1
|
Sheng Y, Chen Z, Cherrier MV, Martin L, Bui TTT, Li W, Lynham S, Nicolet Y, Ebrahimi KH. A Versatile Virus-Mimetic Engineering Approach for Concurrent Protein Nanocage Surface-Functionalization and Cargo Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310913. [PMID: 38726952 DOI: 10.1002/smll.202310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Indexed: 08/02/2024]
Abstract
Naturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen. Here, a versatile engineering approach is described by mimicking the HIV-1 Gap polyprotein precursor. Various PREcursors of nanoCages (PREC) are designed and created by linking two ferritin subunits via a flexible linker peptide containing a protease cleavage site. These precursors can have additional proteins at their N-terminus, and their protease cleavage generates ferritin-like nanocages named protease-induced nanocages (PINCs). It is demonstrated that PINC formation allows concurrent surface decoration with a protein and hydrophilic or hydrophobic drug encapsulation up to fourfold more than the amount achieved using other methods. The PINCs/Drug complex is stable and efficiently kills cancer cells. This work provides insight into the precursors' design rules and the mechanism of PINCs formation. The engineering approach and mechanistic insight described here will facilitate nanocages' applications in drug delivery or as a platform for making multifunctional therapeutics like mosaic vaccines.
Collapse
Affiliation(s)
- Yujie Sheng
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Zilong Chen
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Mickael V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Tam T T Bui
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK
| | - Wei Li
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Steven Lynham
- Proteomics Core Facility, James Black Centre, King's College London, London, SE5 9NU, UK
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Kourosh H Ebrahimi
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| |
Collapse
|
2
|
Charousova M, Kudlickova Peskova M, Takacsova P, Kapolkova K, Haddad Y, Bilek J, Sivak L, Bartejs T, Heger Z, Pekarik V. Engineered human H-chain ferritin with reversed charge of the internal cavity exhibits RNA-mediated spongelike effect for loading RNA/DNA-binding molecules. Biomater Sci 2024; 12:1249-1262. [PMID: 38247338 DOI: 10.1039/d3bm01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.
Collapse
Affiliation(s)
- Marketa Charousova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Marie Kudlickova Peskova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| | - Paulina Takacsova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Katerina Kapolkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Jan Bilek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Tomas Bartejs
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| |
Collapse
|
3
|
Zhang DG, Pan YJ, Chen BQ, Lu XC, Xu QX, Wang P, Kankala RK, Jiang NN, Wang SB, Chen AZ. Protein-guided biomimetic nanomaterials: a versatile theranostic nanoplatform for biomedical applications. NANOSCALE 2024; 16:1633-1649. [PMID: 38168813 DOI: 10.1039/d3nr05495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.
Collapse
Affiliation(s)
- Da-Gui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yu-Jing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Biao-Qi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Xiao-Chang Lu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qin-Xi Xu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Pei Wang
- Jiangxi Provincial Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ni-Na Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shi-Bin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
4
|
Wang C, Liu Q, Huang X, Zhuang J. Ferritin nanocages: a versatile platform for nanozyme design. J Mater Chem B 2023; 11:4153-4170. [PMID: 37158014 DOI: 10.1039/d3tb00192j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activities and have attracted increasing attention due to their potential applications in biomedicine. However, nanozyme design incorporating the desired properties remains challenging. Natural or genetically engineered protein scaffolds, such as ferritin nanocages, have emerged as a promising platform for nanozyme design due to their unique protein structure, natural biomineralization capacity, self-assembly properties, and high biocompatibility. In this review, we highlight the intrinsic properties of ferritin nanocages, especially for nanozyme design. We also discuss the advantages of genetically engineered ferritin in the versatile design of nanozymes over natural ferritin. Additionally, we summarize the bioapplications of ferritin-based nanozymes based on their enzyme-mimicking activities. In this perspective, we mainly provide potential insights into the utilization of ferritin nanocages for nanozyme design.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Medicine, Nankai University, Tianjin 300071, China.
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Protein encapsulation of nanocatalysts: A feasible approach to facilitate catalytic theranostics. Adv Drug Deliv Rev 2023; 192:114648. [PMID: 36513163 DOI: 10.1016/j.addr.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Enzyme-mimicking nanocatalysts, also termed nanozymes, have attracted much attention in recent years. They are considered potential alternatives to natural enzymes due to their multiple catalytic activities and high stability. However, concerns regarding the colloidal stability, catalytic specificity, efficiency and biosafety of nanomaterials in biomedical applications still need to be addressed. Proteins are biodegradable macromolecules that exhibit superior biocompatibility and inherent bioactivities; hence, the protein modification of nanocatalysts is expected to improve their bioavailability to match clinical needs. The diversity of amino acid residues in proteins provides abundant functional groups for the conjugation or encapsulation of nanocatalysts. Moreover, protein encapsulation can not only improve the overall performance of nanocatalysts in biological systems, but also bestow materials with new features, such as targeting and retention in pathological sites. This review aims to report the recent developments and perspectives of protein-encapsulated catalysts in their functional improvements, modification methods and applications in biomedicine.
