1
|
Wilson BK, Prud'homme RK. Co-encapsulation of organic polymers and inorganic superparamagnetic iron oxide colloidal crystals requires matched diffusion time scales. SOFT MATTER 2024; 20:8312-8325. [PMID: 39387564 DOI: 10.1039/d4sm00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nanoparticles (NPs) that contain both organic molecules and inorganic metal or metal oxide colloids in the same NP core are "composite nanoparticles" which are of interest in many applications, particularly in biomedicine as "theranostics" for the combined delivery of colloidal diagnostic imaging agents with therapeutic drugs. The rapid precipitation technique Flash NanoPrecipitation (FNP) enables continuous and scalable production of composite nanoparticles with hydrodynamic diameters between 40-200 nanometers (nm) that contain hydrophobic superparamagnetic iron oxide primary colloids. Composite NPs co-encapsulate these primary colloids (diameters of 6 nm, 15 nm, or 29 nm), a fluorescent dye (600 Daltons), and poly(styrene) homopolymer (1800, 50 000, or 200 000 Daltons) with NPs stabilized by a poly(styrene)-block-poly(ethylene glycol) (1600 Da-b-5000 Da) block copolymer. Nanoparticle assembly in FNP occurs by diffusion limited aggregation of the hydrophobic core components followed by adsorption of the hydrophobic block of the stabilizing polymer. The hydrodynamic diameter mismatch between the collapsed organic species and the primary colloids (0.5-5 nm versus 6-29 nm) creates a diffusion-aggregation time scale mismatch between components that can lead to nonstoichiometric co-encapsulation in the final nanoparticles; some nanoparticles are composites with primary colloids co-encapsulated alongside organics while others are devoid of the primary colloids and contain only organic species. We use a magnetic capture process to separate magnetic composite nanoparticles from organic-only nanoparticles and quantify the amount of iron oxide colloids and hydrophobic fluorescent dye (as a proxy for total hydrophobic polymer content) in the magnetic and nonmagnetic fractions of each formulation. Analysis of the microstructure in over 1100 individual nanoparticles by TEM imaging and composition measurements identifies the conditions that produce nonstoichiometric composite NP populations without co-encapsulated magnetic iron oxide colloids. Stoichiometric magnetically responsive composite NPs are produced when the ratio of characteristic diffusion-aggregation time scales between the inorganic primary colloid and the organic core component is less than 30 and all NPs in a dispersion contain organic and inorganic species in approximately the same ratio. These rules for assembly of colloids and organic components into homogeneous composite nanoparticles are broadly applicable.
Collapse
Affiliation(s)
- Brian K Wilson
- Department of Chemical and Biological Engineering, ACE34 Engineering Quadrangle, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, ACE34 Engineering Quadrangle, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
2
|
Xing M, Zhao H, Ahmed R, Wang X, Liu J, Wang J, Guo A, Wang M. Fabrication of Resveratrol-loaded Zein Nanoparticles based on Flash Nanoprecipitation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Fabrication and Characterization of Tedizolid Phosphate Nanocrystals for Topical Ocular Application: Improved Solubilization and In Vitro Drug Release. Pharmaceutics 2022; 14:pharmaceutics14071328. [PMID: 35890223 PMCID: PMC9320520 DOI: 10.3390/pharmaceutics14071328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
Positively charged NCs of TZP (0.1%, w/v) for ocular use were prepared by the antisolvent precipitation method. TZP is a novel 5-Hydroxymethyl-Oxazolidinone class of antibiotic and is effective against many drug-resistant bacterial infections. Even the phosphate salt of this drug is poorly soluble, therefore the NCs were prepared for its better solubility and ocular availability. P188 was found better stabilizer than PVA for TZP-NCs. Characterization of the NCs including the particle-size, PDI, and ZP by Zeta-sizer, while morphology by SEM indicated that the preparation technique was successful to get the optimal sized (151.6 nm) TZP-NCs with good crystalline morphology. Mannitol (1%, w/v) prevented the crystal growth and provided good stabilization to NC1 during freeze-drying. FTIR spectroscopy confirmed the nano-crystallization did not alter the basic molecular structure of TZP. DSC and XRD studies indicated the reduced crystallinity of TZP-NC1, which potentiated its solubility. An increased solubility of TZP-NC1 (25.9 µgmL−1) as compared to pure TZP (18.4 µgmL−1) in STF with SLS. Addition of stearylamine (0.2%, w/v) and BKC (0.01%, w/v) have provided cationic (+29.4 mV) TZP-NCs. Redispersion of freeze-dried NCs in dextrose (5%, w/v) resulted in a clear transparent aqueous suspension of NC1 with osmolarity (298 mOsm·L−1) and viscosity (21.1 cps at 35 °C). Mannitol (cryoprotectant) during freeze-drying could also provide isotonicity to the nano-suspension at redispersion in dextrose solution. In vitro release in STF with SLS has shown relatively higher (78.8%) release of TZP from NC1 as compared to the conventional TZP-AqS (43.4%) at 12 h. TZP-NC1 was physically and chemically stable at three temperatures for 180 days. The above findings suggested that TZP-NC1 would be a promising alternative for ocular delivery of TZP with relatively improved performance.
