1
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
2
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
3
|
Maji SK. Luminescence-Tunable ZnS-AgInS 2 Nanocrystals for Cancer Cell Imaging and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2022; 5:1230-1238. [PMID: 35176849 DOI: 10.1021/acsabm.1c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly luminescent I-III-VI group of semiconductor nanocrystals (NCs) has attracted considerable attention for applications in biomedical engineering and design of novel optoelectronic devices. In this work, high quality ZnS-AgInS2 (ZAIS) solid solution NCs were synthesized by thermal decomposition of a organometallic diethyldithiocarbamate precursor complex of (AgIn)xZn2(1-x) (S2CN(C2H5)2)4 in the presence of specific stabilizing and structure directing agents. By changing the composition of the precursor complex (value of x), the structure and optical property could easily be adjustable, thus leading to the formation of nanowire, nanorod, and tetrapod-like NCs and highly luminescent green to yellow to red color tunable NCs. The ZAIS NCs were further transferred to aqueous medium by 3-mercaptopropionic acid (MPA) capping without losing any optical properties. The color-tunable, water-soluble, and biocompatible ZAIS NCs were utilized for the in vitro cellular imaging of human cervical cancer cells (HeLa cells) and showed intense localization in the cell cytoplasm after 6 h of incubation. In addition, the inherent photocatalytic property of ZAIS NCs under light illumination showed promising photodynamic therapy of cancer cells, and thus, ZAIS NCs could be a promising candidate for future biomedical applications.
Collapse
Affiliation(s)
- Swarup Kumar Maji
- Department of Chemistry, Khatra Adibasi Mahavidyalaya, Khatra 722140 West Bengal, India
| |
Collapse
|
4
|
Kowalik P, Bujak P, Penkala M, Maroń AM, Ostrowski A, Kmita A, Gajewska M, Lisowski W, Sobczak JW, Pron A. Indium(II) Chloride as a Precursor in the Synthesis of Ternary (Ag-In-S) and Quaternary (Ag-In-Zn-S) Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:809-825. [PMID: 35095188 PMCID: PMC8794001 DOI: 10.1021/acs.chemmater.1c03800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A new indium precursor, namely, indium(II) chloride, was tested as a precursor in the synthesis of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals. This new precursor, being in fact a dimer of Cl2In-InCl2 chemical structure, is significantly more reactive than InCl3, typically used in the preparation of these types of nanocrystals. This was evidenced by carrying out comparative syntheses under the same reaction conditions using these two indium precursors in combination with the same silver (AgNO3) and zinc (zinc stearate) precursors. In particular, the use of indium(II) chloride in combination with low concentrations of the zinc precursor yielded spherical-shaped (D = 3.7-6.2 nm) Ag-In-Zn-S nanocrystals, whereas for higher concentrations of this precursor, rodlike nanoparticles (L = 9-10 nm) were obtained. In all cases, the resulting nanocrystals were enriched in indium (In/Ag = 1.5-10.3). Enhanced indium precursor conversion and formation of anisotropic, longitudinal nanoparticles were closely related to the presence of thiocarboxylic acid type of ligands in the reaction mixture. These ligands were generated in situ and subsequently bound to surfacial In(III) cations in the growing nanocrystals. The use of the new precursor of enhanced reactivity facilitated precise tuning of the photoluminescence color of the resulting nanocrystals in the spectral range from ca. 730 to 530 nm with photoluminescence quantum yield (PLQY) varying from 20 to 40%. The fabricated Ag-In-S and Ag-In-Zn-S nanocrystals exhibited the longest, reported to date, photoluminescence lifetimes of ∼9.4 and ∼1.4 μs, respectively. It was also demonstrated for the first time that ternary (Ag-In-S) and quaternary (Ag-In-Zn-S) nanocrystals could be applied as efficient photocatalysts, active under visible light (green) illumination, in the reaction of aldehydes reduction to alcohols.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1 Street, PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Mateusz Penkala
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Anna M. Maroń
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Andrzej Ostrowski
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Angelika Kmita
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Wojciech Lisowski
- Institute
of Physical Chemistry, Polish Academy of
Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz W. Sobczak
- Institute
of Physical Chemistry, Polish Academy of
Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
5
|