Collapse
|
6
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
8
|
Wu J, Wei Y, Lan J, Hu X, Gao F, Zhang X, Gao Z, Liu Q, Sun Z, Chen R, Zhao H, Fan K, Yan X, Zhuang J, Huang X. Screening of Protein-Based Ultrasmall Nanozymes for Building Cell-Mimicking Catalytic Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202145. [PMID: 36026572 DOI: 10.1002/smll.202202145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Enzymes are an important component for bottom-up building of synthetic/artificial cells. Nanozymes are nanomaterials with intrinsic enzyme-like properties, however, the construction of synthetic cells using nanozymes is difficult owing to their high surface energy or large size. Herein, the authors show a protein-based general platform that biomimetically integrates various ultrasmall metal nanozymes into protein shells. Specifically, eight metal-based ultrasmall nano-particles/clusters are in situ incorporated into ferritin nanocages that are self-assembled by 24 subunits of ferritin heavy chain. As a nanozyme generator, such a platform is suitable for screening the desired enzyme-like activities, including peroxidase (POD), oxidase (OXD), catalase (CAT) and superoxide dismutase (SOD). After screening, it is found that Ru intrinsically possesses the highest POD-like and CAT-like activities, while Mn and Pt show the highest OXD-like and SOD-like activities, respectively. Additionally, the inducers/inhibitors of various nanozymes are screened from more than 50 compounds to improve or inhibit their enzyme-like activities. Based on the screened nanozymes and their inhibitors, a proof-of-conceptually constructs cell-mimicking catalytic vesicles to mimic or modulate the events of redox homeostasis in living cells. This study offers a type of artificial metalloenzyme based on nanotechnology and shows a choice for bottom-up enzyme-based synthetic cell systems in a fully synthetic manner.
Collapse
Affiliation(s)
- Jin Wu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingping Lan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhanxia Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Rui Chen
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanqing Zhao
- School of Material Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Zhuang
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
10
|
Enhanced Cellular Uptake of H-Chain Human Ferritin Containing Gold Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111966. [PMID: 34834381 PMCID: PMC8623468 DOI: 10.3390/pharmaceutics13111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.
Collapse
|
11
|
Peng X, Lu C, Liu Z, Lu D. The synergistic mechanisms of apo-ferritin structural transitions and Au(iii) ion transportation: molecular dynamics simulations with the Markov state model. Phys Chem Chem Phys 2021; 23:17158-17165. [PMID: 34318824 DOI: 10.1039/d1cp01828k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to its unique structure, recent years have witnessed the use of apo-ferritin to accumulate various non-natural metal ions as a scaffold for nanomaterial synthesis. However, the transport mechanism of metal ions into the cavity of apo-ferritin is still unclear, limiting the rational design and controllable preparation of nanomaterials. Here, we conducted all-atom classical molecular dynamics (MD) simulations combined with Markov state models (MSMs) to explore the transportation behavior of Au(iii) ions. We exhibited the complete transportation paths of Au(iii) from solution into the apo-ferritin cage at the atomic level. We also revealed that the transportation of Au(iii) ions is accompanied by coupled protein structural changes. It is shown that the 3-fold axis channel serves as the only entrance with the longest residence time of Au(iii) ions. Besides, there are eight binding clusters and five 3-fold structural metastable states, which are important during Au(iii) transportation. The conformational changes of His118, Asp127, and Glu130, acting as doors, were observed to highly correlate with the Au(iii) ion's position. The MSM analysis and Potential Mean Force (PMF) calculation suggest a remarkable energy barrier near Glu130, making it the rate-limiting step of the whole process. The dominant transportation pathway is from cluster 3 in the 3-fold channel to the inner cavity to cluster 5 on the inner surface, and then to cluster 6. These findings provide inspiration and theoretical guidance for the further rational design and preparation of new nanomaterials using apo-ferritin.
Collapse
Affiliation(s)
- Xue Peng
- State Key Lab of Chemical Engineering, Ministry of Science and Technology; Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | | | | | | |
Collapse
|
12
|
Aslan TN, Aşık E, Güray NT, Volkan M. The potential application of gold-apoferritin nanocages conjugated with 2-amino-2-deoxy-glucose for imaging of breast cancer cells. J Biol Inorg Chem 2020; 25:1139-1152. [PMID: 33128617 DOI: 10.1007/s00775-020-01830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
Development of biocompatible and multifunctional nanoprobes for tumor targeting, imaging, and therapy still remains a great challenge. Herein, gold nanoparticles (AuNPs) were synthesized in the cavity of horse spleen apoferritin protein (HoSAF) and protein surface was labeled with 2-amino-2-deoxy-glucose (2DG) as a cell surface glucose transport protein specific targeting probe to study the feasibility of its usage as a computer tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. 2DG conjugated and gold-loaded apoferritin (Au-HoSAF-2DG) nanoparticles (NPs) showed selective targeting for human breast adenocarcinoma (MCF-7) cells when compared to normal breast (MCF-10A) cells. This AuNP-based imaging agent was found to be non-cytotoxic in a given concentration range with an apoptotic effect upon longer exposure times towards MCF-7 cells, while MCF-10A cells were affected less. This selective cell death would also be useful for further cancer treatments with the ability of X-ray attenuation in in vitro X-ray and computed tomography (CT) imaging.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, 42090, Turkey
| | - Elif Aşık
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - N Tülin Güray
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Mürvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey.
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
13
|
Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3093. [PMID: 32664362 PMCID: PMC7412248 DOI: 10.3390/ma13143093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) exposed to a biological milieu will strongly interact with proteins, forming "coronas" on the surfaces of the NPs. The protein coronas (PCs) affect the properties of the NPs and provide a new biological identity to the particles in the biological environment. The characterization of NP-PC complexes has attracted enormous research attention, owing to the crucial effects of the properties of an NP-PC on its interactions with living systems, as well as the diverse applications of NP-PC complexes. The analysis of NP-PC complexes without a well-considered approach will inevitably lead to misunderstandings and inappropriate applications of NPs. This review introduces methods for the characterization of NP-PC complexes and investigates their recent applications in biomedicine. Furthermore, the review evaluates these characterization methods based on comprehensive critical views and provides future perspectives regarding the applications of NP-PC complexes.
