1
|
Shao Y, Deng W, Niu Y, Zhang Z, Song J, Yao Y, Mei L. Synergistic enhancement of the Ag/ZIF-67 cage@MXene 3D heterogeneous structure for ultrahigh SERS sensitivity and stability. Analyst 2025; 150:1131-1139. [PMID: 39935383 DOI: 10.1039/d4an01493f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
There is an urgent need in the in situ field for rapid extraction and analysis of target molecules from irregular surfaces. The application of SERS technology is often limited by low adhesion between precious metal nanoparticles and the substrate and complex fabrication processes. In order to solve this problem, a carbon fiber cloth (CFC) loaded Ag/ZIF-67 cage@MXene 3D detection platform (AZMC) was constructed in this study. The platform takes advantage of the large surface area and defects of MXene flakes to host noble metals, the high carrier transport efficiency between flakes, and van der Waals forces to build highly sensitive and stable composite SERS substrates. The hydrophilicity and subsurface oxidation behavior of MXene make its optoelectronic performance unstable. In this study, the ZIF-67 cage was chemically bonded to MXene through the Co-O-Ti bond, and the ZIF 67@MXene heterojunction was successfully constructed to maintain the optimal photoelectric stability and excellence of MXene. The high performance of the substrate stems from the synergistic effects of charge transfer (CT) and surface plasmon resonance (SPR) of AgNPs and MXene flakes, while the 3D nanocage structure provides additional hotspot regions. Substrate sensitivity was analyzed using rhodamine 6G (R6G) as a probe molecule (detection limit as low as 10-11 M). Notably, the AZMC substrate is highly stable (SERS performance remains essentially unchanged after 45 days of exposure to air). Using this substrate, we also successfully analyzed methylene blue (MB) molecules and Sudan I molecules on apple epidermis, which were successfully detected at concentrations of 0.5 mg L-1 and 1 mg L-1, respectively.
Collapse
Affiliation(s)
- Yunpeng Shao
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Wenlong Deng
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Yue Niu
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Zicheng Zhang
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Jiwei Song
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Yuan Yao
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Linyu Mei
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of Ferroelectric Physical Micro-nano Devices and Systems, North University of China, Taiyuan 030051, China
| |
Collapse
|
2
|
Gu J, Lang S, Jin Z, Wei T. A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine. Molecules 2024; 29:5534. [PMID: 39683694 DOI: 10.3390/molecules29235534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The design and construction of dual-functional and high-efficiency electrochemical sensors are necessary for quantitative detection. In this work, a zinc-based metal-organic framework (MOF-5) and multi-walled carbon nanotubes (MWCNTs) were combined in situ through a simple solvothermal reaction to obtain an MOF-5@MWCNTs composite. The composite exhibits a large surface area, hierarchical pore structure, excellent conductivity, and enhanced electrochemical performance in the detection of acetaminophenol (AP) and dopamine (DA). Remarkably, the synergistic effects between MOF-5 and MWCNTs enable the electrochemical sensor based on the MOF-5@MWCNTs composite to quantitatively determine AP and DA at trace levels. Under optimal conditions, the proposed sensor features relatively wide linear ranges of 0.005-600 μM and 0.1-60 μM for AP and DA, respectively, with very low detection limits (LODs) of 0.061 μM and 0.0075 μM for AP and DA. Importantly, this electrochemical sensor demonstrates excellent reproducibility, stability, and anti-interference ability, making it suitable for practical applications in the detection of AP and DA in urine and tap water samples with acceptable recoveries. The successful integration of MOF-5 with MWCNTs results in a robust and versatile electrochemical sensing platform for the rapid and reliable detection of AP and DA at trace levels.
Collapse
Affiliation(s)
- Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| | - Shuting Lang
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| | - Zhanbin Jin
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| | - Tingting Wei
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| |
Collapse
|
3
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
4
|
Zhang L, Qin D, Feng J, Tang T, Cheng H. Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37318338 DOI: 10.1039/d3ay00497j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, single-walled carbon nanoangles/carbon nanofibers (SWCNHs/CNFs) were synthesized by electrospinning, followed by annealing in a N2 atmosphere. The synthesized composite was structurally characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical sensor was fabricated by modifying a glassy carbon electrode (GCE) for luteolin detection, and its electrochemical characteristics were investigated using differential pulse voltammetry, cyclic voltammetry, and chronocoulometry. Under optimized conditions, the response range of the electrochemical sensor to luteolin was 0.01-50 μM, and the detection limit was 3.714 nM (S/N = 3). The SWCNHs/CNFs/GCE sensor showed excellent selectivity, repeatability, and reproducibility, thus enabling the development of an economical and practical electrochemical method for the detection of luteolin.
Collapse
Affiliation(s)
- Liwen Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi Province, People's Republic of China
| |
Collapse
|
5
|
Monisha B, Sridharan R, Kumar PS, Rangasamy G, Krishnaswamy VG, Subhashree S. Sensing of azo toxic dyes using nanomaterials and its health effects - A review. CHEMOSPHERE 2023; 313:137614. [PMID: 36565768 DOI: 10.1016/j.chemosphere.2022.137614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products.
