1
|
Du M, Wang T, Peng W, Feng R, Goh M, Chen Z. Bacteria-driven nanosonosensitizer delivery system for enhanced breast cancer treatment through sonodynamic therapy-induced immunogenic cell death. J Nanobiotechnology 2024; 22:167. [PMID: 38610042 PMCID: PMC11010413 DOI: 10.1186/s12951-024-02437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Sonodynamic therapy (SDT) has shown promise as a non-invasive cancer treatment due to its local effects and excellent tissue penetration. However, the limited accumulation of sonosensitizers at the tumor site hinders its therapeutic efficacy. Although nanosonosensitizers have improved local tumor accumulation through passive targeting via the enhanced permeability and retention effect (EPR), achieving sufficient accumulation and penetration into tumors remains challenging due to tumor heterogeneity and inaccurate targeting. Bacteria have become a promising biological carrier due to their unique characteristic of active targeting and deeper penetration into the tumor. METHODS In this study, we developed nanosonosensitizers consisting of sonosensitizer, hematoporphyrin monomethyl ether (HMME), and perfluoro-n-pentane (PFP) loaded poly (lactic-co-glycolic) acid (PLGA) nanodroplets (HPNDs). These HPNDs were covalently conjugated onto the surface of Escherichia coli Nissle 1917 (EcN) using carbodiimine chemistry. EcN acted as an active targeting micromotor for efficient transportation of the nanosonosensitizers to the tumor site in triple-negative breast cancer (TNBC) treatment. Under ultrasound cavitation, the HPNDs were disrupted, releasing HMME and facilitating its uptakes by cancer cells. This process induced reactive oxygen species (ROS)-mediated cell apoptosis and immunogenic cell death (ICD) in vitro and in vivo. RESULTS Our bacteria-driven nanosonosensitizer delivery system (HPNDs@EcN) achieved superior tumor localization of HMME in vivo compared to the group treated with only nanosonosensitizers. This enhanced local accumulation further improved the therapeutic effect of SDT induced-ICD therapeutic effect and inhibited tumor metastasis under ultrasound stimulation. CONCLUSIONS Our research demonstrates the potential of this ultrasound-responsive bacteria-driven nanosonosensitizer delivery system for SDT in TNBC. The combination of targeted delivery using bacteria and nanosonosensitizer-based therapy holds promise for achieving improved treatment outcomes by enhancing local tumor accumulation and stimulating ICD.
Collapse
Affiliation(s)
- Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Medical Imaging Centre, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ting Wang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Medical Imaging Centre, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wangrui Peng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The Seventh Affiliated Hospital, Hengyang Medical School, University of South China (Hunan Provincial Veterans Administration Hospital), Changsha, Hunan, 410118, China
| | - Renjie Feng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The Seventh Affiliated Hospital, Hengyang Medical School, University of South China (Hunan Provincial Veterans Administration Hospital), Changsha, Hunan, 410118, China
| | - MeeiChyn Goh
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Huang B, Xie H, Li Z. Microfluidic Methods for Generation of Submicron Droplets: A Review. MICROMACHINES 2023; 14:638. [PMID: 36985045 PMCID: PMC10056697 DOI: 10.3390/mi14030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Submicron droplets are ubiquitous in nature and widely applied in fields such as biomedical diagnosis and therapy, oil recovery and energy conversion, among others. The submicron droplets are kinetically stable, their submicron size endows them with good mobility in highly constricted pathways, and the high surface-to-volume ratio allows effective loading of chemical components at the interface and good heat transfer performance. Conventional generation technology of submicron droplets in bulk involves high energy input, or relies on chemical energy released from the system. Microfluidic methods are widely used to generate highly monodispersed micron-sized or bigger droplets, while downsizing to the order of 100 nm was thought to be challenging because of sophisticated nanofabrication. In this review, we summarize the microfluidic methods that are promising for the generation of submicron droplets, with an emphasize on the device fabrication, operational condition, and resultant droplet size. Microfluidics offer a relatively energy-efficient and versatile tool for the generation of highly monodisperse submicron droplets.