Collapse
Affiliation(s)
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
14
|
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020; 12:E604. [PMID: 32610448 PMCID: PMC7407889 DOI: 10.3390/pharmaceutics12070604] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been extensively used as carriers for the delivery of chemicals and biomolecular drugs, such as anticancer drugs and therapeutic proteins. Natural biomolecules, such as proteins, are an attractive alternative to synthetic polymers commonly used in nanoparticle formulation because of their safety. In general, protein nanoparticles offer many advantages, such as biocompatibility and biodegradability. Moreover, the preparation of protein nanoparticles and the corresponding encapsulation process involved mild conditions without the use of toxic chemicals or organic solvents. Protein nanoparticles can be generated using proteins, such as fibroins, albumin, gelatin, gliadine, legumin, 30Kc19, lipoprotein, and ferritin proteins, and are prepared through emulsion, electrospray, and desolvation methods. This review introduces the proteins used and methods used in generating protein nanoparticles and compares the corresponding advantages and disadvantages of each.
Collapse
Affiliation(s)
- Seyoung Hong
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
15
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
16
|
Jiang B, Fang L, Wu K, Yan X, Fan K. Ferritins as natural and artificial nanozymes for theranostics. Am J Cancer Res 2020; 10:687-706. [PMID: 31903145 PMCID: PMC6929972 DOI: 10.7150/thno.39827] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Nanozymes are a class of nanomaterials with intrinsic enzyme-like characteristics which overcome the limitations of natural enzymes such as high cost, low stability and difficulty to large scale preparation. Nanozymes combine the advantages of chemical catalysts and natural enzymes together, and have exhibited great potential in biomedical applications. However, the size controllable synthesis and targeting modifications of nanozymes are still challenging. Here, we introduce ferritin nanozymes to solve these problems. Ferritins are natural nanozymes which exhibit intrinsic enzyme-like activities (e.g. ferroxidase, peroxidase). In addition, by biomimetically synthesizing nanozymes inside the ferritin protein shells, artificial ferritin nanozymes are introduced, which possess the advantages of versatile self-assembly ferritin nanocage and enzymatic activity of nanozymes. Ferritin nanozymes provide a new horizon for the development of nanozyme in disease targeted theranostics research. The emergence of ferritin nanozyme also inspires us to learn from the natural nanostructures to optimize or rationally design nanozymes. In this review, the intrinsic enzyme-like activities of ferritin and bioengineered synthesis of ferritin nanozyme were summarized. After that, the applications of ferritin nanozymes were covered. Finally, the advantages, challenges and future research directions of advanced ferritin nanozymes for biomedical research were discussed.
Collapse
|
17
|
Perera YR, Hill RA, Fitzkee NC. Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Isr J Chem 2019; 59:962-979. [PMID: 34045771 PMCID: PMC8152826 DOI: 10.1002/ijch.201900080] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for in situ analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.
Collapse
Affiliation(s)
- Y Randika Perera
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
18
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Yin X, Chen B, He M, Hu B. Simultaneous determination of two phosphorylated p53 proteins in SCC-7 cells by an ICP-MS immunoassay using apoferritin-templated europium(III) and lutetium(III) phosphate nanoparticles as labels. Mikrochim Acta 2019; 186:424. [PMID: 31187253 DOI: 10.1007/s00604-019-3540-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Phosphorylated p53 proteins are biomarkers with clinical utility for early diagnosis of cancer, but difficult to quantify. An inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay is described here that uses uniform lanthanide nanoparticles (NPs) as elemental tags for the simultaneous determination of two phosphorylated p53 proteins. Apoferritin templated europium (Eu) phosphate (AFEP) NPs and apoferritin templated lutetium (Lu) phosphate (AFLP) NPs with 8 nm in diameter were used to label two phosphorylated p53 proteins at serine 15 and serine 392 sites (p-p5315 and p-p53392), respectively. The assay has a sandwich format, and p-p5315 and p-p53392 were first captured and then recognized by AFEP and AFLP NPs labelled antibodies, respectively. The Eu and Lu were then released from the immune complexes under acidic condition for ICP-MS measurement. The limits of detection for p-p5315 and p-p53392 are 200 and 20 pg·mL-1, with linear ranges of 0.5-20 and 0.05-20 ng·mL-1, respectively. The method was further applied to study the response of p-p5315 and p-p53392 in SCC-7 cells exposed to the natural carcinogen arsenite. A significant up-regulation of p-p5315 and p-p53392 can be observed when cells were exposed to arsenite at 5 μmol·L-1 level for 24 h. Graphical abstract Schematic presentation of the ICP-MS immunoassay using apoferritin templated europium (III) and lutetium (III) phosphate nanoparticles as labels for the simultaneous determination of two phosphorylated p53 proteins. Europium (Eu) phosphate nanoparticles (blue) and lutetium (Lu) phosphate nanoparticles (pink) were synthesized in the size-restricted cavity of apoferritin. They were further coupled with antibodies to prepare Eu and Lu labelled probes for p-p5315 (blue) and p-p53392 (pink), respectively. After formation of a a sandwich, the labelled Eu and Lu were dissociated in acid and then introduced to ICP-MS for the simultaneous determination of two phosphorylated p53 proteins p-p5315 (blue) and p-p53392 (pink).
