1
|
Li Y, Yan P, Guo C, Xu Q. Supercritical CO2-assisted amorphization of WO2.72 and its high-efficiency photothermal conversion. Chem Commun (Camb) 2020; 56:7805-7808. [DOI: 10.1039/d0cc00894j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amorphization of WO2.72 was successfully achieved with the assistance of supercritical carbon dioxide (SC CO2). Amorphous SC CO2-treated sample has strong optical absorbance and excellent photothermal conversion efficiency of 52.5% indicates they can be a promising photothermal agent.
Collapse
Affiliation(s)
- Youzeng Li
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Pengfei Yan
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Cang Guo
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Qun Xu
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
- Henan Institute of Advanced Technology
| |
Collapse
|
2
|
Ruff J, Hassan N, Morales-Zavala F, Steitz J, Araya E, Kogan MJ, Simon U. CLPFFD-PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. J Mater Chem B 2018; 6:2432-2443. [PMID: 32254460 DOI: 10.1039/c8tb00655e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gold nanoparticles with specific optical properties in combination with the CLPFFD peptide that exhibits selectivity for β-amyloid (Aβ) aggregates are promising photothermal absorbers for application in Alzheimer's disease therapy. We report on hollow gold nanospheres (HAuNS) and gold nanorods (AuNR), which exhibit strong plasmonic near infrared (NIR) absorbance in the optical window of biological tissue and which are functionalized with CLPFFD in two different ways. Therefore the peptide was either directly bound to the particle surface or indirectly to a particle-protecting polyethylene glycol (PEG) ligand shell, thereby reducing the CLPFFD density on the surfaces of both types of particles. Fully PEGylated particles were used for comparison. The effects on cell viability and the fundamental suitability of the HAuNS and AuNR conjugates as photothermal absorbers to inhibit Aβ-fibrillation are analysed in vitro. The positive influence of the use of PEG ligands on the reduced cytotoxicity of the conjugates and on the Aβ-disaggregation is discussed.
Collapse
Affiliation(s)
- J Ruff
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
3
|
Rossner C, Tang Q, Glatter O, Müller M, Vana P. Uniform Distance Scaling Behavior of Planet-Satellite Nanostructures Made by Star Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2017-2026. [PMID: 28170264 DOI: 10.1021/acs.langmuir.6b04473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Planet-satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet-satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet-satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet-satellite structures at the nanoscale.
Collapse
Affiliation(s)
- Christian Rossner
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen , Tammannstraße 6, D-37077 Göttingen, Germany
| | - Qiyun Tang
- Institut für Theoretische Physik, Georg-August-Universität Göttingen , Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Otto Glatter
- Institut für Anorganische Chemie, Technische Universität Graz , Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität Göttingen , Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen , Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Goodman AM, Hogan NJ, Gottheim S, Li C, Clare SE, Halas NJ. Understanding Resonant Light-Triggered DNA Release from Plasmonic Nanoparticles. ACS NANO 2017; 11:171-179. [PMID: 28114757 DOI: 10.1021/acsnano.6b06510] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticle-based platforms for gene therapy and drug delivery are gaining popularity for cancer treatment. To improve therapeutic selectivity, one important strategy is to remotely trigger the release of a therapeutic cargo from a specially designed gene- or drug-laden near-infrared (NIR) absorbing gold nanoparticle complex with NIR light. While there have been multiple demonstrations of NIR nanoparticle-based release platforms, our understanding of how light-triggered release works in such complexes is still limited. Here, we investigate the specific mechanisms of DNA release from plasmonic nanoparticle complexes using continuous wave (CW) and femtosecond pulsed lasers. We find that the characteristics of nanoparticle-based DNA release vary profoundly from the same nanoparticle complex, depending on the type of laser excitation. CW laser illumination drives the photothermal release of dehybridized single-stranded DNA, while pulsed-laser excitation results in double-stranded DNA release by cleavage of the Au-S bond, with negligible local heating. This dramatic difference in DNA release from the same DNA-nanoparticle complex has very important implications in the development of NIR-triggered gene or drug delivery nanocomplexes.
