1
|
Koczoń P, Hołaj-Krzak JT, Palani BK, Bolewski T, Dąbrowski J, Bartyzel BJ, Gruczyńska-Sękowska E. The Analytical Possibilities of FT-IR Spectroscopy Powered by Vibrating Molecules. Int J Mol Sci 2023; 24:ijms24021013. [PMID: 36674526 PMCID: PMC9860999 DOI: 10.3390/ijms24021013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
This paper discusses the state of advancement in the development of spectroscopic methods based on the use of mid (proper) infrared radiation in the context of applications in various fields of science and technology. The authors drew attention to the most important solutions specific to both spectroscopy itself (ATR technique) and chemometric data processing tools (PCA and PLS models). The objective of the current paper is to collect and consistently present information on various aspects of FT-IR spectroscopy, which is not only a well-known and well-established method but is also continuously developing. The innovative aspect of the current review is to show FT-IR's great versatility that allows its applications to solve and explain issues from both the scientific domain (e.g., hydrogen bonds) and practical ones (e.g., technological processes, medicine, environmental protection, and food analysis). Particular attention was paid to the issue of hydrogen bonds as key non-covalent interactions, conditioning the existence of living matter and determining the number of physicochemical properties of various materials. Since the role of FT-IR spectroscopy in the field of hydrogen bond research has great significance, a historical outline of the most important qualitative and quantitative hydrogen bond theories is provided. In addition, research on selected unconventional spectral effects resulting from the substitution of protons with deuterons in hydrogen bridges is presented. The state-of-the-art and originality of the current review are that it presents a combination of uses of FT-IR spectroscopy to explain the way molecules vibrate and the effects of those vibrations on macroscopic properties, hence practical applications of given substances.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Jakub T. Hołaj-Krzak
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Bharani K. Palani
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Tymoteusz Bolewski
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Jarosław Dąbrowski
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
2
|
Tang Z, Ma D, Chen Q, Wang Y, Sun M, Lian Q, Shang J, Wong PK, He C, Xia D, Wang T. Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129373. [PMID: 35728326 DOI: 10.1016/j.jhazmat.2022.129373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The pathogenic microorganisms in water pose a great threat to human health. Photothermal and photothermocatalytic disinfection using nanomaterials (NPs) has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS), especially in the point-of-use operations. This review aims at providing comprehensive and state-of-the-art knowledge of photothermal-based disinfection by NPs. The fundamentals and principles of photothermal-based disinfection were first introduced. Then, recent advances in developing photothermal/photothermocatalytic catalysts were systematically summarized. The light-to-heat conversion and disinfection performance of a large variety of photothermal materials were presented. Given the complicated mechanisms of photothermal-based disinfection, the attacks from reactive oxygen species and heat, the destruction of bacterial cells, and the antibacterial effects of released metal ions were highlighted. Finally, future challenges and opportunities associated with the development of cost-effective photothermal/photothermocatalytic disinfection systems were outlined. This review will provide guidance in designing future NPs and inspire more research efforts from environmental nano-communities to move towards practical water disinfection operations.
Collapse
Affiliation(s)
- Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingzhe Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China; Institute of Environmental Health and Pollution Control, School of Environmental Science & Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Tianqi Wang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518060, China.
| |
Collapse
|
3
|
Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas sensing materials, such as semiconducting metal oxides (SMOx), carbon-based materials, and polymers have been studied in recent years. Among of them, SMOx-based gas sensors have higher operating temperatures; sensors crafted from carbon-based materials have poor selectivity for gases and longer response times; and polymer gas sensors have poor stability and selectivity, so it is necessary to develop high-performance gas sensors. As a porous material constructed from inorganic nodes and multidentate organic bridging linkers, the metal-organic framework (MOF) shows viable applications in gas sensors due to its inherent large specific surface area and high porosity. Thus, compounding sensor materials with MOFs can create a synergistic effect. Many studies have been conducted on composite MOFs with three materials to control the synergistic effects to improve gas sensing performance. Therefore, this review summarizes the application of MOFs in sensor materials and emphasizes the synthesis progress of MOF composites. The challenges and development prospects of MOF-based composites are also discussed.
Collapse
|