Collapse
|
3
|
Guo C, Yuan H, Zhang Y, Yin T, He H, Gou J, Tang X. Asymmetric polymersomes, from the formation of asymmetric membranes to the application on drug delivery. J Control Release 2021; 338:422-445. [PMID: 34496272 DOI: 10.1016/j.jconrel.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Nano drug delivery systems have attracted researchers' growing attention and are gradually emerging into the public views. More and more nano-formulations are being approved for marketing or clinical use, representing the field's booming development. Copolymer self-assembly systems such as micelles, nanoparticles, polymersomes occupy a prominent position in the field of nano-drug delivery carriers. Among them, polymersomes, unlike micelles or nanoparticles, resemble liposomes' structure and possess large internal hollow hydrophilic reservoirs, allowing them to carry hydrophilic drugs. Nevertheless, their insufficient drug loading efficiency and unruly self-assembly morphology have somewhat constrained their applications. Especially for the delivery of biomacromolecule such as peptides, the encapsulation efficiency is always considered to be a formidable obstacle, even if the enormous hydrophilic core would render the polymersomes to have considerable potential in this regard. Reassuringly, the emergence of asymmetric polymersomes holds the prospect of solving this problem. With the development of synthetic technology and a deeper understanding of the self-assembly process, the asymmetric polymersomes which are with different inner and outer shell composition have been gradually recognized by researchers. It has made possible elevated drug loading, more controllable assembly processes and release performance. The internal hydrophilic blocks different from the outer shell could be engineered to have a more remarkable affinity to the cargos or could contain a non-watery aqueous phase to enable the thermodynamically preferred encapsulation of cargos, which would allow for a substantial improvement in drug encapsulation efficiency compared to the conventional approach. In this paper, we aim to deepen the understanding to asymmetric polymersomes and lay the foundation for the development of this field by describing four main elements: the mechanism of their preparation and asymmetric membrane formation process, the characterization of asymmetric membranes, the efficient drug loading, and the special stimulus-responsive release mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
4
|
Stride E, Segers T, Lajoinie G, Cherkaoui S, Bettinger T, Versluis M, Borden M. Microbubble Agents: New Directions. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1326-1343. [PMID: 32169397 DOI: 10.1016/j.ultrasmedbio.2020.01.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 05/24/2023]
Abstract
Microbubble ultrasound contrast agents have now been in use for several decades and their safety and efficacy in a wide range of diagnostic applications have been well established. Recent progress in imaging technology is facilitating exciting developments in techniques such as molecular, 3-D and super resolution imaging and new agents are now being developed to meet their specific requirements. In parallel, there have been significant advances in the therapeutic applications of microbubbles, with recent clinical trials demonstrating drug delivery across the blood-brain barrier and into solid tumours. New agents are similarly being tailored toward these applications, including nanoscale microbubble precursors offering superior circulation times and tissue penetration. The development of novel agents does, however, present several challenges, particularly regarding the regulatory framework. This article reviews the developments in agents for diagnostic, therapeutic and "theranostic" applications; novel manufacturing techniques; and the opportunities and challenges for their commercial and clinical translation.
Collapse
Affiliation(s)
- Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Tim Segers
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Samir Cherkaoui
- Bracco Suisse SA - Business Unit Imaging, Global R&D, Plan-les-Ouates, Switzerland
| | - Thierry Bettinger
- Bracco Suisse SA - Business Unit Imaging, Global R&D, Plan-les-Ouates, Switzerland
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Mark Borden
- Mechanical Engineering Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
5
|
Chu P, Finch J, Bournival G, Ata S, Hamlett C, Pugh RJ. A review of bubble break-up. Adv Colloid Interface Sci 2019; 270:108-122. [PMID: 31202129 DOI: 10.1016/j.cis.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
Abstract
The coalescence and break-up of bubbles are important steps in many industrial processes. To date, most of the literature has been focussed on the coalescence process which has been studied using high speed cinematographic techniques. However, bubble break-up is equally important and requires further research. This review essentially details the break-up process and initially summarizes the different types of bubble deformation processes which lead to break-up. Break-up is considered in high and low turbulent (pseudo-static) conditions and the effect of fluctuations and shear forces on the break-up is reviewed. Different mechanisms of break-up are discussed including shearing-off, coalescence induced pitching and impact pinching following air entrapment. Also, the influence of bubble size, interfacial stability, and surfactant on break-up are reviewed and a summary of recent experimental techniques presented. Finally, the break-up process which occurs in micro-fluidics is summarized.