Collapse
Affiliation(s)
| | | | | | | | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
| | | |
Collapse
|
5
|
Li W, Rong P, Yang K, Huang P, Sun K, Chen X. Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. Biomaterials 2015; 45:18-26. [PMID: 25662491 PMCID: PMC5226384 DOI: 10.1016/j.biomaterials.2014.12.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/29/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Abstract
In this study we report semimetal nanomaterials of antimony (Sb) as highly efficient agent for photoacoustic imaging (PAI) and photothermal therapy (PTT). The Sb nanorod bundles have been synthesized through a facile route by mixing 1-octadecane (ODE) and oleyl amine (OAm) as the solvent. The aqueous dispersion of PEGylated Sb NPs, due to its broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, is applicable as a photothermal agent driven by 808 nm laser with photothermal conversion efficiency up to 41%, noticeably higher than most of the PTT agents reported before. Our in vitro experiments also showed that cancer cell ablation effect of PEGylated Sb NPs was dependent on laser power. By intratumoral administration of PEGylated Sb NPs, 100% tumor ablation can be realized by using NIR laser irradiation with a lower power of 1 W/cm(2) for 5 min (or 0.5 W/cm(2) for 10 min) and no obvious toxic side effect is identified after photothermal treatment. Moreover, intense PA signal was also observed after intratumoral injection of PEGylated Sb NPs and NIR laser irradiation due to their strong NIR photoabsorption, suggesting PEGylated Sb NPs as a potential NIR PA agent. Based on the findings of this work, further development of using other semimetal nanocrystals as highly efficient NIR agents can be achieved for vivo tumor imaging and PTT.
Collapse
Affiliation(s)
- Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Pengfei Rong
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA; State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083, China; Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Kai Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA; School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Huang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Zhou Z, Wang J, Liu W, Yu C, Kong B, Sun Y, Yang H, Yang S, Wang W. PEGylated nickel carbide nanocrystals as efficient near-infrared laser induced photothermal therapy for treatment of cancer cells in vivo. NANOSCALE 2014; 6:12591-12600. [PMID: 25184661 DOI: 10.1039/c4nr03727h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photothermal therapy has attracted significant attention as a minimally invasive therapy methodology. In this work, we report PEGylated nickel carbide nanocrystals (Ni3C NCs) as an efficient photothermal agent for the first time. The nanoparticles exhibit a broad absorption from the visible to the near-infrared regions and a rapid rise in temperature when irradiated by an 808 nm laser even at a concentration of 100 μg mL(-1). In vitro and in vivo cytotoxicity assays demonstrate they have good biocompatibility, which lays an important foundation for their biological application. In vitro studies reveal the efficient damage of cancer cells by the exposure of 808 nm laser with a power density of 0.50 W cm(-2). Furthermore, hematoxylin and eosin (H & E) and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) staining of tumor slices confirmed the obvious destruction of cancer cells in vivo by an 808 nm laser (0.50 W cm(-2)) after only a 5 min application. Our work may open up a new application domain for transition metal carbides for biomedicine.
Collapse
Affiliation(s)
- Zhiguo Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Knez K, Spasic D, Janssen KPF, Lammertyn J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst 2014; 139:353-70. [PMID: 24298558 DOI: 10.1039/c3an01436c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is a crucial challenge in the development of a novel generation of diagnostic tools. Accurate detection of SNPs can prove elusive, as the impact of a single variable nucleotide on the properties of a target sequence is limited, even if this sequence consists of only a few nucleotides. New, accurate and facile strategies for the detection of point mutations are therefore absolutely necessary for the increased adoption of point-of-care molecular diagnostics. Currently, PCR and sequencing are mostly applied for diagnosing SNPs. However these methods have serious drawbacks as routine diagnostic tools because of their labour intensity and cost. Several new, more suitable methods can be applied to enable sensitive detection of mutations based on specially designed hybridization probes, mutation recognizing enzymes and thermal denaturation. Here, an overview is presented of the most recent advances in the field of fast and sensitive SNP detection assays with strong potential for integration in point-of-care tests.
Collapse
Affiliation(s)
- Karel Knez
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, Leuven, Belgium.
| | | | | | | |
Collapse
|
8
|
Estephan ZG, Qian Z, Lee D, Crocker JC, Park SJ. Responsive multidomain free-standing films of gold nanoparticles assembled by DNA-directed layer-by-layer approach. NANO LETTERS 2013; 13:4449-4455. [PMID: 23930738 DOI: 10.1021/nl4023308] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Responsive free-standing films of gold nanoparticles are fabricated by a new approach combining the programmable DNA-directed self-assembly and the layer-by-layer (LbL) thin film fabrication technique. This approach allows for the assembly of multidomain nanoparticle films with each domain possessing distinct properties in response to external stimuli, which is essential for the formation of dynamic nanostructures. Large area free-standing films of DNA-modified gold particles are fabricated by the selective melting of a sacrificial nanoparticle domain, taking advantage of the unique sharp melting transition of DNA-modified gold nanoparticles. Furthermore, we show that released multidomain films can be designed to further split into multiple intact daughter films in a precisely controlled manner, demonstrating that this new approach provides a powerful means to fabricate free-standing nanoparticle films that are capable of programmable transformation.
