesoporous titanosilicate materials for high oxidation of carbon monoxide. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
A statistical modeling-optimization approach for efficiency photocatalytic degradation of textile azo dye using cerium-doped mesoporous ZnO: A central composite design in response surface methodology. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|