Kowalik P, Mucha SG, Matczyszyn K, Bujak P, Mazur LM, Ostrowski A, Kmita A, Gajewska M, Pron A. Heterogeneity induced dual luminescence properties of AgInS 2 and AgInS 2–ZnS alloyed nanocrystals. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00566a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the PL spectra of heterogeneous nanocrystals (In2S3–AgInS2 and In2S3–AgInS2–ZnS) two distinctly different peaks could be found at 430 and 710–515 nm.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
- Faculty of Chemistry
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C)
- UMR5221
- University of Montpellier
- CNRS
- 34095 Montpellier
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Piotr Bujak
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Leszek M. Mazur
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Andrzej Ostrowski
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Angelika Kmita
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Marta Gajewska
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Adam Pron
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| |
Collapse
|
6
|
Sobiech M, Bujak P, Luliński P, Pron A. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting. NANOSCALE 2019; 11:12030-12074. [PMID: 31204762 DOI: 10.1039/c9nr02585e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantum dots (QDs) are attractive semiconductor fluorescent nanomaterials with remarkable optical and electrical properties. The broad absorption spectra and high stability of QD transducers are advantageous for sensing and bioimaging. Molecular imprinting is a technique for manufacturing synthetic polymeric materials with a high recognition ability towards a target analyte. The high selectivity of the molecularly imprinted polymers (MIPs) is a result of the fabrication process based on the template-tailored polymerization of functional monomers. The three-dimensional cavities formed in the polymer network can serve as the recognition elements of sensors because of their specificity and stability. Appending specific molecularly imprinted layers to QDs is a promising strategy to enhance the stability, sensitivity, and selective fluorescence response of the resulting sensors. By merging the benefits of MIPs and QDs, inventive optical sensors are constructed. In this review, the recent synthetic strategies used for the fabrication of QD nanocrystals emphasizing various approaches to effective functionalization in aqueous environments are discussed followed by a detailed presentation of current advances in QD conjugated MIPs (MIP-QDs). Frontiers in manufacturing of specific imprinted layers of these nanomaterials are presented and factors affecting the specific behaviour of an MIP shell are identified. Finally, current limitations of MIP-QDs are defined and prospects are outlined to amplify the capability of MIP-QDs in future sensing.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Bujak
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Pron
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
7
|
Bujak P, Wróbel Z, Penkala M, Kotwica K, Kmita A, Gajewska M, Ostrowski A, Kowalik P, Pron A. Highly Luminescent Ag–In–Zn–S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation. Inorg Chem 2019; 58:1358-1370. [DOI: 10.1021/acs.inorgchem.8b02916] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Wróbel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrzej Ostrowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
8
|
Zaeimian MS, Gallian B, Harrison C, Wang Y, Zhao J, Zhu X. Mn Doped AZIS/ZnS Nanocrystals (NCs): Effects of Ag and Mn Levels on NC Optical Properties. JOURNAL OF ALLOYS AND COMPOUNDS 2018; 765:236-244. [PMID: 30008517 PMCID: PMC6039121 DOI: 10.1016/j.jallcom.2018.06.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, Mn-doped AZIS/ZnS NCs were prepared using a nucleation doping approach with the tuning of Mn and Ag levels in their synthesis. The optical properties of Mn:AZIS/ZnS NCs are found to be significantly affected by Ag and Mn levels. Specifically, more Ag and Mn atoms in Mn:AZIS/ZnS NCs cause their fluorescence red-shift, and as the Ag or Mn level reaches a high threshold, the fluorescence lifetime of Mn:AZIS/ZnS NC has a significant drop. The reasons for the effects of Mn and Ag levels on NC optical properties were explored and discussed. Through this study, it is also found that with certain Ag and Mn levels in synthesis, some Mn:AZIS/ZnS NCs present optimal optical properties including high brightness (QY > 40%), long fluorescence lifetime (> 1.2 ms), low energy for excitation (excitable at 405 nm), and no reabsorption. The feasibility of the optimized NCs for time-gated fluorescence measurement using a portable/compact instrument was further demonstrated, which indicates the application potential of the NCs in time-gated biosensing including point-of-care testing. Notably, this study also discloses that Mn:AZIS/ZnS NCs with different lifetimes can be achieved by tuning Mn and Ag levels in synthesis, which may further broaden the applications of Mn:AZIS/ZnS NCs in multiplexing detection/measurement.