Collapse
Affiliation(s)
- Pengbo Chu
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, Canada
| | - James Finch
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, Canada
| | - Ghislain Bournival
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Seher Ata
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Christopher Hamlett
- Department of Physics and Mathematics, Nottingham Trent University, Nottingham, UK
| | - Robert J Pugh
- Department of Physics and Mathematics, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
6
|
Luo G, Du L, Wang Y, Wang K. Manipulation and Control of Structure and Size of Inorganic Nanomaterials in Microchemical Systems. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guangsheng Luo
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
| | - Le Du
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
- Beijing University of Chemical TechnologyThe State Key Laboratory of Chemical Resource EngineeringBeijing Key Laboratory of Membrane Science and Technology 3 Ring Rd East 100029 Beijing China
| | - Yujun Wang
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
| | - Kai Wang
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
| |
Collapse
|
7
|
Yarmoska SK, Yoon H, Emelianov SY. Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1489-1499. [PMID: 30975536 PMCID: PMC6491255 DOI: 10.1016/j.ultrasmedbio.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are phase-change contrast agents that have the potential to enable extravascular contrast-enhanced ultrasound and photoacoustic (US/PA) imaging. Producing consistently small, monodisperse PFCnDs remains a challenge without resorting to technically challenging methods. We investigated the impact of variable shell composition on PFCnD size and US/PA image properties. Our results suggest that increasing the molar percentage of PEGylated lipid reduces the size and size variance of PFCnDs. Furthermore, our imaging studies revealed that nanodroplets with more PEGylated lipids produce increased US/PA signal compared with those with the standard formulation. Finally, we highlight the ability of this approach to facilitate US/PA imaging in a murine model of breast cancer. These data indicate that, through a facile synthesis process, it is possible to produce monodisperse, small-sized PFCnDs. Novel in their simplicity, these methods may promote the use of PFCnDs among a broader user base to study a variety of extravascular phenomena.
Collapse
Affiliation(s)
- Steven K Yarmoska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Heechul Yoon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stanislav Y Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Martin AL, Homenick CM, Xiang Y, Gillies E, Matsuura N. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4603-4612. [PMID: 30757902 DOI: 10.1021/acs.langmuir.8b04051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorocarbon nanodroplets, ∼100 to ∼400 nm in diameter, are of immense interest in a variety of medical applications including the imaging and therapy of cancer and inflammatory diseases. However, fluorocarbon molecules are both hydrophobic and lipophobic; therefore, it is challenging to synthesize fluorocarbon nanodroplets with the optimal stability and surface properties without the use of highly specialized surfactants. Here, we hypothesize that we can decouple the control of fluorocarbon nanodroplet size and stability from its surface properties. We use a simple, two-step procedure where standard, easily available anionic fluorosurfactants are used to first stabilize the fluorocarbon nanodroplets, followed by electrostatically attaching functionalized polyelectrolytes to the nanodroplet surfaces to independently control their surface properties. Herein, we demonstrate that PEGylated polyelectrolyte coatings can effectively alter the fluorocarbon nanodroplet surface properties to reduce coalescence and its uptake into phagocytic cells in comparison with non-PEGylated polyelectrolyte coatings and uncoated nanodroplets, as measured by flow cytometry and fluorescence microscopy. In this study, perfluorooctyl bromide (PFOB) was used as a representative fluorocarbon material, and PEGylated PFOB nanodroplets with diameters between 250 and 290 nm, depending on the poly(ethylene glycol) block length, were prepared. The PEGylated PFOB nanodroplets had superior size stability in comparison with uncoated and non-PEGylated polyelectrolyte nanodroplets in saline and within macrophage cells. Of significance, non-PEGylated nanodroplets were rapidly internalized by macrophage cells, whereas PEGylated nanodroplets were predominantly colocalized on the cell membrane. This suggests that the PEGylated-polyelectrolyte coating on the charged PFOB nanodroplets may afford adjustable shielding from cells of the reticuloendothelial system. This report shows that using the same fluorosurfactant as a base layer, modularly assembled PFOB nanodroplets tailored for a variety of end applications can be created by selecting different polyelectrolyte coatings depending on their unique requirements for stability and interaction with phagocytic cells.