Collapse
|
4
|
A Neglected Issue in Testing Particles in the Solution. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Hu H, Yang C, Zhang F, Li M, Tu Z, Mu L, Dawulieti J, Lao Y, Xiao Z, Yan H, Sun W, Shao D, Leong KW. A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002020. [PMID: 34386315 PMCID: PMC8336609 DOI: 10.1002/advs.202002020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/04/2021] [Indexed: 05/26/2023]
Abstract
Biomimetic strategies are useful for designing potent vaccines. Decorating a nanoparticulate adjuvant with cell membrane fragments as the antigen-presenting source exemplifies, such as a promising strategy. For translation, a standardizable, consistent, and scalable approach for coating nanoadjuvant with the cell membrane is important. Here a turbulent mixing and self-assembly method called flash nanocomplexation (FNC) for producing cell membrane-coated nanovaccines in a scalable manner is demonstrated. The broad applicability of this FNC technique compared with bulk-sonication by using ten different core materials and multiple cell membrane types is shown. FNC-produced biomimetic nanoparticles have promising colloidal stability and narrow particle polydispersity, indicating an equal or more homogeneous coating compared to the bulk-sonication method. The potency of a nanovaccine comprised of B16-F10 cancer cell membrane decorating mesoporous silica nanoparticles loaded with the adjuvant CpG is then demonstrated. The FNC-fabricated nanovaccines when combined with anti-CTLA-4 show potency in lymph node targeting, DC antigen presentation, and T cell immune activation, leading to prophylactic and therapeutic efficacy in a melanoma mouse model. This study advances the design of a biomimetic nanovaccine enabled by a robust and versatile nanomanufacturing technique.
Collapse
Affiliation(s)
- Hanze Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Chao Yang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Institutes for Life SciencesSchool of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006China
| | - Fan Zhang
- Institutes for Life SciencesSchool of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International CampusGuangzhouGuangdong510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Institutes for Life SciencesSchool of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International CampusGuangzhouGuangdong510630China
| | - Lizhong Mu
- School of Energy and Power EngineeringDalian University of TechnologyDalianLiaoning116024China
| | - Jianati Dawulieti
- Institutes for Life SciencesSchool of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zixuan Xiao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Huize Yan
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianLiaoning116024China
| | - Dan Shao
- Institutes for Life SciencesSchool of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006China
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia UniversityNew YorkNY10032USA
| |
Collapse
|
6
|
Hu H, Yang C, Li M, Shao D, Mao HQ, Leong KW. Flash Technology-Based Self-Assembly in Nanoformulation: From Fabrication to Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 42:99-116. [PMID: 34421329 PMCID: PMC8375602 DOI: 10.1016/j.mattod.2020.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.
Collapse
Affiliation(s)
- Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Chao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Realizing white emission in Sc2(MoO4)3:Eu3+/Dy3+/Ce3+ phosphors through computation and experiment. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Marena GD, Ramos MADS, Bauab TM, Chorilli M. A Critical Review of Analytical Methods for Quantification of Amphotericin B in Biological Samples and Pharmaceutical Formulations. Crit Rev Anal Chem 2020; 52:555-576. [PMID: 32880190 DOI: 10.1080/10408347.2020.1811947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphotericin B (AmB) is an important antifungal agent available in the clinical practice with the action mechanism related to the inhibition of ergosterol molecule present in the fungal cell wall. Given this, in order to expand AmB knowledge, this review article gathers important information of the AmB physical, chemical, and biological properties. In addition, the main analytical methods for quantifying and determining the AmB were also reported in this review, such as high-performance liquid chromatography (HPLC), liquid chromatography, tandem mass spectrophotometry (LC-MS/MS), immunoenzymatic assay (ELISA), capillary zone electrophoresis (CE) stands out and among others. Based in this review article, the scientific community will have important information to choose the best method for analysis in their scientific or clinical research, providing greater security and reliability in the obtained results.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Ling JTS, Roberts CJ, Billa N. Antifungal and Mucoadhesive Properties of an Orally Administered Chitosan-Coated Amphotericin B Nanostructured Lipid Carrier (NLC). AAPS PharmSciTech 2019; 20:136. [PMID: 30838459 DOI: 10.1208/s12249-019-1346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
Collapse
|
10
|
Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 2018; 24:504-512. [DOI: 10.1080/10837450.2018.1515225] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Nashiru Billa
- School of Pharmacy, University of Nottingham, Semenyih, Malaysia
| |
Collapse
|
11
|
Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wen Y, Deng F, Zhang X, Wei Y. A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:270-278. [PMID: 30423709 DOI: 10.1016/j.msec.2018.09.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Fluorescent silica nanoparticles (FSNPs) have attracted great interest for potential applications in biological and biomedical fields because they possess higher fluorescence quantum yield and better fluorescence stability as comparison with small organic fluorescent molecules. The encapsulation of covalent linkage with fluorescent organic dyes or fluorescent metal complexes has demonstrated to be the commonly adopted strategies for fabrication of FSNPs previously. However, it is still challengeable to obtain FSNPs based polymer composites with intensive fluorescence and good water dispersibility through a one-pot surface modification strategy. In this paper, we developed a facile method to fabricate novel FSNPs based polymer composites (PhE@MSNs-PEtOx) through introducing the aggregation-induced emission (AIE) dye (PhE-OH) and poly(2-ethyl-2-oxazoline) (PEtOx) onto mesoporous silica nanoparticles (MSNs) based on cationic ring opening polymerization (CROP). The resulting PhE@MSNs-PEtOx composites possess strong fluorescence emission, excellent hydrophilicity and biocompatibility. These features make the final FSNPs based polymer composites great potential for biomedical applications. Taken together, we have developed for the first time that FSNPs based polymer composites can be facilely prepared through the one-pot introduction of AIE dyes and hydrophilic PEtOx on MSNs. Moreover, the novel FSNPs based composites could also be utilized for other biomedical applications considered their properties.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Saijiao Yang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China; Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
12
|
Liu M, Zhao J, Priestley RD, Teng W, Liu R. Flash nanoprecipitation of poly(styrene-co-acrylonitrile) colloids in the presence of hydrophobic organoplatinum and their derived Pt-carbon nanocomposites for oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Meng F, Wang J, Ping Q, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. ACS NANO 2018; 12:6458-6468. [PMID: 29920064 PMCID: PMC6105334 DOI: 10.1021/acsnano.8b02881] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescence-based whole-body imaging is widely used in the evaluation of nanoparticles (NPs) in small animals, often combined with quantitative analysis to indicate their spatiotemporal distribution following systemic administration. An underlying assumption is that the fluorescence label represents NPs and the intensity increases with the amount of NPs and/or the labeling dyes accumulated in the region of interest. We prepare DiR-loaded poly(lactic- co-glycolic acid) (PLGA) NPs with different surface layers (polyethylene glycol with and without folate terminus) and compare the distribution of fluorescence signals in a mouse model of folate-receptor-expressing tumors by near-infrared fluorescence whole-body imaging. Unexpectedly, we observe that fluorescence distribution patterns differ far more dramatically with DiR loading than with the surface ligand, reaching opposite conclusions with the same type of NPs (tumor-specific delivery vs predominant liver accumulation). Analysis of DiR-loaded PLGA NPs reveals that fluorescence quenching, dequenching, and signal saturation, which occur with the increasing dye content and local NP concentration, are responsible for the conflicting interpretations. This study highlights the critical need for validating fluorescence labeling of NPs in the quantitative analysis of whole-body imaging. In light of our observation, we make suggestions for future whole-body fluorescence imaging in the in vivo evaluation of NP behaviors.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author: Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|
14
|
Fu Z, Chen K, Li L, Zhao F, Wang Y, Wang M, Shen Y, Cui H, Liu D, Guo X. Spherical and Spindle-Like Abamectin-Loaded Nanoparticles by Flash Nanoprecipitation for Southern Root-Knot Nematode Control: Preparation and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E449. [PMID: 29925819 PMCID: PMC6027074 DOI: 10.3390/nano8060449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/05/2022]
Abstract
Southern root-knot nematode (Meloidogyne incognita) is a biotrophic parasite, causing enormous loss in global crop production annually. Abamectin (Abm) is a biological and high-efficiency pesticide against Meloidogyne incognita. In this study, a powerful method, flash nanoprecipitation (FNP), was adopted to successfully produce Abm-loaded nanoparticle suspensions with high drug loading capacity (>40%) and encapsulation efficiency (>95%), where amphiphilic block copolymers (BCPs) poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG), poly(d,l-lactide)-b-poly(ethylene glycol) (PLA-b-PEG), or poly(caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) were used as the stabilizer to prevent the nanoparticles from aggregation. The effect of the drug-to-stabilizer feed ratio on the particle stability were investigated. Moreover, the effect of the BCP composition on the morphology of Abm-loaded nanoparticles for controlling Meloidogyne incognita were discussed. Notably, spindle-like nanoparticles were obtained with PCL-b-PEG as the stabilizer and found significantly more efficient (98.4% mortality at 1 ppm particle concentration) than spherical nanoparticles using PLGA-b-PEG or PLA-b-PEG as the stabilizer. This work provides a more rapid and powerful method to prepare stable Abm-loaded nanoparticles with tunable morphologies and improved effectiveness for controlling Meloidogyne incognita.
Collapse
Affiliation(s)
- Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, China.
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Wang
- Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mingwei Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yue Shen
- Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haixin Cui
- Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, China.
| |
Collapse
|
15
|
Yonashiro H, Higashi K, Morikawa C, Ueda K, Itoh T, Ito M, Masu H, Noguchi S, Moribe K. Morphological and Physicochemical Evaluation of Two Distinct Glibenclamide/Hypromellose Amorphous Nanoparticles Prepared by the Antisolvent Method. Mol Pharm 2018; 15:1587-1597. [DOI: 10.1021/acs.molpharmaceut.7b01122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hazuki Yonashiro
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Chikako Morikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tsutomu Itoh
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masataka Ito
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shuji Noguchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
16
|
Nunes A, Pansare VJ, Beziere N, Ntoukas AK, Reber J, Bruzek M, Anthony J, Prud’homme RK, Ntziachristos V. Quenched hexacene optoacoustic nanoparticles. J Mater Chem B 2018; 6:44-55. [DOI: 10.1039/c7tb02633a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flash NanoPrecipitation allows for the creation of optoacoustic imaging agents with tunable size and strong signal for biomedical imaging and therapy.