Collapse
Affiliation(s)
- Masoumeh Saber Zaeimian
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV, USA
| | - Brandon Gallian
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV, USA
| | - Clay Harrison
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV, USA
| | - Yu Wang
- Key Laboratory of Functional Materials Physics and Chemistry of The Ministry of Education, Jilin Normal University, Jilin, China
| | - Jialong Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of The Ministry of Education, Jilin Normal University, Jilin, China
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV, USA
| |
Collapse
|
9
|
Kshirsagar AS, Khanna PK. Reaction Tailoring for Synthesis of Phase-Pure Nanocrystals of AgInSe2
, Cu3
SbSe3
and CuSbSe2. ChemistrySelect 2018. [DOI: 10.1002/slct.201702986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anuraj S. Kshirsagar
- Department of Applied Chemistry; Defence Institute of Advanced Technology (DIAT); Girinagar Pune-411025, Maharashtra India
| | - Pawan. K. Khanna
- Department of Applied Chemistry; Defence Institute of Advanced Technology (DIAT); Girinagar Pune-411025, Maharashtra India
| |
Collapse
|
10
|
Ye Y, Zang Z, Zhou T, Dong F, Lu S, Tang X, Wei W, Zhang Y. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J Catal 2018. [DOI: 10.1016/j.jcat.2017.11.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Chen S, Zaeimian MS, Monteiro JHSK, Zhao J, Mamalis AG, de Bettencourt-Dias A, Zhu X. Mn Doped AIZS/ZnS Nanocrystals: Synthesis and Optical Properties. JOURNAL OF ALLOYS AND COMPOUNDS 2017; 725:1077-1083. [PMID: 29242679 PMCID: PMC5724564 DOI: 10.1016/j.jallcom.2017.07.262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this work, Mn doped AIZS/ZnS (Mn:AIZS/ZnS) nanocrystals (NCs) have been synthesized in an approach using heat-up and drop-wise addition of precursors. On the basis of the characterization of these doped NCs on their optical properties and materials, it is found that: (1) as more Mn atoms are doped into NCs, the doped NCs present photoluminescence (PL) red-shift and quantum yield quenching; (2) the doped NCs possess a short PL lifetime in tens of microseconds and a long PL lifetime in hundreds of microseconds, and the short lived PL is more dominant than the long lived one; and (3) the doped NCs present a reversible PL thermal quenching in a range from room temperature to 170°C. Possible PL mechanisms of these NCs were discussed by analyzing their time-resolved PL spectra and thermal stability.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Electrical and Biomedical Engineering, University of
Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV,
USA
| | - Masoumeh Saber Zaeimian
- Department of Electrical and Biomedical Engineering, University of
Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV,
USA
| | | | - Jialong Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of The
Ministry of Education, Jilin Normal University, Jilin, China
| | | | | | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of
Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV,
USA
| |
Collapse
|
12
|
Gabka G, Bujak P, Kotwica K, Ostrowski A, Lisowski W, Sobczak JW, Pron A. Luminophores of tunable colors from ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals covering the visible to near-infrared spectral range. Phys Chem Chem Phys 2017; 19:1217-1228. [DOI: 10.1039/c6cp07008f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient synthesis of Ag–In–S and Ag–In–Zn–S nanocrystals with strong photoluminescence (QY = 59%) in the visible to near-infrared range.
Collapse
Affiliation(s)
- Grzegorz Gabka
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Piotr Bujak
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Kamil Kotwica
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Andrzej Ostrowski
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry
- Polish Academy of Science
- 01-224 Warsaw
- Poland
| | - Janusz W. Sobczak
- Institute of Physical Chemistry
- Polish Academy of Science
- 01-224 Warsaw
- Poland
| | - Adam Pron
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
13
|
Torimoto T, Kamiya Y, Kameyama T, Nishi H, Uematsu T, Kuwabata S, Shibayama T. Controlling Shape Anisotropy of ZnS-AgInS 2 Solid Solution Nanoparticles for Improving Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27151-27161. [PMID: 27696798 DOI: 10.1021/acsami.6b10408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS-AgInS2 solid solution ((AgIn)xZn2(1-x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35-0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) < sphere (diameter: ca. 5.5 nm) < rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.