Collapse
Affiliation(s)
- Amanda L Martin
- Physical Sciences , Sunnybrook Research Institute , Toronto , Ontario M4N 3M5 , Canada
| | - Christa M Homenick
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | |
Collapse
|
9
|
Zhang L, Yin T, Li B, Zheng R, Qiu C, Lam KS, Zhang Q, Shuai X. Size-Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery against Cancer. ACS NANO 2018; 12:3449-3460. [PMID: 29634240 DOI: 10.1021/acsnano.8b00076] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Among medical imaging modalities available in the clinic, ultrasonography is the most convenient, inexpensive, ionizing-radiation-free, and most common. Micrometer-size perfluorocarbon bubbles have been used as efficient contrast for intravascular ultrasonography, but they are too big for tumor penetration. Nanodroplets (250-1000 nm) encapsulating both perfluorocarbon and drug have been used as an ultrasound-triggered release drug delivery platform against cancer, but they are generally not useful as a tumor imaging agent. The present study aims to develop a type of pH-sensitive, polymersome-based, perfluorocarbon encapsulated ultrasonographic nanoprobe, capable of maintaining at 178 nm during circulation and increasing to 437 nm at the acidic tumor microenvironment. Its small size allowed efficient tumor uptake. At the tumor site, the nanoparticle swells, resulting in lowering of the vaporization threshold for the perfluorocarbon, efficient conversion of nanoprobes to echogenic nano/microbubbles for ultrasonic imaging, and eventual release of doxorubicin from the theranostic nanoprobe for deep tissue chemotherapy, triggered by irradiation with low-frequency ultrasound.
Collapse
Affiliation(s)
- Lu Zhang
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Tinghui Yin
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Bo Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Rongqin Zheng
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Chen Qiu
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Qi Zhang
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Xintao Shuai
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
10
|
Xu X, Song R, He M, Peng C, Yu M, Hou Y, Qiu H, Zou R, Yao S. Microfluidic production of nanoscale perfluorocarbon droplets as liquid contrast agents for ultrasound imaging. LAB ON A CHIP 2017; 17:3504-3513. [PMID: 28933795 DOI: 10.1039/c7lc00056a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid perfluorocarbon (PFC) nanodroplets may have a better chance to extravasate through inter-endothelial gaps (400-800 nm) into tumor interstitium for extravascular imaging, which holds promise as an innovative strategy for imaging-guided drug delivery, early diagnosis of cancer and minimally invasive treatment of cancer. Currently available emulsion technologies still face challenges in reducing droplet sizes from the microscale to the nanoscale. To control size and ensure monodispersity of PFC nanodroplets, we developed a flame-shaped glass capillary and polydimethylsiloxane (PDMS) hybrid device that creates a concentric flow of the dispersed phase enclosed by the focusing continuous phase at the cross-junction. Through adjustment of the pressure applied, a stable tip-streaming mode can be obtained for PFC nanodroplet generation. Using this device, we synthesized various kinds of PFC nanodroplets as small as 200 nm in diameter with polydispersity index (PDI) <0.04. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were carried out for the characterization of the PFC nanodroplets. Finally, ultrasound imaging was conducted to demonstrate that the liquid PFC nanodroplets can be used for enhancing the ultrasound contrast upon vaporization.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sheeran PS, Yoo K, Williams R, Yin M, Foster FS, Burns PN. More Than Bubbles: Creating Phase-Shift Droplets from Commercially Available Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:531-540. [PMID: 27727022 DOI: 10.1016/j.ultrasmedbio.2016.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 05/09/2023]
Abstract
Phase-shift perfluorocarbon droplets have been investigated for over 20 years as pre-clinical ultrasound contrast agents with distinctive advantages in imaging and therapy. A number of formulation strategies exist, each with inherent advantages and limitations. In this note, we demonstrate a unique opportunity: that phase-shift droplets can be generated directly from commercially available microbubbles. This may facilitate pre-clinical and translational development by reducing the in-house synthesis expertise and resources required to generate high concentration droplet emulsions. Proof-of-principle in vitro and in vivo is given using droplets created from Definity and MicroMarker. The results demonstrate the role of perfluorocarbon choice in the trade-off between thermal stability and vaporization threshold, and suggest that commercial microbubbles with decafluorobutane cores may be ideal for this approach.