Collapse
Affiliation(s)
- Antonio Nunes
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Vikram J. Pansare
- Department of Chemical and Biological Engineering
- Princeton University
- Princeton
- USA
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Argiris Kolokithas Ntoukas
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Josefine Reber
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Matthew Bruzek
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - John Anthony
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering
- Princeton University
- Princeton
- USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| |
Collapse
|
17
|
Zhang Z, Sun L, Liu R. Flash nanoprecipitation of polymer supported Pt colloids with tunable catalytic chromium reduction property. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260:46-60. [PMID: 28536049 DOI: 10.1016/j.jconrel.2017.05.028] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 02/01/2023]
Abstract
The lack of efficient therapeutic options for many severe disorders including cancer spurs demand for improved drug delivery technologies. Nanoscale drug delivery systems based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) represent a strategy to implement therapies with enhanced drug accumulation at the site of action and decreased off-target effects. In this review, we discuss state-of-the-art nanomedicines based on PEG-PCL that have been investigated in a preclinical setting. We summarize the various synthesis routes and different preparation methods used for the production of PEG-PCL nanoparticles. Additionally, we review physico-chemical properties including biodegradability, biocompatibility, and drug loading. Finally, we highlight recent therapeutic applications investigated in vitro and in vivo using advanced systems such as triggered release, multi-component therapies, theranostics, or gene delivery systems.
Collapse
Affiliation(s)
- Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Suzuki H, Hamao S, Seto Y, Sato H, Wong J, Prud’homme RK, Chan HK, Onoue S. New nano-matrix oral formulation of nanoprecipitated cyclosporine A prepared with multi-inlet vortex mixer. Int J Pharm 2017; 516:116-119. [DOI: 10.1016/j.ijpharm.2016.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
|
20
|
Hpone Myint K, Brown JR, Shim AR, Wyslouzil BE, Hall LM. Encapsulation of Nanoparticles During Polymer Micelle Formation: A Dissipative Particle Dynamics Study. J Phys Chem B 2016; 120:11582-11594. [PMID: 27749067 DOI: 10.1021/acs.jpcb.6b07324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The formation of block copolymer micelles with and without hydrophobic nanoparticles is simulated using dissipative particle dynamics. We use the model developed by Spaeth et al. [ Spaeth , J. R. , Kevrekidis , I. G. , and Panagiotopoulos , A. Z. J. Chem. Phys. 2011 , 134 ( (16) ) 164902 ], and drive micelle formation by adjusting the interaction parameters linearly over time to represent a rapid change from organic solvent to water. For different concentrations of added nanoparticles, we determine characteristic times for micelle formation and coagulation, and characterize micelles with respect to size, polydispersity, and nanoparticle loading. Four block copolymers with different numbers of hydrophobic and hydrophilic polymer beads, are examined. We find that increasing the number of hydrophobic beads on the polymer decreases the micelle formation time and lowers polydispersity in the final micelle distribution. Adding more nanoparticles to the simulation has a negligible effect on micelle formation and coagulation times, and monotonically increases the polydispersity of the micelles for a given polymer system. The presence of relatively stable free polymer in one system decreases the amount of polymer encapsulating the nanoparticles, and results in an increase in polydispersity and the number of nanoparticles per micelle for that system, especially at high nanoparticle concentration. Longer polymers lead to micelles with a more uniform nanoparticle loading.
Collapse
Affiliation(s)
- Kyaw Hpone Myint
- Department of Chemistry, Berea College , Berea, Kentucky 40404, United States.,Department of Physics, Berea College , Berea, Kentucky 40404, United States.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jonathan R Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Anne R Shim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
He Y, Priestley RD, Liu R. A One-Step and Scalable Continuous-Flow Nanoprecipitation for Catalytic Reduction of Organic Pollutants in Water. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuezhen He
- Ministry of Education Key Laboratory of Advanced
Civil
Engineering Material, School
of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804,China
- Anhui Key Laboratory of Chemo-Biosensing and Ministry
of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering and Princeton Institute for the Science
and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Rui Liu
- Ministry of Education Key Laboratory of Advanced
Civil
Engineering Material, School
of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804,China
| |
Collapse
|
22
|
Lu HD, Wilson BK, Heinmiller A, Faenza B, Hejazi S, Prud'homme RK. Narrow Absorption NIR Wavelength Organic Nanoparticles Enable Multiplexed Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14379-14388. [PMID: 27153806 DOI: 10.1021/acsami.6b03059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photoacoustic (PA) imaging is an emerging hybrid optical-ultrasound based imaging technique that can be used to visualize optical absorbers in deep tissue. Free organic dyes can be used as PA contrast agents to concurrently provide additional physiological and molecular information during imaging, but their use in vivo is generally limited by rapid renal clearance for soluble dyes and by the difficulty of delivery for hydrophobic dyes. We here report the use of the block copolymer directed self-assembly process, Flash NanoPrecipitation (FNP), to form series of highly hydrophobic optical dyes into stable, biocompatible, and water-dispersible nanoparticles (NPs) with sizes from 38 to 88 nm and with polyethylene glycol (PEG) surface coatings suitable for in vivo use. The incorporation of dyes with absorption profiles within the infrared range, that is optimal for PA imaging, produces the PA activity of the particles. The hydrophobicity of the dyes allows their sequestration in the NP cores, so that they do not interfere with targeting, and high loadings of >75 wt % dye are achieved. The optical extinction coefficients (ε (mL mg(-1) cm(-1))) were essentially invariant to the loading of the dye in NP core. Co-encapsulation of dye with vitamin E or polystyrene demonstrates the ability to simultaneously image and deliver a second agent. The PEG chains on the NP surface were functionalized with folate to demonstrate folate-dependent targeting. The spectral separation of different dyes among different sets of particles enables multiplexed imaging, such as the simultaneous imaging of two sets of particles within the same animal. We provide the first demonstration of this capability with PA imaging, by simultaneously imaging nontargeted and folate-targeted nanoparticles within the same animal. These results highlight Flash NanoPrecipitation as a platform to develop photoacoustic tools with new diagnostic capabilities.