Collapse
Affiliation(s)
- Xiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
20
|
|
21
|
Dashtestani F, Ghourchian H, Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:831-840. [PMID: 30423769 DOI: 10.1016/j.msec.2018.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) cause oxidative stress, which involves in the pathogenesis of many serious diseases. Apoferittin containing gold-silver nanoparticles (Au-Ag-AFT) was designed and evaluated as a nanozyme for scavenging the ROS. The nanozyme consisting of silver-gold nanohybrid in apoferittin cage represents superoxide dismutase, catalase and peroxidase mimetic activities. The Au-Ag-AFT nanozyme was characterized by spectroscopy, FESEM, TEM and dynamic light scattering. The inhibition process for pyrogallol autoxidation was used for assaying the superoxide dismutase mimetic activity and measuring the kinetic parameters of Au-Ag-AFT nanozyme. Additionally, Aebi method and standard protocol was used for evaluating the catalase and peroxidase mimetic activity. The kcat values for superoxide dismutase, catalase and peroxidase mimetics activity were 1.4 × 106, 0.1 and 9 × 103 s-1 respectively. These values indicated that Au-Ag-AFT nanozyme could act as a suitable ROS scavenger. Additionally, Au-Ag-AFT nanozyme was examined as a protective agent for human sperm against oxidative stress induced during the cryopreservation process. Presence of the nanozyme in the sperm media significantly increased the motility and viability of the cells and also decreased the ROS, apoptosis and necrosis (P < 0.05) compare to the control group.
Collapse
Affiliation(s)
- Fariba Dashtestani
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran.
| | - Atefeh Najafi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran, Iran
| |
Collapse
|
22
|
Medium throughput cage state stability screen of conditions for the generation of gold nanoparticles encapsulated within a mini-ferritin. Bioorg Med Chem 2018; 26:5253-5258. [DOI: 10.1016/j.bmc.2018.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/26/2022]
|
23
|
Ferraro G, Petruk G, Maiore L, Pane F, Amoresano A, Cinellu MA, Monti DM, Merlino A. Caged noble metals: Encapsulation of a cytotoxic platinum(II)-gold(I) compound within the ferritin nanocage. Int J Biol Macromol 2018; 115:1116-1121. [PMID: 29709536 DOI: 10.1016/j.ijbiomac.2018.04.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of Pt and Au-based anticancer agents within a protein cage is a promising way to enhance the selectivity of these potential drugs. Here a cytotoxic organometallic compound containing platinum(II) and gold(I) has been encapsulated within a ferritin nanocage (AFt). Inductively plasma coupled mass spectrometry data, collected to evaluate the amount of Pt and Au within the cage, indicate disruption of the starting heterobimetallic complex upon encapsulation within the nanocage. The drug-loaded protein (Pt(II)/Au(I)-AFt) has been characterized by UV-Vis spectroscopy, circular dichroism and X-ray diffraction analysis. Data indicate that the protein maintains its fold upon encapsulation of the metallodrug and that Au(I) and Pt(II)-containing fragments are encapsulated within the AFt cage, with Au(I) ion that binds the side chain of Cys126 and Pt(II) in the bulk, respectively. The in vitro cytotoxicity of Pt(II)Au(I)-AFt, as well as that of the free heterobimetallic complex, has been comparatively evaluated on human cervix and breast cancer cells and against cardiomyoblasts and keratinocytes non-tumorigenic cells. Our data demonstrate that it is possible to obtain a protein nanocarrier containing both Pt and Au atoms starting from a bimetallic compound, opening the way for the design and development of new potential drugs based on protein nanocarriers.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Laura Maiore
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
24
|
Ferraro G, Monti DM, Amoresano A, Pontillo N, Petruk G, Pane F, Cinellu MA, Merlino A. Gold-based drug encapsulation within a ferritin nanocage: X-ray structure and biological evaluation as a potential anticancer agent of the Auoxo3-loaded protein. Chem Commun (Camb) 2018; 52:9518-21. [PMID: 27326513 DOI: 10.1039/c6cc02516a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Auoxo3, a cytotoxic gold(iii) compound, was encapsulated within a ferritin nanocage. Inductively coupled plasma mass spectrometry, circular dichroism, UV-Vis absorption spectroscopy and X-ray crystallography confirm the potential-drug encapsulation. The structure shows that naked Au(i) ions bind to the side chains of Cys48, His49, His114, His114 and Cys126, Cys126, His132, His147. The gold-encapsulated nanocarrier has a cytotoxic effect on different aggressive human cancer cells, whereas it is significantly less cytotoxic for non-tumorigenic cells.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Nicola Pontillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Maria Agostina Cinellu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy and CIRCC, Consorzio Interuniversitario Reattività Chimica e Catalisi, Università di Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy. and CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80126, Napoli, Italy
| |
Collapse
|
25
|
Cornell TA, Ardejani MS, Fu J, Newland SH, Zhang Y, Orner BP. A Structure-Based Assembly Screen of Protein Cage Libraries in Living Cells: Experimentally Repacking a Protein–Protein Interface To Recover Cage Formation in an Assembly-Frustrated Mutant. Biochemistry 2018; 57:604-613. [DOI: 10.1021/acs.biochem.7b01000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas A. Cornell
- Department
of Chemistry, King’s College London, London, U.K
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore
| | - Maziar S. Ardejani
- Department
of Chemistry, King’s College London, London, U.K
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore
| | - Jing Fu
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore
| | | | - Yu Zhang
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore
| | - Brendan P. Orner
- Department
of Chemistry, King’s College London, London, U.K
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Qiu L, McCaffrey R, Zhang W. Synthesis of Metallic Nanoparticles Using Closed-Shell Structures as Templates. Chem Asian J 2018; 13:362-372. [DOI: 10.1002/asia.201701478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Li Qiu
- School of Materials Science and Engineering; Yunnan Key Laboratory for Micro/Nano Materials & Technology; Yunnan University; 1650091 Kunming China
- Department of Chemistry and Biochemistry; University of Colorado; Boulder CO 80309 USA
| | - Ryan McCaffrey
- Department of Chemistry and Biochemistry; University of Colorado; Boulder CO 80309 USA
| | - Wei Zhang
- School of Materials Science and Engineering; Yunnan Key Laboratory for Micro/Nano Materials & Technology; Yunnan University; 1650091 Kunming China
- Department of Chemistry and Biochemistry; University of Colorado; Boulder CO 80309 USA
| |
Collapse
|
27
|
Moglia I, Santiago M, Olivera-Nappa Á, Soler M. An optimized low-cost protocol for standardized production of iron-free apoferritin nanocages with high protein recovery and suitable conformation for nanotechnological applications. J Inorg Biochem 2017; 183:184-190. [PMID: 29279245 DOI: 10.1016/j.jinorgbio.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
Ferritin is a globular protein that consists of 24 subunits forming a hollow nanocage structure that naturally stores iron oxyhydroxides. Elimination of iron atoms to obtain the empty protein called apoferritin is the first step to use this organic shell as a nanoreactor for different nanotechnological applications. Different protocols have been reported for apoferritin formation, but some are time consuming, others are difficult to reproduce and protein recovery yields are seldom reported. Here we tested several protocols and performed a complete material characterization of the apoferritin products using size exclusion chromatography, UV-vis spectroscopy, inductively coupled plasma optical emission spectrometry and dynamic light scattering. Our best method removes more than 99% of the iron from loaded holoferritin, recovering 70-80% of the original protein as monomeric apoferritin nanocages. Our work shows that pH conditions of the reduction step and the presence and nature of chelating agents affect the efficiency of iron removal. Furthermore, process conditions also seem to have an influence on the monomer:aggregate proportion present in the product. We also demonstrate that iron contents markedly increase ferritin absorbance at 280nm. The influence of iron contents on absorbance at 280nm precludes using this simple spectrophotometric measure for protein determination in ferritin‑iron complexes. Apoferritin produced following our protocol only requires readily-available, cheap and biocompatible reagents, which makes this process standardizable, scalable and applicable to be used for in vivo applications of ferritin derivatives as well as nanotechnological and biotechnological uses.
Collapse
Affiliation(s)
- Italo Moglia
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile
| | - Margarita Santiago
- Center for Biotechnology and Bioengineering - CeBiB, FCFM, University of Chile, Beauchef 851, Santiago, Chile
| | - Álvaro Olivera-Nappa
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile; Center for Biotechnology and Bioengineering - CeBiB, FCFM, University of Chile, Beauchef 851, Santiago, Chile.
| | - Mónica Soler
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
28
|
Cornell TA, Srivastava Y, Jauch R, Fan R, Orner BP. The Crystal Structure of a Maxi/Mini-Ferritin Chimera Reveals Guiding Principles for the Assembly of Protein Cages. Biochemistry 2017; 56:3894-3899. [PMID: 28682051 DOI: 10.1021/acs.biochem.7b00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cage proteins assemble into nanoscale structures with large central cavities. They play roles, including those as virus capsids and chaperones, and have been applied to drug delivery and nanomaterials. Furthermore, protein cages have been used as model systems to understand and design protein quaternary structure. Ferritins are ubiquitous protein cages that manage iron homeostasis and oxidative damage. Two ferritin subfamilies have strongly similar tertiary structure yet distinct quaternary structure: maxi-ferritins normally assemble into 24-meric, octahedral cages with C-terminal E-helices centered around 4-fold symmetry axes, and mini-ferritins are 12-meric, tetrahedral cages with 3-fold axes defined by C-termini lacking E-domains. To understand the role E-domains play in ferritin quaternary structure, we previously designed a chimera of a maxi-ferritin E-domain fused to the C-terminus of a mini-ferritin. The chimera is a 12-mer cage midway in size between those of the maxi- and mini-ferritin. The research described herein sets out to understand (a) whether the increase in size over a typical mini-ferritin is due to a frozen state where the E-domain is flipped out of the cage and (b) whether the symmetrical preference of the E-domain in the maxi-ferritin (4-fold axis) overrules the C-terminal preference in the mini-ferritin (3-fold axis). With a 1.99 Å resolution crystal structure, we determined that the chimera assembles into a tetrahedral cage that can be nearly superimposed with the parent mini-ferritin, and that the E-domains are flipped external to the cage at the 3-fold symmetry axes.
