1
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
2
|
Artunç T, Çetinkaya Y, Taslimi P, Menzek A. Investigation of cholinesterase and α-glucosidase enzyme activities, and molecular docking and dft studies for 1,2-disubstituted cyclopentane derivatives with phenyl and benzyl units. Mol Divers 2024:10.1007/s11030-024-10911-y. [PMID: 38976121 DOI: 10.1007/s11030-024-10911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Six known products (4-9) were prepared from reaction of adipoyl chloride with 1,2,3-trimethoxybenzene according to the literature. From (2,3,4-trimethoxyphenyl)(2-(2,3,4-trimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4) of them, four new 1,2-disubstituted cyclopentane derivatives (10-13) with phenyl and benzyl units were synthesized by reactions such as hydrazonation, catalytic hydrogenation and bromination. The obtained compounds 4-13 were examined for their in vitro inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. All compounds 4-13 showed inhibition at nanomolar level with Ki values in the range of 45.53 ± 7.35-631.96 ± 18.88 nM for AChE, 84.30 ± 9.92-622.10 ± 35.14 nM for BChE, and 25.47 ± 4.46-48.87 ± 7.33 for α-Glu. In silico molecular docking studies of the potent compounds were performed in the active sites of AChE (PDB: 1E66), BChE (PDB: 1P0I), and α-glucosidase (PDB: 5ZCC) to compare the effect of bromine atom on the inhibition mechanism. The optimized molecular structures, HOMO-LUMO energies and molecular electrostatic potential maps for the compounds were calculated by using density functional theory with B3LYP/6-31 + G(d,p).
Collapse
Affiliation(s)
- Tekin Artunç
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Yasin Çetinkaya
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey.
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkey.
| |
Collapse
|
3
|
Mısır BA, Derin Y, Ökten S, Aydın A, Koçyiğit ÜM, Şahin H, Tutar A. Novel diarylated tacrine derivatives: Synthesis, characterization, anticancer, antiepileptic, antibacterial, and antifungal activities. J Biochem Mol Toxicol 2024; 38:e23706. [PMID: 38591869 DOI: 10.1002/jbt.23706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
In this study, our goal was to synthesize novel aryl tacrine derivatives and assess their potential as anticancer, antibacterial agents, and enzyme inhibitors. We adopted a two-step approach, initiating with the synthesis of dibromotacrine derivatives 3 and 4 through the Friedlander reaction. These intermediates underwent further transformation into diarylated tacrine derivatives 3a-e and 4a-e using a Suzuki-Miyaura cross-coupling reaction. Thorough characterization of these novel diarylated tacrines was achieved using various spectroscopic techniques. Our findings highlighted the potent anticancer effects of these innovative compounds across a range of cancer cell lines, including lung, gynecologic, bone, colon, and breast cancers, while demonstrating low cytotoxicity against normal cells. Notably, these compounds surpassed the control drug, 5-Fluorouracil, in terms of antiproliferative activity in numerous cancer cell lines. Moreover, our investigation included an analysis of the inhibitory properties of these novel compounds against various microorganisms and cytosolic carbonic anhydrase enzymes. The results suggest their potential for further exploration as cancer-specific, enzyme inhibitory, and antibacterial therapeutic agents. Notably, four compounds, namely, 5,7-bis(4-(methylthio)phenyl)tacrine (3d), 5,7-bis(4-(trifluoromethoxy)phenyl)tacrine (3e), 2,4-bis(4-(trifluoromethoxy)phenyl)-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-amine (4e), and 6,8-dibromotacrine (3), emerged as the most promising candidates for preclinical studies.
Collapse
Affiliation(s)
- Büşra A Mısır
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkiye
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütçü İmam University, Kahramanmaraş, Turkey
| | - Yavuz Derin
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkiye
| | - Salih Ökten
- Department of Maths and Science Education, Faculty of Education, Kırıkkale University, Kırıkkale, Turkiye
| | - Ali Aydın
- Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkiye
| | - Ümit M Koçyiğit
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Hatice Şahin
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Ahmet Tutar
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkiye
| |
Collapse
|
4
|
Kehoe RA, Lowry A, Light ME, Jones DJ, Byrne PA, McGlacken GP. Regioselective Partial Hydrogenation and Deuteration of Tetracyclic (Hetero)aromatic Systems Using a Simple Heterogeneous Catalyst. Chemistry 2024; 30:e202400102. [PMID: 38214926 DOI: 10.1002/chem.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/13/2024]
Abstract
The introduction of added '3-dimensionality' through late-stage functionalisation of extended (hetero)aromatic systems is a powerful synthetic approach. The abundance of starting materials and cross-coupling methodologies to access the precursors allows for highly diverse products. Subsequent selective partial reduction can alter the core structure in a manner of interest to medicinal chemists. Herein, we describe the precise, partial reduction of multicyclic heteroaromatic systems using a simple heterogeneous catalyst. The approach can be extended to introduce deuterium (again at late-stage). Excellent yields can be obtained using simple reaction conditions.