Collapse
Affiliation(s)
- Hoang D Lu
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Brian K Wilson
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | | | - Bill Faenza
- Persis Science , Andreas, Pennsylvania 18211, United States
| | - Shahram Hejazi
- Optimeos Life Sciences LLC , Princeton, New Jersey 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Wang M, Xu Y, Wang J, Liu M, Yuan Z, Chen K, Li L, Prud’homme RK, Guo X. Biocompatible Nanoparticle Based on Dextran-b-Poly(L-lactide) Block Copolymer Formed by Flash Nanoprecipitation. CHEM LETT 2015. [DOI: 10.1246/cl.150800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingwei Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Miaomiao Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Zhenyu Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | - Kai Chen
- School of Chemistry and Chemical Engineering, Shihezi University
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
| | | | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology
- School of Chemistry and Chemical Engineering, Shihezi University
| |
Collapse
|
24
|
Pagels RF, Prud'homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 2015; 219:519-535. [PMID: 26359125 DOI: 10.1016/j.jconrel.2015.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
Abstract
Biologically derived therapeutics, or biologics, are the most rapidly growing segment of the pharmaceutical marketplace. However, there are still unmet needs in improving the delivery of biologics. Injectable polymeric nanoparticles and microparticles capable of releasing proteins and peptides over time periods as long as weeks or months have been a major focus in the effort to decrease the frequency of administration. These particle systems fit broadly into two categories: those composed of hydrophilic and those composed of hydrophobic polymeric scaffolds. Here we review the factors that contribute to the slow and controlled release from each class of particle, as well as the effects of synthesis parameters and product design on the loading, encapsulation efficiency, biologic integrity, and release profile. Generally, hydrophilic scaffolds are ideal for large proteins while hydrophobic scaffolds are more appropriate for smaller biologics without secondary structure. Here we also introduce a Flash NanoPrecipitation method that has been adopted for encapsulating biologics in nanoparticles (40-200nm) at high loadings (50-75wt.%) and high encapsulation efficiencies. The hydrophilic gel interior and hydrophobic shell provide an opportunity to combine the best of both classes of injectable polymeric depots.
Collapse
Affiliation(s)
- Robert F Pagels
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
25
|
Pinkerton NM, Gindy ME, Calero-DdelC VL, Wolfson T, Pagels RF, Adler D, Gao D, Li S, Wang R, Zevon M, Yao N, Pacheco C, Therien MJ, Rinaldi C, Sinko PJ, Prud'homme RK. Single-Step Assembly of Multimodal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging. Adv Healthc Mater 2015; 4:1376-85. [PMID: 25925128 PMCID: PMC4617688 DOI: 10.1002/adhm.201400766] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/23/2015] [Indexed: 11/08/2022]
Abstract
Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.
Collapse
Affiliation(s)
- Nathalie M. Pinkerton
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Marian E. Gindy
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Theodore Wolfson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert F. Pagels
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Derek Adler
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Dayuan Gao
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Shike Li
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ruobing Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Margot Zevon
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Carlos Pacheco
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael J. Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32605, United States
| | - Patrick J. Sinko
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Robert K. Prud'homme
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32605, United States
| |
Collapse
|
26
|
Wang M, Yang N, Guo Z, Gu K, Shao A, Zhu W, Xu Y, Wang J, Prud’homme RK, Guo X. Facile Preparation of AIE-Active Fluorescent Nanoparticles through Flash Nanoprecipitation. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00501] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mingwei Wang
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Nan Yang
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Kaizhi Gu
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Andong Shao
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Weihong Zhu
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Yisheng Xu
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wang
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xuhong Guo
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Li H, Zhang X, Zhang X, Wang K, Liu H, Wei Y. Facile preparation of biocompatible and robust fluorescent polymeric nanoparticles via PEGylation and cross-linking. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4241-4246. [PMID: 25658490 DOI: 10.1021/am5085308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Novel cross-linked copolymers of PEG-IM-PhNH2 are successfully synthesized through PEGylation via radical polymerization of 2-isocyanatoethyl methacrylate and poly(ethylene glycol) monomethyl ether methacylate and subsequent cross-linking with an amino-terminated aggregation-induced emission fluorogen. Such obtained amphiphilic copolymers can self-assemble to form uniform fluorescent polymeric nanoparticles (FPNs) and be utilized for cell imaging. These cross-linked FPNs are demonstrated good water dispersibility with ultralow critical micelle concentration (∼ 0.002 mg mL(-1)), uniform morphology (98 ± 2 nm), high red fluorescence quantum yield, and excellent biocompatibility. More importantly, this novel strategy of fabricating cross-linked FPNs paves the way to the future development of more robust and biocompatible fluorescent bioprobes.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agriculture University , Qingdao, 266109, P. R. China
| | | | | | | | | | | |
Collapse
|
28
|