Collapse
Affiliation(s)
- Zaki G Estephan
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
9
|
Trantakis IA, Bolisetty S, Mezzenga R, Sturla SJ. Reversible aggregation of DNA-decorated gold nanoparticles controlled by molecular recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10824-10830. [PMID: 23883185 DOI: 10.1021/la401211u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The programmable assembly of functional nanomaterials has been extensively addressed; however, their selective reversible assembly in response to an external stimulus has been more difficult to realize. The specificity and programmable interactions of DNA have been exploited for the rational self-assembly of DNA-conjugated nanoparticles, and here we demonstrate the sequence-controlled disaggregation of DNA-modified gold nanoparticles simply by employing two complementary oligonucleotides. Target oligonucleotides with perfectly matching sequence enabled dissociation of aggregated nanoparticles, whereas oligonucleotides differing by one nucleotide did not cause disassembly of the aggregated nanoparticles. Physical aspects of this process were characterized by UV-vis absorption, light scattering, and transmission electron microscopy. This strategy for programmed disassembly of gold nanoparticles in response to biological stimuli demonstrates a fundamentally important concept anticipated to be useful for diverse applications involving molecular recognition.
Collapse
Affiliation(s)
- Ioannis A Trantakis
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
10
|
Chen Z, Wang Q, Wang H, Zhang L, Song G, Song L, Hu J, Wang H, Liu J, Zhu M, Zhao D. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2095-100. [PMID: 23427112 DOI: 10.1002/adma.201204616] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/30/2012] [Indexed: 05/21/2023]
Abstract
A new photothermal coupling agent for photothermal ablation (PTA) therapy of tumors is developed based on ultrathin PEGylated W18O49 nanowires. After being injected with the nanowire solution, the in vivo tumors exhibit a rapid temperature rise to 50.0 ± 0.5 °C upon irradiation with NIR laser light at a safe, low intensity (0.72 W cm(-2)) for 2 min (left-hand mouse in the figure),), resulting in the efficient PTA of cancer cells in vivo in 10 min.
Collapse
Affiliation(s)
- Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P R of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Blankschien MD, Pretzer LA, Huschka R, Halas NJ, Gonzalez R, Wong MS. Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes. ACS NANO 2013; 7:654-663. [PMID: 23237546 DOI: 10.1021/nn3048445] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of plasmonic nanoparticle complexes for biomedical applications such as imaging, gene therapy, and cancer treatment is a rapidly emerging field expected to significantly improve conventional medical practices. In contrast, the use of these types of nanoparticles to noninvasively trigger biochemical pathways has been largely unexplored. Here we report the light-induced activation of the thermophilic enzyme Aeropyrum pernix glucokinase, a key enzyme for the decomposition of glucose via the glycolysis pathway, increasing its rate of reaction 60% with light by conjugating the enzyme onto Au nanorods. The observed increase in enzyme activity corresponded to a local temperature increase within a calcium alginate encapsulate of ~20 °C when compared to the bulk medium maintained at standard, nonthermophilic temperatures. The encapsulated nanocomplexes were reusable and stable for several days, making them potentially useful in industrial applications. This approach could significantly improve how biochemical pathways are controlled for in vitro and, quite possibly, in vivo use.
Collapse
Affiliation(s)
- Matthew D Blankschien
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
12
|
Qiu J, Wu YC, Wang YC, Engelhard MH, McElwee-White L, Wei WD. Surface Plasmon Mediated Chemical Solution Deposition of Gold Nanoparticles on a Nanostructured Silver Surface at Room Temperature. J Am Chem Soc 2012; 135:38-41. [DOI: 10.1021/ja309392x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jingjing Qiu
- Department of Chemistry and
Center for Nanostructured Electronic Materials, University of Florida, Gainesville, Florida 32611, United States
| | - Yung-Chien Wu
- Department of Chemistry and
Center for Nanostructured Electronic Materials, University of Florida, Gainesville, Florida 32611, United States
| | - Yi-Chung Wang
- Department of Chemistry and
Center for Nanostructured Electronic Materials, University of Florida, Gainesville, Florida 32611, United States
| | - Mark H. Engelhard
- Environmental Molecular Sciences
Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lisa McElwee-White
- Department of Chemistry and
Center for Nanostructured Electronic Materials, University of Florida, Gainesville, Florida 32611, United States
| | - Wei David Wei
- Department of Chemistry and
Center for Nanostructured Electronic Materials, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|