Collapse
Affiliation(s)
- Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Yutaro Kamiya
- Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Hiroyasu Nishi
- Institute of Industrial Science, The University of Tokyo , Tokyo 153-8505, Japan
| | - Taro Uematsu
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Tamaki Shibayama
- Center for Advanced Research of Energy Conversion Materials, Hokkaido University , Sapporo 060-8628, Japan
| |
Collapse
|
14
|
Chen S, Ahmadiantehrani M, Zhao J, Zhu S, Mamalis AG, Zhu X. Heat-up Synthesis of Ag-In-S and Ag-In-S/ZnS Nanocrystals: Effect of Indium Precursors on Their Optical Properties. JOURNAL OF ALLOYS AND COMPOUNDS 2016; 665:137-143. [PMID: 26834389 PMCID: PMC4730890 DOI: 10.1016/j.jallcom.2016.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cadmium-free I-III-VI nanocrystals (NCs) have recently attracted much research interests due to their excellent optical properties and low toxicity. In this work, with a simple heat-up synthetic system to prepare high quality Ag-In-S (AIS) NCs and their core/shell structures (AIS/ZnS NCs), we investigated the effect of different indium precursors (indium acetate and indium chloride) on NC optical properties. The measurements on photoluminescence spectra of AIS NCs show that the photoluminescence peak-wavelength of AIS NCs using indium acetate is in the range from 596 to 604 nm, and that of AIS NCs using indium chloride is from 641 to 660 nm. AIS and AIS/ZnS NCs using indium acetate present around 15% and 40% QYs, and both AIS and AIS/ZnS NCs using indium chloride present around 31% QYs. The photoluminescence decay study indicates that the lifetime parameters of AIS and AIS/ZnS using indium chloride are 2 ~ 4 times larger than those of AIS and AIS/ZnS NCs using indium acetate. Moreover, AIS NCs using indium chloride have a slower photobleaching dynamics than AIS NCs using indium acetate, and ZnS shell coating on both types of AIS NCs significantly enhances their photostability against UV exposure. We believe that the unique optical properties of AIS and AIS/ZnS NCs will open an avenue for these materials to be employed in broad electronic or biomedical applications.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV, USA
| | | | - Jialong Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of The Ministry of Education, Jilin Normal University, Jilin, China
| | - Shaihong Zhu
- Xiangya Third Hospital of Central South University, Changsha, China
| | | | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV, USA
- Biomedical Engineering Program, University of Nevada Reno, NV, USA
- To whom correspondence should be addressed. . Phone: 1-775-682-6298. Fax: 1-775-784-6627
| |
Collapse
|
15
|
Zhang QH, Tian Y, Wang CF, Chen S. Construction of Ag-doped Zn–In–S quantum dots toward white LEDs and 3D luminescent patterning. RSC Adv 2016. [DOI: 10.1039/c6ra05689j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of green photoluminescent Ag-doped Zn–In–S quantum dots and their applications in patterning and white LEDs are reported.
Collapse
Affiliation(s)
- Qiu-Hong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| | - Yu Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| |
Collapse
|
16
|
Yao D, Liu H, Liu Y, Dong C, Zhang K, Sheng Y, Cui J, Zhang H, Yang B. Phosphine-free synthesis of Ag-In-Se alloy nanocrystals with visible emissions. NANOSCALE 2015; 7:18570-18578. [PMID: 26489872 DOI: 10.1039/c5nr04856g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As promising heavy metal-free emitting materials, Ag-In-Se nanocrystals (NCs) are conventionally synthesized using organic phosphine agents and exhibit near-infrared emissions. In this work, we demonstrate a rapid phosphine-free approach for synthesizing Ag-In-Se alloy NCs with the emissions tunable to the visible region on the basis of the phosphine-free dissolution of Se powder. At room temperature, Se powder is reduced by dodecanethiol and dissolved in oleylamine to produce a Se precursor. The resultant Se precursor is highly active, which permits rapid synthesis at a relatively low temperature, such as at 90 °C for 150 s. By optimizing the size, structure, and composition, the photoluminescence quantum yield of the as-synthesized Ag-In-Se NCs is enhanced to up to 10%. The growth of the Ag-In-Se NCs involves composition and phase transition, which strongly depend on the reaction temperature. The Ag2Se nuclei form first, and the Ag-In-Se NCs are produced by doping In(3+) into the preformed Ag2Se nuclei. Tetragonal phase Ag-In-Se is obtained below 170 °C, while the orthorhombic phase appears over 190 °C. The potential of Ag-In-Se NCs as red emitting phosphors for lighting-emitting diodes is further demonstrated.