Li H, Zhang X, Zhang X, Wang K, Zhang Q, Wei Y. Fluorescent polymeric nanoparticles with ultra-low CMC for cell imaging. J Mater Chem B 2015; 3:1193-1197. [DOI: 10.1039/c4tb02098g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescent polymeric nanoparticles (FPNs) with ultra-low critical micelle concentration were facilely fabricated through radical polymerization and ring-opening crosslinking, and utilized for cell imaging.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agriculture University
- Qingdao
- P. R. China
| | - Xiqi Zhang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Ke Wang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Qingdong Zhang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Yen Wei
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| |
Collapse
|
29
|
Pansare VJ, Bruzek MJ, Adamson DH, Anthony J, Prud'homme RK. Composite fluorescent nanoparticles for biomedical imaging. Mol Imaging Biol 2014; 16:180-8. [PMID: 24129739 DOI: 10.1007/s11307-013-0689-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE In the rapidly expanding field of biomedical imaging, there is a need for nontoxic, photostable, and nonquenching fluorophores for fluorescent imaging. We have successfully encapsulated a new, extremely hydrophobic, pentacene-based fluorescent dye within polymeric nanoparticles (NPs) or nanocarriers (NCs) via the Flash NanoPrecipitation (FNP) process. PROCEDURES Nanoparticles and dye-loaded micelles were formulated by FNP and characterized by dynamic light scattering, fluorescence spectroscopy, UV-VIS absorbance spectroscopy, and confocal microscopy. RESULTS These fluorescent particles were loaded from less than 1% to 78% by weight core loading and the fluorescence maximum was found to be at 2.3 wt.%. The particles were also stably formed at 2.3% core loading from 20 up to 250 nm in diameter with per-particle fluorescence scaling linearly with the NC core volume. The major absorption peaks are at 458, 575, and 625 nm, and the major emission peaks at 635 and 695 nm. In solution, the Et-TP5 dye displays a strong concentration-dependent ratio of the emission intensities of the first two emission peaks, whereas in the nanoparticle core the spectrum is independent of concentration over the entire concentration range. A model of the fluorescence quenching was consistent with Förster resonant energy transfer as the cause of the quenching observed for Et-TP5. The Förster radius calculated from the absorption and emission spectra of Et-TP5 is 4.1 nm, whereas the average dye spacing in the particles at the maximum fluorescence is 3.9 nm. CONCLUSIONS We have successfully encapsulated Et-TP5, a pentacene derivative dye previously only used in light-emitting diode applications, within NCs via the FNP process. The extreme hydrophobicity of the dye keeps it encapsulated in the NC core, its extended pentacene structure gives it relatively long wavelength emission at 695 nm, and the pentacene structure, without oxygen or nitrogen atoms in its core, makes it highly resistant to photobleaching. Its bulky side groups minimize self-quenching and localization within the nanoparticle core prevents interaction of the dye with biological surfaces, or molecules in diagnostic assays. Loading of dye in the NP core allows 25 times more dye to be delivered than if it were conjugated onto the nanocarrier surface. The utility of the dye for quantifying nanoparticle binding is demonstrated. Studies to extend the wavelength range of these pentacene dyes into the near infra-red are underway.
Collapse
Affiliation(s)
- Vikram J Pansare
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | | | | | | |
Collapse
|
30
|
Petersen L, York AW, Lewis DR, Ahuja S, Uhrich KE, Prud’homme RK, Moghe PV. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 2014; 11:2815-24. [PMID: 24972372 PMCID: PMC4144725 DOI: 10.1021/mp500188g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics.
Collapse
Affiliation(s)
- Latrisha
K. Petersen
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Adam W. York
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Daniel R. Lewis
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Sonali Ahuja
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department
of Chemistry and Chemical Biology, Rutgers
University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Prabhas V. Moghe
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
31
|
Zhang XQ, Zhang XY, Yang B, Wei Y. Facile fabrication of aggregation-induced emission based red fluorescent organic nanoparticles for cell imaging. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1461-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Zhang X, Zhang X, Yang B, Hui J, Liu M, Wei Y. Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids Surf B Biointerfaces 2014; 116:739-44. [DOI: 10.1016/j.colsurfb.2013.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 01/07/2023]
|
33
|
Du F, Min Y, Zeng F, Yu C, Wu S. A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:964-72. [PMID: 24108667 DOI: 10.1002/smll.201302036] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Indexed: 05/07/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a prominent member of the reactive oxygen species family and plays crucial roles in living organisms, thus detecting H2 O2 and elucidating its biological functions has become an important area of biological and biomedical research. Herein, a multifunctional fluorescent nanoprobe is demonstrated for detecting mitochondrial H2 O2 . The nanoprobe is prepared by covalently linking a mitochondria-targeting ligand (triphenylphosphonium, TPP) and a H2 O2 recognition element (PFl) onto carbon dots (CDs). For this nanoprobe, the CD serves as the carrier and the FRET donor. In the presence of H2 O2 , the PFl moieties on a CD undergo structural and spectral conversion, affording the nanoplatform a FRET-based ratiometric probe for H2 O2 . The nanoprobe displays excellent water dispersibility, high sensitivity and selectivity, satisfactory cell permeability, and very low cytotoxicity. Following the living cell uptake, this nanoprobe can specifically target and stain the mitochondria; and it can detect the exogenous H2 O2 in L929 cells, as well as the endogenously produced mitochondrial H2 O2 in Raw 264.7 cells upon stimulation by PMA. This study shows that CDs can serve as promising nano-carriers for fabricating practical multifunctional fluorescent nanosensors.
