1
|
Villora-Picó JJ, Gil-Muñoz G, Sepúlveda-Escribano A, Pastor-Blas MM. The Facile Production of p-Chloroaniline Facilitated by an Efficient and Chemoselective Metal-Free N/S Co-Doped Carbon Catalyst. Int J Mol Sci 2024; 25:9603. [PMID: 39273549 PMCID: PMC11395487 DOI: 10.3390/ijms25179603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The catalytic hydrogenation of the toxic and harmful p-chloronitrobenzene to produce the value-added p-chloroaniline is an essential reaction for the sustainable chemical industry. Nevertheless, ensuring satisfactory control of its chemoselectivity is a great challenge. In this work, a N/S co-doped metal-free carbon catalyst has been fabricated by using cysteine as a source of C, N, and S. The presence of calcium citrate (porogen agent) in the mixture subjected to pyrolysis provided the carbon with porosity, which permitted us to overcome the issues associated with the loss of heteroatoms during an otherwise necessary activation thermal treatment. Full characterization was carried out and the catalytic performance of the metal-free carbon material was tested in the hydrogenation reaction of p-chloronitrobenzene to selectively produce p-chloroaniline. Full selectivity was obtained but conversion was highly dependent on the introduction of S due to the synergetic effect of S and N heteroatoms. The N/S co-doped carbon (CYSCIT) exhibits a mesoporous architecture which favors mass transfer and a higher doping level, with more exposed N and S doping atoms which act as catalytic sites for the hydrogenation of p-chloronitrobenzene, resulting in enhanced catalytic performance when compared to the N-doped carbon obtained from melamine and calcium citrate (MELCIT) used as a reference.
Collapse
Affiliation(s)
- Juan-José Villora-Picó
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Gema Gil-Muñoz
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Antonio Sepúlveda-Escribano
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - M Mercedes Pastor-Blas
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| |
Collapse
|
2
|
Yao Y, Yin C, Ma C, Li Y, Wang Y, Jiang R, He W, Xiang Z, Liu Y, Li X, Lu C. Aromatic Ethers Induced Electronic Structure Reconstruction on Encapsulated Nickel Catalysts for High-Performance Catalytic Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497589 DOI: 10.1021/acsami.3c16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Carbon-encapsulated metal (CEM) catalysts effectively address supported metal catalyst instability by protecting the active metal with a shell. However, mass transfer limitations lead to reduced activity for catalytic hydrogenation reaction over most CEM catalysts. Herein, we introduce a dopant strategy aimed at incorporating nickel metal within graphene-like shells (GLS) featuring oxygen-containing functional groups (OFGs). The core of this strategy involves precise control of GLS modification and the demonstrated pivotal influence of aromatic ether linkages (═C-O-C) in GLS for significant enhancement of catalytic performance. The introduction of ═C-O-C into GLS with stability was beneficial to improve the work function of the catalyst and promoted electron transmission from Ni metal core to GLS, further elevating the catalytic activity, based on the Mott-Schottky effect. In addition, the experimental characterization and density functional theory (DFT) calculations showcased that the ═C-O-C reconstructed the electronic state of GLS, imparting it highly specific for the adsorption of hydrogen and para-chloronitrobenzene (p-CNB) to obtain para-chloroaniline (p-CAN) with high selectivity. This work manifested a feasible direction for the precise modulation and design of the OFGs in CEM catalysts to achieve highly efficient catalytic hydrogenation.