Collapse
Affiliation(s)
- Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang X, Wei W, Khng CCC, Zang Z, Deng M, Zhu T, Xue J. Synthesis of Ag-In-Zn-S alloyed nanorods and their biological application. NANOTECHNOLOGY 2014; 25:485702. [PMID: 25382358 DOI: 10.1088/0957-4484/25/48/485702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Monodisperse Ag-In-Zn-S (AIZS) nanorods with a length of 20 nm have been synthesized using a facile solution based route. These nanorods showed a wide range of fluorescence emissions from green to red, which was achieved by controlling the chemical composition. Moreover, the obtained AIZS nanorods showed high-quality photoluminescence, as well as attractive two-photon fluorescence properties, indicating their potential capability in biological tagging upon near-infrared excitation for deep tissue imaging. Furthermore, the AIZS nanorods presented in this report also show a promising perspective in applications such as solar cells and photocatalysts.
Collapse
Affiliation(s)
- Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Tang X, Zang Z, Zu Z, Chen W, Liu Y, Han G, Lei X, Liu X, Du X, Chen W, Wang Y, Xue J. A facile method for the synthesis of quaternary Ag-In-Zn-S alloyed nanorods. NANOSCALE 2014; 6:11803-9. [PMID: 25163912 DOI: 10.1039/c4nr03231d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ag-In-Zn-S nanorods with tunable photoluminescence were formed by a convenient synthetic approach, and the nanorods demonstrated a relatively long fluorescence lifetime of 1.248 μs. In addition, Ag-In-Zn-S nanorods of nail shape and rod-particle dimers were successfully produced by adjusting the reaction parameters.
Collapse
Affiliation(s)
- Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gabka G, Bujak P, Giedyk K, Ostrowski A, Malinowska K, Herbich J, Golec B, Wielgus I, Pron A. A Simple Route to Alloyed Quaternary Nanocrystals Ag–In–Zn–S with Shape and Size Control. Inorg Chem 2014; 53:5002-12. [DOI: 10.1021/ic500046m] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Grzegorz Gabka
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Bujak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kamila Giedyk
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Ostrowski
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Karolina Malinowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jerzy Herbich
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Barbara Golec
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ireneusz Wielgus
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
20
|
Rao MJ, Shibata T, Chattopadhyay S, Nag A. Origin of Photoluminescence and XAFS Study of (ZnS)1-x(AgInS2)x Nanocrystals. J Phys Chem Lett 2014; 5:167-173. [PMID: 26276197 DOI: 10.1021/jz402443y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Donor-Acceptor transition was previously suggested as a mechanism for luminescence in (ZnS)1-x(AgInS2)x nanocrystals. Here we show the participation of delocalized valence/conduction band in the luminescence. Two emission pathways are observed: Path-1 involves transition between a delocalized state and a localized state exhibiting higher energy and shorter lifetime (∼25 ns) and Path-2 (donor-acceptor) involves two localized defect states exhibiting lower emission energy and longer lifetime (>185 ns). Surprisingly, Path-1 dominates (82% for x = 0.33) for nanocrystals with lower x, in sharp difference with prior assignment. Luminescence peak blue shifts systematically by 0.57 eV with decreasing x because of this large contribution from Path-1. X-ray absorption fine structure (XAFS) study of (ZnS)1-x(AgInS2)x nanocrystals shows larger AgS4 tetrahedra compared with InS4 tetrahedra with Ag-S and In-S bond lengths 2.52 and 2.45 Å respectively, whereas Zn-S bond length is 2.33 Å along with the absence of second nearest-neighbor Zn-S-metal correlation.
Collapse
Affiliation(s)
- M Jagadeeswara Rao
- †Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, India 411008
| | - Tomohiro Shibata
- ‡MRCAT, Sector 10, Argonne National Laboratory, 9700 South Cass Avenue, Bldg 433B, Argonne, Illinois 60439, United States
| | - Soma Chattopadhyay
- ‡MRCAT, Sector 10, Argonne National Laboratory, 9700 South Cass Avenue, Bldg 433B, Argonne, Illinois 60439, United States
| | - Angshuman Nag
- †Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, India 411008
| |
Collapse
|