Collapse
Affiliation(s)
- Thomas A Cornell
- Department of Chemistry, King's College London , London, U.K.,Division of Chemistry and Biological Chemistry, Nanyang Technological University , Singapore
| | - Yogesh Srivastava
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou, China
| | - Ralf Jauch
- Genome Institute of Singapore , Singapore.,Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou, China
| | - Rongli Fan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University , Singapore
| | - Brendan P Orner
- Department of Chemistry, King's College London , London, U.K.,Division of Chemistry and Biological Chemistry, Nanyang Technological University , Singapore
| |
Collapse
|
29
|
Pulsipher KW, Honig S, Deng S, Dmochowski IJ. Controlling gold nanoparticle seeded growth in thermophilic ferritin protein templates. J Inorg Biochem 2017; 174:169-176. [PMID: 28683348 DOI: 10.1016/j.jinorgbio.2017.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/10/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
Ferritin protein cages provide templates for inorganic nanoparticle synthesis in more environmentally-friendly conditions. Thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) has been shown to encapsulate pre-formed 6-nm gold nanoparticles (AuNPs) and template their further growth within its 8-nm cavity. In this study, we explore whether using a gold complex with electrostatic complementarity to the anionic ferritin cavity can promote efficient seeded nanoparticle growth. We also compare wt AfFtn and a closed pore mutant AfFtn to explore whether the ferritin pores influence final AuNP size.
Collapse
Affiliation(s)
- Katherine W Pulsipher
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States
| | - Stephanie Honig
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States
| | - Sunbin Deng
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States
| | - Ivan J Dmochowski
- University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
30
|
Abdelwahab MT, Kalyoncu E, Onur T, Baykara MZ, Seker UOS. Genetically-Tunable Mechanical Properties of Bacterial Functional Amyloid Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4337-4345. [PMID: 28388843 DOI: 10.1021/acs.langmuir.7b00112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial biofilms are highly ordered, complex, dynamic material systems including cells, carbohydrates, and proteins. They are known to be resistant against chemical, physical, and biological disturbances. These superior properties make them promising candidates for next generation biomaterials. Here we investigated the morphological and mechanical properties (in terms of Young's modulus) of genetically-engineered bacterial amyloid nanofibers of Escherichia coli (E. coli) by imaging and force spectroscopy conducted via atomic force microscopy (AFM). In particular, we tuned the expression and biochemical properties of the major and minor biofilm proteins of E. coli (CsgA and CsgB, respectively). Using appropriate mutants, amyloid nanofibers constituting biofilm backbones are formed with different combinations of CsgA and CsgB, as well as the optional addition of tagging sequences. AFM imaging and force spectroscopy are used to probe the morphology and measure the Young's moduli of biofilm protein nanofibers as a function of protein composition. The obtained results reveal that genetically-controlled secretion of biofilm protein components may lead to the rational tuning of Young's moduli of biofilms as promising candidates at the bionano interface.
Collapse
Affiliation(s)
- M Tarek Abdelwahab
- Department of Mechanical Engineering, Bilkent University , Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Ebuzer Kalyoncu
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Tugce Onur
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Mehmet Z Baykara
- Department of Mechanical Engineering, Bilkent University , Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Urartu Ozgur Safak Seker
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
31
|
Nobusawa K, Okamoto N, Chong KSL, Lin X, Iwahori K, Yamashita I. Dispersed Gold Nanoparticle Array Produced by Apoferritins Utilizing Biomineralization and Chemical Conversion. ACS OMEGA 2017; 2:1424-1430. [PMID: 31457514 PMCID: PMC6641008 DOI: 10.1021/acsomega.6b00550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/21/2017] [Indexed: 05/12/2023]
Abstract
A new method for producing a dispersed gold nanoparticle (Au NP) array to anchor probe DNAs onto a DNA-sensing electrode has been developed. A homogenous gold sulfide (Au2S) core (precursor of Au NP) was biomineralized in the cavity of a mutant apoferritin (K98E) with enhanced negative outer-surface charges. We employed a slow chemical reaction system utilizing a stable cationic gold complex. K98E could attract the gold complex, and Au2S NPs were synthesized. K98E enabled dispersed placement of the synthesized Au2S core onto a cationic 3-aminopropyltriethoxysilane (APTES) layer on a substrate. UV-ozone treatment eliminated the protein shells and APTES layer. X-ray photoelectron spectroscopy confirmed that the Au2S core was reduced to Au NPs under the same treatment. Atomic force microscopy (AFM) clearly showed that the combination of apoferritin versatility, chemical system design, and UV-ozone treatment successfully produced a dispersed Au NP array on the substrate.
Collapse
Affiliation(s)
- Kazuyuki Nobusawa
- Graduate
School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Naofumi Okamoto
- Graduate
School of Materials Science, Nara Institute
of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Karen Siew Ling Chong
- Institute
of Materials Research and Engineering, Agency
for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| | - Xi Lin
- Biomedical
Sciences Institute, Agency for Science,
Technology and Research, 61 Biopolis Drive, #03-12 Proteos, 138673 Singapore
| | - Kenji Iwahori
- Graduate
School of Materials Science, Nara Institute
of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ichiro Yamashita
- Graduate
School of Materials Science, Nara Institute
of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Graduate
School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- E-mail:
| |
Collapse
|
32
|
Wei J, Li YL, Gao PC, Lu Q, Wang ZF, Zhou JJ, Jiang Y. Assembling gold nanoparticles into flower-like structures by complementary base pairing of DNA molecules with mediation by apoferritins. Chem Commun (Camb) 2017; 53:4581-4584. [PMID: 28387779 DOI: 10.1039/c6cc09858d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Apoferritin caged gold nanoparticles (AuNPs) were assembled into flower-like structures by precise base pairing of the attached DNA molecules. The key step was to use the eight hydrophilic channels through the apoferritin to control the exact number and locations of the DNA molecules that grafted onto the caged AuNP.