Collapse
Affiliation(s)
- Yongyue Yao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunyu Yin
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chaofan Ma
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yanni Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Ruikun Jiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Wei He
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Zhenli Xiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunshan Lu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| |
Collapse
|
3
|
Amirjan M, Nemati F, Elahimehr Z, Rangraz Y. Copper oxides supported sulfur-doped porous carbon material as a remarkable catalyst for reduction of aromatic nitro compounds. Sci Rep 2024; 14:5491. [PMID: 38448558 PMCID: PMC10918164 DOI: 10.1038/s41598-024-55216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Synthesis and manufacturing of metal-organic framework derived carbon/metal oxide nanomaterials with an advisable porous structure and composition are essential as catalysts in various organic transformation processes for the preparation of environmentally friendly catalysts. In this work, we report a scalable synthesis of sulfur-doped porous carbon-containing copper oxide nanoparticles (marked CuxO@CS-400) via direct pyrolysis of a mixture of metal-organic framework precursor called HKUST-1 and diphenyl disulfide for aromatic nitro compounds reduction. X-ray diffraction, surface area analysis (BET), X-ray energy diffraction (EDX) spectroscopy, thermal gravimetric analysis, elemental mapping, infrared spectroscopy (FT-IR), transmission electron microscope, and scanning electron microscope (FE-SEM) analysis were accomplished to acknowledge and investigate the effect of S and CuxO as active sites in heterogeneous catalyst to perform the reduction-nitro aromatic compounds reaction in the presence of CuxO@CS-400 as an effective heterogeneous catalyst. The studies showed that doping sulfur in the resulting carbon/metal oxide substrate increased the catalytic activity compared to the material without sulfur doping.
Collapse
Affiliation(s)
- Marzie Amirjan
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Firouzeh Nemati
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran.
| | - Zeinab Elahimehr
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Yalda Rangraz
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| |
Collapse
|
4
|
Demirci S, Suner SS, Neli OU, Koca A, Sahiner N. B, P, and S heteroatom doped, bio- and hemo-compatible 2D graphitic-carbon nitride ( g-C 3N 4) with antioxidant, light-induced antibacterial, and bioimaging endeavors. NANOTECHNOLOGY 2023; 35:025101. [PMID: 37804825 DOI: 10.1088/1361-6528/ad0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
The synthesis of two-dimensional (2D) graphiticg-C3N4and heteroatom-doped graphitic H@g-C3N4(H: B, P, or S) particles were successfully done using melamine as source compounds and boric acid, phosphorous red, and sulfur as doping agents. The band gap values of 2Dg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures were determined as 2.90, 3.03, 2.89, and 2.93 eV, respectively. The fluorescent emission wavelengths of 2Dg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures were observed at 442, 430, 441, and 442 nm, respectively upon excitation atλEx= 325 nm. There is also one additional new emission wavelength was found at 345 nm for B50@g-C3N4structure. The blood compatibility test results ofg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures revealed that all materials are blood compatible with <2% hemolysis and >90% blood clotting indices at 100μg ml-1concentration. The cell toxicity of the prepared 2D graphitic structures were also tested on L929 fibroblast cells, and even the heteroatom doped hasg-C3N4structures induce no cytotoxicity was observed with >91% cell viability even at 250μg ml-1particle concentration with the exception of P50@g-C3N4which as >75 viability. Moreover, for 2Dg-C3N4, B50@g-C3N4, and S50@g-C3N4constructs, even at 500μg ml-1concentration, >90% cell viabilities was monitored. As a diagnostic material, B50@g-C3N4was found to have significantly high penetration and distribution abilities into L929 fibroblast cells granting a great potential in fluorescence imaging and bioimaging applications. Furthermore, the elemental doping with B, P, and S ofg-C3N4were found to significantly increase the photodynamic antibacterial activity e.g. more than half of bacterial elimination by heteroatom-doped forms ofg-C3N4under UVA treatment was achieved.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale, 17100, Turkey
| | - Selin Sagbas Suner
- Department of Chemistry, Faculty of Sciences, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale, 17100, Turkey
| | - Ozlem Uguz Neli
- Department of Chemical Engineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Atif Koca
- Department of Chemical Engineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale, 17100, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, United States of America
- Department of Chemical & Biomedical Engineering, Director, Materials Science and Engineering Program, University of South Florida, Tampa, FL 33620, United States of America
| |
Collapse
|