Collapse
Affiliation(s)
- Roberta A Kehoe
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| | - Amy Lowry
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
| | - Mark E Light
- Department of Chemistry, University of, Southampton, SO17 1BJ, United Kingdom
| | - David J Jones
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph-Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter A Byrne
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Gerard P McGlacken
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| |
Collapse
|
5
|
Tokalı FS, Taslimi P, Sadeghian N, Taskin‐To T, Gülçin İ. Synthesis, Characterization, Bioactivity Impacts of New Anthranilic Acid Hydrazones Containing Aryl Sulfonate Moiety as Fenamate Isosteres. ChemistrySelect 2023. [DOI: 10.1002/slct.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies Kars Vocational School Kafkas University 36100 Kars Türkiye
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Tugba Taskin‐To
- Department of Chemistry Faculty of Arts and Sciences Gaziantep University 27310- Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology Institute of Health Sciences Gaziantep University 27310- Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry Faculty of Science Ataturk University Erzurum Türkiye
| |
Collapse
|
6
|
Karagecili H, İzol E, Kirecci E, Gulcin İ. Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegran-ate (Punica granatum)—A Chemical Profiling by LC-MS/MS). Life (Basel) 2023; 13:life13030735. [PMID: 36983890 PMCID: PMC10058309 DOI: 10.3390/life13030735] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Zivzik pomegranate (Punica granatum) has recently sparked considerable interest due to its nutritional and antioxidant properties. To evaluate the antioxidant capacities of P. granatum juice, ethanol (EEZP), and water (WEZP) extracts from peel and seed, the antioxidant methods of 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical (ABTS•+) scavenging, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•) scavenging, Fe3+-2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) reducing, Fe3+ reducing, and Cu2+ reducing methods were used. The antioxidant capacities of samples were compared with the most commonly used synthetic antioxidants, i.e., BHA, BHT, α-tocopherol, and Trolox. In terms of setting an example, the IC50 values of EEZP for ABTS•+ and DPPH• scavenging activities were found to be lower than standards, at 5.9 and 16.1 μg/mL, respectively. The phenolic and flavonoid contents in EEZP peel were 59.7 mg GAE/g and 88.0 mg QE/g, respectively. Inhibition of α-glycosidase, α-amylase, acetylcholinesterase, and human carbonic anhydrase II (hCA II) enzymes was also investigated. EEZP demonstrated IC50 values of 7.3 μg/mL against α-glycosidase, 317.7 μg/mL against α-amylase, 19.7 μg/mL against acetylcholinesterase (AChE), and 106.3 μg/mL against CA II enzymes. A total of 53 phenolic compounds were scanned, and 30 compounds were determined using LC-MS/MS. E. coli and S. aureus bacteria were resistant to all four antibiotics used as standards in hospitals.
Collapse
Affiliation(s)
- Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100 Siirt, Turkey
- Correspondence: (H.K.); (İ.G.); Tel.: +90-4422314375 (İ.G.)
| | - Ebubekir İzol
- Bee and Natural Products R & D and P & D Application and Research Center, Bingöl University, 12000 Bingol, Turkey
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Ekrem Kirecci
- Department of Basic Medical Sciences, Faculty of Medicine, Microbiology, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaras, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
- Correspondence: (H.K.); (İ.G.); Tel.: +90-4422314375 (İ.G.)
| |
Collapse
|
7
|
Malysheva S, Kuimov V, Belovezhets L, Belogorlova N, Borovskaya M, Borovskii G. Phosphine chalcogenides and their derivatives from red phosphorus and functionalized pyridines, imidazoles, pyrazoles and their antimicrobial and cytostatic activity. Bioorg Chem 2023; 132:106363. [PMID: 36702003 DOI: 10.1016/j.bioorg.2023.106363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Tertiary phosphine oxides, phosphine sulfides, and phosphine selenides containing pyridine, imidazole, and pyrazole groups have been synthesized via the reaction of elemental phosphorus or secondary phosphine oxides with functional pyridines, imidazoles, and pyrazoles. Alkyl tris(2-pyridylethyl)phosphonium iodide and bromide are also obtained by quaternization of the corresponding phosphine. Antimicrobial activity of the synthesized compounds, including nitrogen-containing heterocycles, phosphorus, selenium, and sulfur, with respect to Enterococcus durans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa microorganisms is evaluated. It is found that phosphine chalcogenides bearing imidazole (14, 19), pyrazole (13), and pyridine fragments (5, 9) and phosphonium salts (11, 12) can be considered as new promising antibacterial agents. For some synthesized compounds, LC50 is determined. Phosphine oxide with methylpyrazole fragments (13) and phosphonium salts (11, 12) show strong profile of antimicrobial activity, and cytotoxic effect of phosphonium bromide having a long chain radical (12) is by order of magnitude higher than that of cisplatin. We believe that the results obtained may contribute to the development of highly effective agents for the treatment and prevention of bacterial infections and cancers.
Collapse
Affiliation(s)
- Svetlana Malysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Vladimir Kuimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Lyudmila Belovezhets
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Natalia Belogorlova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Marina Borovskaya
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk, 664033, Russia.
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk, 664033, Russia.
| |
Collapse
|
8
|
Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase. Molecules 2022; 27:molecules27217426. [DOI: 10.3390/molecules27217426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, nine new bromophenol derivatives were designed and synthesized. The alkylation reactions of (2-bromo-4,5-dimethoxyphenyl)methanol (7) with substituted benzenes 8–12 produced new diaryl methanes 13–17. Targeted bromophenol derivatives 18–21 were synthesized via the O-Me demethylation of diaryl methanes with BBr3. Moreover, the synthesized bromophenol compounds were tested with some metabolic enzymes such as acetylcholinesterase (AChE), carbonic anhydrase I (CA I), and II (CA II) isoenzymes. The novel synthesized bromophenol compounds showed Ki values that ranged from 2.53 ± 0.25 to 25.67 ± 4.58 nM against hCA I, from 1.63 ± 0.11 to 15.05 ± 1.07 nM against hCA II, and from 6.54 ± 1.03 to 24.86 ± 5.30 nM against AChE. The studied compounds in this work exhibited effective hCA isoenzyme and AChE enzyme inhibition effects. The results show that they can be used for the treatment of glaucoma, epilepsy, Parkinson’s as well as Alzheimer’s disease (AD) after some imperative pharmacological studies that would reveal their drug potential.
Collapse
|