Collapse
Affiliation(s)
- Paul S Sheeran
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Kimoon Yoo
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ross Williams
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melissa Yin
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada
| | - F Stuart Foster
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Peter N Burns
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Sheeran PS, Matsuura N, Borden MA, Williams R, Matsunaga TO, Burns PN, Dayton PA. Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:252-263. [PMID: 27775902 PMCID: PMC5706463 DOI: 10.1109/tuffc.2016.2619685] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In this paper, part of a special issue on methods in biomedical ultrasonics, we survey current techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. We provide example protocols and discuss advantages and limitations of each approach. Finally, we discuss best practice in characterization of this class of contrast agents with respect to size distribution and ultrasound activation.
Collapse
|
13
|
Sun XT, Yang CG, Xu ZR. Controlled production of size-tunable Janus droplets for submicron particle synthesis using an electrospray microfluidic chip. RSC Adv 2016. [DOI: 10.1039/c5ra24531a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controllable fabrication of Janus droplets and submicron Janus particles using an electrospray microfluidic approach has been developed.
Collapse
Affiliation(s)
- Xiao-Ting Sun
- Research Center for Analytical Sciences
- Northeastern University
- Shenyang
- P. R. China
| | - Chun-Guang Yang
- Research Center for Analytical Sciences
- Northeastern University
- Shenyang
- P. R. China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences
- Northeastern University
- Shenyang
- P. R. China
| |
Collapse
|
14
|
Choi D, Lee D, Kim DS. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification. Sci Rep 2015; 5:15172. [PMID: 26462437 PMCID: PMC4604473 DOI: 10.1038/srep15172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 11/14/2022] Open
Abstract
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Donghyeon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| |
Collapse
|
15
|
Seo M, Williams R, Matsuura N. Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets. LAB ON A CHIP 2015. [PMID: 26220563 DOI: 10.1039/c5lc00315f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Perfluorocarbon (PFC) nanodroplet agents are exciting new biomaterials that can be remotely vapourized by ultrasound or light to change into micron-scale gas bubbles in situ. After PFC nanodroplet vapourization, the micron-scale gas bubble can interact strongly with ultrasound radiation, such that the bubbles can be used for cancer imaging and therapy. For these phase-change agents to be useful, however, PFC nanodroplets must be produced in the range of 100 to 400 nm in diameter with high size control and monodispersity, restrictions that remain a challenge. Here, we address this challenge by taking advantage of the size control offered by microfluidics, in combination with the size reduction provided by cosolvent-infused PFC bubbles through both condensation and cosolvent dissolution. In this approach, PFC bubbles with a high percentage of cosolvent (in this study, diethyl ether, DEE) are produced using microfluidics at a temperature above the boiling point. After synthesis, these bubbles become much smaller through both condensation of the gas into liquid droplets and from dissolution of the DEE into the continuous phase. This approach demonstrates that monodisperse, cosolvent-incorporated PFC bubbles can directly form monodisperse PFC nanodroplets a factor of 24 times smaller than the precursor bubbles. We also demonstrate that these nanoscale droplets can be converted to echogenic microbubbles after exposure to ultrasound, showing that these PFC nanodroplets are viable for the in situ production of ultrasound contrast agents. We show that this system can overcome the minimum droplet size limit of standard microfluidics, and is a powerful new tool for generating monodisperse, PFC phase-change ultrasound contrast agents for treating and imaging cancer.
Collapse
Affiliation(s)
- Minseok Seo
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | |
Collapse
|
16
|
Arena CB, Novell A, Sheeran PS, Puett C, Moyer LC, Dayton PA. Dual-frequency acoustic droplet vaporization detection for medical imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1623-33. [PMID: 26415125 PMCID: PMC5507352 DOI: 10.1109/tuffc.2014.006883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment.
