1
|
Shuai C, Wang Z, Yang F, Zhang H, Liu J, Feng P. Laser additive manufacturing of shape memory biopolymer bone scaffold: 3D conductive network construction and electrically driven mechanism. J Adv Res 2024; 65:167-181. [PMID: 38030127 PMCID: PMC11519052 DOI: 10.1016/j.jare.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION The electro-actuated shape memory polymer scaffold has gained increasing attentions on the utilization of minimally invasive surgery for bone defect repair, which requires to construct an efficient conductive network to accomplish electrical-to-thermal conversion from conductive fillers to the entire matrix evenly. OBJECTIVES In this study, multiwall carbon nanotube (MWCNT) was convective self-assembled on the ZnO tetrapod (t-ZnO) template, where MWCNT was controlled to disperse uniformly and regulated to contact with each other effectively due to the immersion capillary force during the evaporation loss of the convective self-assembly process, leading to an interwoven layer on the t-ZnO surface. METHODS The prepared t-ZnO@MWCNT assembly was embedded in the poly(L-lactic acid)/thermoplastic polyurethane (PLLA/TPU) scaffold fabricated via selective laser sintering to construct a 3D conductive MWCNT network for improving the electro-actuated shape memory properties. RESULTS It was observed that the interconnected MWCNT formed a 3D conductive network in the matrix without significant aggregation, which boosted the electrical-to-thermal properties of the scaffold, and the scaffold containing t-ZnO@MWCNT assembly possessed better electro-actuated shape memory properties with shape fixity of 98.0% and shape recovery of 98.8%. CONCLUSION The scaffold exhibited improved electro-actuated shape memory properties and mechanical properties and the osteogenic inductivity was promoted with the combined effect of t-ZnO and electrical stimulation.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zhicheng Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Haiyang Zhang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jinglin Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu F, Zhou C, Dee N, Amama PB, Carpena-Nuñez J, Shi W, Plata DL, Penev ES, Yakobson BI, Balbuena PB, Bichara C, Futaba DN, Noda S, Shin H, Kim KS, Simard B, Mirri F, Pasquali M, Fornasiero F, Kauppinen EI, Arnold M, Cola BA, Nikolaev P, Arepalli S, Cheng HM, Zakharov DN, Stach EA, Zhang J, Wei F, Terrones M, Geohegan DB, Maruyama B, Maruyama S, Li Y, Adams WW, Hart AJ. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS NANO 2018; 12:11756-11784. [PMID: 30516055 DOI: 10.1021/acsnano.8b06511] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.
Collapse
Affiliation(s)
- Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Cary L Pint
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37235 United States
| | - Ahmad E Islam
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Robert S Weatherup
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
- University of Manchester at Harwell, Diamond Light Source, Didcot , Oxfordshire OX11 0DE , U.K
| | - Stephan Hofmann
- Department of Engineering , University of Cambridge , Cambridge CB3 0FA , U.K
| | - Eric R Meshot
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 United States
| | - Fanqi Wu
- Ming-Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Chongwu Zhou
- Ming-Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Nicholas Dee
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Placidus B Amama
- Tim Taylor Department of Chemical Engineering , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Jennifer Carpena-Nuñez
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Wenbo Shi
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Desiree L Plata
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Evgeni S Penev
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Perla B Balbuena
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Christophe Bichara
- Aix-Marseille University and CNRS , CINaM UMR 7325 , 13288 Marseille , France
| | - Don N Futaba
- Nanotube Research Center , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Suguru Noda
- Department of Applied Chemistry and Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Homin Shin
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Keun Su Kim
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Benoit Simard
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Francesca Mirri
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Matteo Pasquali
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Francesco Fornasiero
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 United States
| | - Esko I Kauppinen
- Department of Applied Physics , Aalto University School of Science , P.O. Box 15100 , FI-00076 Espoo , Finland
| | - Michael Arnold
- Department of Materials Science and Engineering University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Baratunde A Cola
- George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Pavel Nikolaev
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Hui-Ming Cheng
- Tsinghua-Berkeley Shenzhen Institute , Tsinghua University , Shenzhen 518055 , China
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Eric A Stach
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jin Zhang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Mauricio Terrones
- Department of Physics and Center for Two-Dimensional and Layered Materials , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - David B Geohegan
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Benji Maruyama
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
| | - Shigeo Maruyama
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - W Wade Adams
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - A John Hart
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|