Collapse
Affiliation(s)
- B Monisha
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - S Subhashree
- Department of Food Processing and Quality Control, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| |
Collapse
|
6
|
Zanoni C, Spina S, Magnaghi LR, Guembe-Garcia M, Biesuz R, Alberti G. Potentiometric MIP-Modified Screen-Printed Cell for Phenoxy Herbicides Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16488. [PMID: 36554364 PMCID: PMC9779394 DOI: 10.3390/ijerph192416488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In this study, a molecularly imprinted polymer (MIP)-based screen-printed cell is developed for detecting phenoxy herbicides using 2-methyl-4-chlorophenoxyacetic acid (MCPA) as the template. MCPA is a phenoxy herbicide widely used since 1945 to control broadleaf weeds via growth regulation, primarily in pasture and cereal crops. The potentiometric cell consists of a silver/silver chloride pseudo-reference electrode and a graphite working electrode coated with a MIP film. The polymeric layer is thermally formed after drop-coating of a pre-polymeric mixture composed of the reagents at the following molar ratio: 1 MCPA: 15 MAA (methacrylic acid): 7 EGDMA (ethylene glycol dimethacrylate). After template removal, the recognition cavities function as the ionophore of a classical ion selective electrode (ISE) membrane. The detected ion is the deprotonated MCPA specie, negatively charged, so the measurements were performed in phosphate buffer at pH 5.5. A linear decrease of the potential with MCPA concentration, ranging from 4 × 10-8 to 1 × 10-6 mol L-1, was obtained. The detection limit and the limit of quantification were, respectively, 10 nmol L-1 and 40 nmol L-1. A Nernstian slope of about -59 mV/dec was achieved. The method has precision and LOD required for MCPA determination in contaminated environmental samples.
Collapse
Affiliation(s)
- Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefano Spina
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Marta Guembe-Garcia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
Shen Y, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. Electrochemical detection of Sudan red series azo dyes: Bibliometrics based analysis. Food Chem Toxicol 2022; 163:112960. [PMID: 35346746 DOI: 10.1016/j.fct.2022.112960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Sudan red azo dyes are banned from food because of their carcinogenic properties. It is necessary to establish a method for the detection of Sudan azo dyes in food. Among them, electrochemical sensing technology has become a very potential analytical method for food detection because of its fast, sensitive and low price. In this paper, we analyze the electrochemical detection of Sudan red azo dyes by bibliometric method. A total of 161 articles were analyzed from 2007 to 2021. The geographical and institutional distribution of these papers is used to understand the form of collaboration on this topic. Keyword analysis in these papers is used to understand the different directions in which the topic is studied at different stages. The results show that the topic reached its peak in 2015. The development of novel materials with excellent electrochemical activity has promoted the research on this topic. As detection limits continue to be lowered and sensors continue to be optimized, this topic currently does not continue to attract much attention.
Collapse
Affiliation(s)
- Yin Shen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
8
|
Deng L, Yuan J, Huang H, Xie S, Xu J, Yue R. Fabrication of hierarchical Ru/PEDOT:PSS/Ti 3C 2T x nanocomposites as electrochemical sensing platforms for highly sensitive Sudan I detection in food. Food Chem 2022; 372:131212. [PMID: 34600196 DOI: 10.1016/j.foodchem.2021.131212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
In our paper, a promising electrochemical sensing platform was fabricated with titanium carbide (Ti3C2Tx), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and ruthenium nanoparticles (RuNPs). First, the Shandong pancake structural PEDOT:PSS/Ti3C2Tx was prepared by physical stirring. PEDOT:PSS as the dispersant was embedded into the Ti3C2Tx nanosheets, increasing the degree of dispersion of the Ti3C2Tx nanosheets and further improving the specific surface area of the composite material. Then, RuNPs were supported on the surface of PEDOT:PSS/Ti3C2Tx to form the hierarchical ternary nanocomposite of Ru/PEDOT:PSS/Ti3C2Tx. The prepared Ru/PEDOT:PSS/Ti3C2Tx nanocomposite exhibited promising electrochemical sensing properties toward Sudan I detection with a wide detection range of 0.01 ∼ 100 μM and a high sensitivity of 482.43 μA mM-1 cm-2. Moreover, the Ru/PEDOT:PSS/Ti3C2Tx sensing platform has been successfully applied for Sudan I detection in ketchup and chili paste, implying the promising application prospect of Ru/PEDOT:PSS/Ti3C2Tx in food safety testing.
Collapse
Affiliation(s)
- Lu Deng
- College of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jie Yuan
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hui Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shuqian Xie
- College of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jingkun Xu
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Ruirui Yue
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
9
|
Hajmalek S, Jahani S, Foroughi MM. Simultaneous voltammetric determination of tramadol and paracetamol exploiting glassy carbon electrode modified with FeNi
3
nanoalloy in biological and pharmaceutical media. ChemistrySelect 2021. [DOI: 10.1002/slct.202102341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Saeed Hajmalek
- Department of Chemistry Kerman Branch Islamic Azad University Kerman Iran
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center Bam University of Medical Sciences Bam Iran
| | | |
Collapse
|
10
|
Li X, Sun X, Zhou A, Zhu Z, Li M. An electrochemical method for the sensitive and rapid sensing of Sudan I in food based on Ni–Fe bimetal organic frameworks. NEW J CHEM 2021. [DOI: 10.1039/d1nj02730a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A Ni–Fe bimetal organic framework-modified electrode was constructed for the sensitive and rapid sensing of Sudan I in food.
Collapse
Affiliation(s)
- Xueyan Li
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- China
| | - Ani Zhou
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- China
| | - Zichun Zhu
- School of Materials and Environment Engineering
- Chizhou Universtiy
- Chizhou 247000
- China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- China
| |
Collapse
|