Collapse
|
17
|
A multi-functional bubble-based microfluidic system. Sci Rep 2015; 5:9942. [PMID: 25906043 PMCID: PMC4407724 DOI: 10.1038/srep09942] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/20/2015] [Indexed: 01/21/2023] Open
Abstract
Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics.
Collapse
|
18
|
Seo M, Matsuura N. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12465-12473. [PMID: 25188556 DOI: 10.1021/la502462n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multifunctional medical agents based on imaging or therapy nanoparticles (NPs) incorporated into perfluorocarbon (PFC) droplets are promising new agents for cancer detection and treatment. For the first time, monodisperse PFC nanodroplets labeled with NPs have been produced. Lipophilic, as-synthesized, hydrocarbon-stabilized NPs are directly miscibilized into lipophobic PFCs using a removable cosolvent, diethyl ether (DEE), which eliminates the need of the typical time-consuming and expertise-specific NP surface modification steps previously required for NP incorporation into PFCs. This NP-DEE/PFC solution is then used to synthesize monodisperse, micrometer-scale, DEE-infused NP-PFC precursor droplets in water using microfluidics. After precursor microdroplet generation, the DEE cosolvent is removed by dissolution and evaporation, resulting in dramatically smaller, monodisperse, NP-labeled nanodroplets, with final droplet sizes far smaller than the minimum droplet size limit of the microfluidic system, and easily controlled by the amount of DEE mixed in the PFC phase prior to precursor droplet synthesis. Using this technique, unmodified lipophilic quantum dot (QD) NPs were integrated into monodisperse and PFC nanodroplets 165 times smaller in volume than the precursor microdroplets, with dimensions down to 470 nm. The final droplet sizes scaled with the PFC concentrations in the precursor microdroplets, and the QDs remain localized within the droplets after DEE is removed from the system. This method is robust and versatile, and it comprises a platform technology for other unmodified lipophilic NPs and molecules to be incorporated into different types of PFC droplets for the production of new NP-PFC hybrid agents for medical imaging and therapy applications.
Collapse
Affiliation(s)
- Minseok Seo
- Physical Sciences, Sunnybrook Research Institute, ‡Department of Medical Imaging, University of Toronto , 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | |
Collapse
|
19
|
Zhang Q, Liu X, Liu D, Gai H. Ultra-small droplet generation via volatile component evaporation. LAB ON A CHIP 2014; 14:1395-1400. [PMID: 24584363 DOI: 10.1039/c3lc51183a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we present a novel method to generate ultra-small droplets via volatile component evaporation. By regulating the composition of the binary solvent, the volume ratio of the high saturated vapor pressure component, and the flow rate ratio of the two phases, monodisperse ultra-small water or nonvolatile organic droplets can be formed. This method is flexible, versatile, and compatible with tip-streaming or nanofluidics, and may have potential applications in single molecule assay, colloid synthesis, and block copolymer assembly.
Collapse
Affiliation(s)
- Qingquan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Jiangsu, Xuzhou, 221116, China.
| | | | | | | |
Collapse
|
20
|
Sheeran PS, Dayton PA. Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects. SCIENTIFICA 2014; 2014:579684. [PMID: 24991447 PMCID: PMC4058811 DOI: 10.1155/2014/579684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/02/2014] [Indexed: 05/12/2023]
Abstract
Over the past two decades, perfluorocarbon (PFC) droplets have been investigated for biomedical applications across a wide range of imaging modalities. More recently, interest has increased in "phase-change" PFC droplets (or "phase-change" contrast agents), which can convert from liquid to gas with an external energy input. In the field of ultrasound, phase-change droplets present an attractive alternative to traditional microbubble agents for many diagnostic and therapeutic applications. Despite the progress, phase-change PFC droplets remain far from clinical implementation due to a number of challenges. In this review, we survey our recent work to enhance the performance of phase-change agents for ultrasound through a variety of techniques in order to provide increased efficacy in therapeutic applications of ultrasound and enable previously unexplored applications in diagnostic and molecular imaging.
Collapse
Affiliation(s)
- Paul S. Sheeran
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
- *Paul A. Dayton:
| |
Collapse
|