Collapse
Affiliation(s)
- Jing Wei
- School of Chemistry and Chemical Engineering, Jiangsu province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bera S, Kolay J, Banerjee S, Mukhopadhyay R. Nanoscale On-Silico Electron Transport via Ferritins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1951-1958. [PMID: 28145712 DOI: 10.1021/acs.langmuir.6b04120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicon is a solid-state semiconducting material that has long been recognized as a technologically useful one, especially in electronics industry. However, its application in the next-generation metalloprotein-based electronics approaches has been limited. In this work, the applicability of silicon as a solid support for anchoring the iron-storage protein ferritin, which has a semiconducting iron nanocore, and probing electron transport via the ferritin molecules trapped between silicon substrate and a conductive scanning probe has been investigated. Ferritin protein is an attractive bioelectronic material because its size (X-ray crystallographic diameter ∼12 nm) should allow it to fit well in the larger tunnel gaps (>5 nm), fabrication of which is relatively more established, than the smaller ones. The electron transport events occurring through the ferritin molecules that are covalently anchored onto the MPTMS-modified silicon surface could be detected at the molecular level by current-sensing atomic force spectroscopy (CSAFS). Importantly, the distinct electronic signatures of the metal types (i.e., Fe, Mn, Ni, and Au) within the ferritin nanocore could be distinguished from each other using the transport band gap analyses. The CSAFS measurements on holoferritin, apoferritin, and the metal core reconstituted ferritins reveal that some of these ferritins behave like n-type semiconductors, while the others behave as p-type semiconductors. The band gaps for the different ferritins are found to be within 0.8 to 2.6 eV, a range that is valid for the standard semiconductor technology (e.g., diodes based on p-n junction). The present work indicates effective on-silico integration of the ferritin protein, as it remains functionally viable after silicon binding and its electron transport activities can be detected. Potential use of the ferritin-silicon nanohybrids may therefore be envisaged in applications other than bioelectronics, too, as ferritin is a versatile nanocore-containing biomaterial (for storage/transport of metals and drugs) and silicon can be a versatile nanoscale solid support (for its biocompatible nature).
Collapse
Affiliation(s)
- Sudipta Bera
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Jayeeta Kolay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Siddhartha Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
34
|
Wang Z, Gao H, Zhang Y, Liu G, Niu G, Chen X. Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng 2017; 11:633-646. [PMID: 29503759 DOI: 10.1007/s11705-017-1620-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.
Collapse
Affiliation(s)
- Zhantong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
36
|
Ghosh S, Mohapatra S, Thomas A, Bhunia D, Saha A, Das G, Jana B, Ghosh S. Apoferritin Nanocage Delivers Combination of Microtubule and Nucleus Targeting Anticancer Drugs. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30824-30832. [PMID: 27782381 DOI: 10.1021/acsami.6b11798] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An ideal nano drug delivery agent must be potent enough to carry high dose of therapeutics and competent enough in targeting specific cell of interest, having adequate optimized physiochemical properties and biocompatibility. Carrying differentially polar therapeutics simultaneously will make them superior in their class. However, it is of enormous challenge to the researchers to find such a unique nanocarrier and to engineer all of the above-mentioned features into it. In this manuscript, we have shown for the first time that apoferritin (Apf) can carry and deliver high dose of doxorubicin (Dox), docetaxel (Doc), and combination of both Dox and Doc specifically into the cancer cell and enhances killing compared to free drug without any functionalization or property modulation. In addition, we have shown that Apf alone is noncytotoxic in nature and interacts with intracellular tubulin/microtubule. Drug loaded Apf specifically bound and consequently internalized into the human breast cancer cell line (MCF7) and human cervical cancer cell line (HeLa) through receptor mediated endocytosis process and releases either single or combination of drugs in the endosome. We have also checked the binding efficacy of both drugs using molecular docking. Further, using fluorescence microscopy, we have shown that Apf can deliver combination of drugs inside cancer cells and the drugs exerts their effect thereof. Finally, we have studied the efficacy of Apf complexes with individual drugs and in combination compared to free drugs in a tumor mimicking 3D multicellular spheroid model of HeLa cell.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saswat Mohapatra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anisha Thomas
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Debmalya Bhunia
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhijit Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Batakrishna Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
37
|
Paramelle D, Peng T, Free P, Fernig DG, Lim S, Tomczak N. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding. PLoS One 2016; 11:e0162848. [PMID: 27622533 PMCID: PMC5021291 DOI: 10.1371/journal.pone.0162848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles.
Collapse
Affiliation(s)
- David Paramelle
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- * E-mail: (DP); (NT); (SL)
| | - Tao Peng
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Paul Free
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sierin Lim
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technology University, Singapore, Singapore
- * E-mail: (DP); (NT); (SL)
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- * E-mail: (DP); (NT); (SL)
| |
Collapse
|
38
|
Li X, Zhang Y, Chen H, Sun J, Feng F. Protein Nanocages for Delivery and Release of Luminescent Ruthenium(II) Polypyridyl Complexes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22756-22761. [PMID: 27547981 DOI: 10.1021/acsami.6b07038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this report, noncovalent encapsulation of hydrophobic ruthenium(II) polyridyl complexes, Ru(bpy)2dppz(2+) and Ru(phen)2dppz(2+), into apoferritin cavity was achieved with high loading contents by effective prevention of Ru complex-induced protein aggregation, without disruption of protein native architecture. The Ru-loaded luminescent nanocomposites have demonstrated improved water solubility, easy manipulation, reduced cytotoxicity, and enhanced cellular uptake as compared to the nontreated Ru complexes.