Collapse
Affiliation(s)
- Fangkai Du
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | | | | | | | | |
Collapse
|
34
|
Kulkarni A, VerHeul R, DeFrees K, Collins CJ, Schuldt RA, Vlahu A, Thompson DH. Microfluidic Assembly of Cationic-β-Cyclodextrin:Hyaluronic Acid-Adamantane Host:Guest pDNA Nanoparticles. Biomater Sci 2013; 1:10.1039/C3BM00189J. [PMID: 24349706 PMCID: PMC3859440 DOI: 10.1039/c3bm00189j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditionally, transfection complexes are typically formed by bulk mixing, producing particles with high polydispersity and limited control over vector size. Herein, we demonstrate the use of a commercial micro-reactor to assemble pDNA:cationic cyclodextrin:pendant polymer nanoparticles using a layer-by-layer approach. Our studies reveal that the particles formulated via microfluidic assembly have much smaller sizes, lower polydispersity, lower ζ-potentials, and comparable cell viability and transfection profiles in HeLa cells than bulk mixed particles. The complexes also show a flow rate-dependent stability, with particles formed at slower flow rates giving rise to more stable complexes as determined by heparin challenge. Our findings suggest that microfluidic reactors offer an attractive method for assembling reproducible, size-controlled complexes from multi-component transfection complex assemblies.
Collapse
Affiliation(s)
| | - Ross VerHeul
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Kyle DeFrees
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Christopher J. Collins
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Ryan A. Schuldt
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Alexander Vlahu
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - David H. Thompson
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| |
Collapse
|
35
|
Jain S, Chattopadhyay S, Jackeray R, Abid CKVZ, Singh H. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules. NANOSCALE 2013; 5:6883-6892. [PMID: 23783838 DOI: 10.1039/c3nr34100c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.
Collapse
Affiliation(s)
- Swati Jain
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi-16, India.
| | | | | | | | | |
Collapse
|
36
|
Highly loaded nanoparticulate formulation of progesterone for emergency traumatic brain injury treatment. Ther Deliv 2013; 3:1269-79. [PMID: 23259248 DOI: 10.4155/tde.12.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Progesterone (PG), a promising therapeutic for treating traumatic brain injury, has been difficult to formulate into a high-dose/low-volume form for emergency intravenous administration due to its hydrophobicity and crystallinity. RESULTS This work demonstrates the use of Flash NanoPrecipitation to produce 300-nm PG-loaded polymeric nanoparticles with approximately 24 wt% drug loading using only components that are classified by the US FDA as generally recognized as safe. Approximately 80% of the encapsulated PG is in dissolved, rather than crystalline form. For prolonged stability, the nanoparticles are freeze-dried with Pluronic F68 and can be reproducibly reconstituted by hand agitation for 1 min without particle aggregation to produce injectable formulations with approximately 30-mg/ml PG, which is more than ten-times higher than has been previously reported. CONCLUSION This formulation can allow for administration of therapeutically viable concentrations of PG, which has been impossible with all previously reported nanoparticulate formulations because of low drug loadings and concentrations.
Collapse
|
37
|
Lo KH, Li MC, Ho RM, Zhao YC, Massuyeau F, Chuang WT, Duvail JL, Lefrant S, Hsu CS. Luminescence enhancement of pyrene/dispersant nanoarrays driven by the nanoscale spatial effect on mixing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1627-1633. [PMID: 23293950 DOI: 10.1021/la3044076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work presents a simple method to generate ordered chromophore/dispersant nanoarrays through a pore-filling process for a nanoporous polymer template to enhance chromophore luminescence. Fluorescence results combining with the morphological evolution examined by scanning probe microscopy reveal that the enhanced luminescence intensity reaches the maximum intensity as the nanopores of the template are completely filled by the chromophore/dispersant mixture. The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of chromophore and dispersant, that is, the alleviation of self-quenching problem, as evidenced by the results of attenuated total reflection Fourier transform IR spectroscopy combining with grazing incident wide-angle X-ray diffraction. The enhanced luminescence of the chromophore/dispersant nanoarrays driven by the nanoscale spatial effect is highly promising for use in designing luminescent nanodevices.
Collapse
Affiliation(s)
- Kuan-Hsin Lo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Park EJ, Wagenaar T, Zhang S, Link AJ, Prud'homme RK, Koberstein JT, Turro NJ. Using light to covalently immobilize and pattern nanoparticles onto surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10934-10941. [PMID: 22746532 DOI: 10.1021/la302113k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
There is considerable current interest in developing methods to integrate nanoparticles into optical, electronic, and biological systems due to their unique size-dependent properties and controllable shape. We report herein a versatile new approach for covalent immobilization of nanoparticles onto substrates modified with photoactive, phthalimide-functional, self-assembled monolayers. Upon illumination with UV radiation, the phthalimide group abstracts a hydrogen atom from a neighboring organic molecule, leading to radical-based photografting reactions. The approach is potentially "universal" since virtually any polymeric or organic-inorganic hybrid nanoparticle can be covalently immobilized in this fashion. Because grafting is confined to illuminated regions that undergo photoexcitation, masking provides a simple and direct method for nanoparticle patterning. To illustrate the technique, nanoparticles formed from diblock copolymers of poly(styrene-b-polyethylene oxide) and laden with Hostasol Red dye are photografted and patterned onto glass and silicon substrates modified with photoactive phthalimide-silane self-assembled monolayers. Atomic force microscopy and X-ray photoelectron spectroscopy are applied to characterize the grafted nanoparticle films while confocal fluorescence microscopy is used to image patterned nanoparticle deposition.
Collapse
Affiliation(s)
- Ellane J Park
- Department of Chemistry, Columbia University, 3000 Broadway Avenue, New York, New York 10027, United States
| | | | | | | | | | | | | |
Collapse
|
39
|
D'Addio SM, Saad W, Ansell SM, Squiers JJ, Adamson DH, Herrera-Alonso M, Wohl AR, Hoye TR, Macosko CW, Mayer LD, Vauthier C, Prud'homme RK. Effects of block copolymer properties on nanocarrier protection from in vivo clearance. J Control Release 2012; 162:208-17. [PMID: 22732478 DOI: 10.1016/j.jconrel.2012.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 01/12/2023]
Abstract
Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1(nu) mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted to correlate in vivo circulation to the protection of the nanocarrier surface from complement binding and activation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative sizes of the hydrophilic and hydrophobic blocks, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG(5k)-PCL(9 k) and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the size of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size. Suggestions for next steps for in vitro measurements are made.
Collapse
Affiliation(s)
- Suzanne M D'Addio
- Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pansare V, Hejazi S, Faenza W, Prud'homme RK. Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2012; 24:812-827. [PMID: 22919122 PMCID: PMC3423226 DOI: 10.1021/cm2028367] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The importance of long wavelength and near infra-red (NIR) imaging has dramatically increased due to the desire to perform whole animal and deep tissue imaging. The adoption of NIR imaging is also growing rapidly due to the availability of targeted biological agents for diagnosis and basic medical research that can be imaged in vivo. The wavelength range of 650-1450 nm falls in the region of the spectrum with the lowest absorption in tissue and therefore enables the deepest tissue penetration. This is the wavelength range we focus on with this review. To operate effectively the imaging agents must both be excited and must emit in this long-wavelength window. We review the agents used both for imaging by absorption, scattering, and excitation (such as fluorescence). Imaging agents comprise both aqueous soluble and insoluble species, both organic and inorganic, and unimolecular and supramolecular constructs. The interest in multi-modal imaging, which involves delivery of actives, targeting, and imaging, requires nanocarriers or supramolecular assemblies. Nanoparticles for diagnostics also have advantages in increasing circulation time and increased imaging brightness relative to single molecule imaging agents. This has led to rapid advances in nanocarriers for long-wavelength, NIR imaging.
Collapse
Affiliation(s)
- Vikram Pansare
- Princeton University, Dept. of Chemical and Biological Engineering, Princeton, NJ 08544
| | | | | | | |
Collapse
|
41
|
Spaeth JR, Kevrekidis IG, Panagiotopoulos AZ. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly. J Chem Phys 2012; 135:184903. [PMID: 22088077 DOI: 10.1063/1.3653379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth et al. [J. Chem. Phys. 134, 164902 (2011)] was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with respect to the hydrophobic block length. Our results provide insights on ways in which experimentally controllable parameters of the Flash NanoPrecipitation process can be used to influence aggregate size and composition during self-assembly.
Collapse
Affiliation(s)
- Justin R Spaeth
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA.
| | | | | |
Collapse
|
42
|
York AW, Zablocki KR, Lewis DR, Gu L, Uhrich KE, Prud’homme RK, Moghe PV. Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:733-9. [PMID: 22223224 PMCID: PMC3495129 DOI: 10.1002/adma.201103348] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/10/2011] [Indexed: 05/30/2023]
Abstract
Kinetically assembled nanoparticles are fabricated from an advanced class of bioactive macromolecules that have potential utility in counteracting atherosclerotic plaque development via receptor-level blockage of inflammatory cells. In contrast to micellar analogs that exhibit poor potency and structural integrity under physiologic conditions, these kinetic nanoparticle assemblies maintain structural stability and demonstrate superior bioactivity in mediating oxidized low-density lipoprotein (oxLDL) uptake in inflammatory cells.
Collapse
Affiliation(s)
- Adam W. York
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Kyle R. Zablocki
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Daniel R. Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Li Gu
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA. Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
43
|
Shi L, Shan J, Ju Y, Aikens P, Prud’homme RK. Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.12.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 2011; 63:406-16. [PMID: 21457742 DOI: 10.1016/j.addr.2011.03.011] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/11/2011] [Accepted: 03/23/2011] [Indexed: 11/21/2022]
Abstract
This review focuses on bottom-up processes such as precipitation (or crystallisation) and single droplet evaporation to produce nanoparticles containing largely pure therapeutics for pharmaceutical applications. Suitable precipitation techniques involve the use of high-gravity, confined impinging liquid jet mixing, multi-inlet vortex mixing, supercritical fluids, and ultrasonic waves. Droplet evaporation methods are spray-based, including nanospray drying, aerosol flow reactor method, spraying of low-boiling point solvent under ambient conditions and electrospraying of low-electrical conducting solutions. A key to the success of yielding stable nanoparticles in these various techniques is to control the particle growth kinetics through evaporation rate of the droplets or mixing rate during precipitation.
Collapse
|
45
|
D'Addio SM, Prud'homme RK. Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev 2011; 63:417-26. [PMID: 21565233 DOI: 10.1016/j.addr.2011.04.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Nanoparticles are a drug delivery platform that can enhance the efficacy of active pharmaceutical ingredients, including poorly-water soluble compounds, ionic drugs, proteins, peptides, siRNA and DNA therapeutics. To realize the potential of these nano-sized carriers, manufacturing processes must be capable of providing reproducible, scalable and stable formulations. Antisolvent precipitation to form drug nanoparticles has been demonstrated as one such robust and scalable process. This review discusses the nucleation and growth of organic nanoparticles at high supersaturation. We present process considerations for controlling supersaturations as well as physical and chemical routes for modifying API solubility to optimize supersaturation and control particle size. We conclude with a discussion of post-precipitation factors which influence nanoparticle stability and efficacy in vivo and techniques for stabilization.
Collapse
|