Collapse
Affiliation(s)
- Xiao Li
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Yajie Zhang
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Hong Chen
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
- Lab of Advanced Functional Materials, School of Environmental Science, Nanjing Xiaozhuang University , Nanjing 210013, P. R. China
| | - Jian Sun
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| |
Collapse
|
39
|
Zhang Y, Ardejani MS, Orner BP. Design and Applications of Protein-Cage-Based Nanomaterials. Chem Asian J 2016; 11:2814-2828. [DOI: 10.1002/asia.201600769] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | - Maziar S. Ardejani
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 United States
| | - Brendan P. Orner
- Department of Chemistry; King's College London; London SE1 1DB United Kingdom
| |
Collapse
|
40
|
Shao Q, Hall CK. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7888-96. [PMID: 27420555 PMCID: PMC5538574 DOI: 10.1021/acs.langmuir.6b01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.
Collapse
|
41
|
Affiliation(s)
| | - Ivan J. Dmochowski
- Department of Chemistry University of Pennsylvania 231 S. 34thSt. Philadelphia PA 19104
| |
Collapse
|
42
|
Kumar P, Singh S, Gupta BK. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. NANOSCALE 2016; 8:14297-340. [PMID: 27424665 DOI: 10.1039/c5nr06965c] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.
Collapse
Affiliation(s)
- Pawan Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Physical Laboratory Campus, Dr K S Krishnan Road, New Delhi 110012, India and Luminescent Materials and Devices Group, Materials Physics and Engineering Division, CSIR - National Physical Laboratory, Dr K S Krishnan Road, New Delhi, 110012, India.
| | - Satbir Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Physical Laboratory Campus, Dr K S Krishnan Road, New Delhi 110012, India and Luminescent Materials and Devices Group, Materials Physics and Engineering Division, CSIR - National Physical Laboratory, Dr K S Krishnan Road, New Delhi, 110012, India.
| | - Bipin Kumar Gupta
- Luminescent Materials and Devices Group, Materials Physics and Engineering Division, CSIR - National Physical Laboratory, Dr K S Krishnan Road, New Delhi, 110012, India.
| |
Collapse
|
43
|
Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2099-147. [PMID: 26729639 DOI: 10.1002/adma.201503215] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 05/13/2023]
Abstract
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
44
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions. Curr Opin Chem Biol 2015; 25:88-97. [DOI: 10.1016/j.cbpa.2014.12.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
|
46
|
Jutz G, van Rijn P, Santos Miranda B, Böker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev 2015; 115:1653-701. [PMID: 25683244 DOI: 10.1021/cr400011b] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Günther Jutz
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University , Forckenbeckstrasse 50, D-52056 Aachen, Germany
| | | | | | | |
Collapse
|
47
|
He D, Marles-Wright J. Ferritin family proteins and their use in bionanotechnology. N Biotechnol 2015; 32:651-7. [PMID: 25573765 PMCID: PMC4571993 DOI: 10.1016/j.nbt.2014.12.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 01/20/2023]
Abstract
We discuss bionanotechnology applications of ferritin family proteins. Ferritin family proteins are able to mineralise a range of metal ions. The ferritin and DPS cages can be used in semi-conductor patterning. We explore a commercial application of ferritin as a phosphate removal system for water purification. We examine how the superparamagnetic properties of iron-loaded ferritin can be used in medical imaging.
Ferritin family proteins are found in all kingdoms of life and act to store iron within a protein cage and to protect the cell from oxidative damage caused by the Fenton reaction. The structural and biochemical features of the ferritins have been widely exploited in bionanotechnology applications: from the production of metal nanoparticles; as templates for semi-conductor production; and as scaffolds for vaccine design and drug delivery. In this review we first discuss the structural properties of the main ferritin family proteins, and describe how their organisation specifies their functions. Second, we describe materials science applications of ferritins that rely on their ability to sequester metal within their cavities. Finally, we explore the use of ferritin as a container for drug delivery and as a scaffold for the production of vaccines.
Collapse
Affiliation(s)
- Didi He
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | - Jon Marles-Wright
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom.
| |
Collapse
|
48
|
Abstract
We describe a method for the detection of specific protein-protein interactions in protein cages through the exploitation of designed binding sites for bisarsenic fluorescent probes. These sites are engineered to be protein-protein interface specific. We have adapted this method to ferritins; however, it could conceivably be applied to other protein cages. It is thought that this technique could be utilized in the thermodynamic and kinetic characterization of cage assembly mechanisms and in the high-throughput screening of protein cage libraries for the discovery of proteins with new assembly properties or of optimized conditions for assembly.
Collapse
Affiliation(s)
- Thomas A Cornell
- Department of Chemistry, King's College London, Guys Campus, London, SE1 1DB, UK,
| | | |
Collapse
|
49
|
|
50
|
Petrucci OD, Buck DC, Farrer JK, Watt RK. A ferritin mediated photochemical method to synthesize biocompatible catalytically active gold nanoparticles: size control synthesis for small (∼2 nm), medium (∼7 nm) or large (∼17 nm) nanoparticles. RSC Adv 2014. [DOI: 10.1039/c3ra46520a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|