1
|
Maduabuchi WO, Tansi FL, Heller R, Hilger I. Hyperthermia Influences the Secretion Signature of Tumor Cells and Affects Endothelial Cell Sprouting. Biomedicines 2023; 11:2256. [PMID: 37626752 PMCID: PMC10452125 DOI: 10.3390/biomedicines11082256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Tumors are a highly heterogeneous mass of tissue showing distinct therapy responses. In particular, the therapeutic outcome of tumor hyperthermia treatments has been inconsistent, presumably due to tumor versus endothelial cell cross-talks related to the treatment temperature and the tumor tissue environment. Here, we investigated the impact of the average or strong hyperthermic treatment (43 °C or 47 °C for 1 h) of the human pancreatic adenocarcinoma cell line (PANC-1 and BxPC-3) on endothelial cells (HUVECs) under post-treatment normoxic or hypoxic conditions. Immediately after the hyperthermia treatment, the distinct repression of secreted pro-angiogenic factors (e.g., VEGF, PDGF-AA, PDGF-BB, M-CSF), intracellular HIF-1α and the enhanced phosphorylation of ERK1/2 in tumor cells were detectable (particularly for strong hyperthermia, 2D cell monolayers). Notably, there was a significant increase in endothelial sprouting when 3D self-organized pancreatic cancer cells were treated with strong hyperthermia and the post-treatment conditions were hypoxic. Interestingly, for the used treatment temperatures, the intracellular HIF-1α accumulation in tumor cells seems to play a role in MAPK/ERK activation and mediator secretion (e.g., VEGF, PDGF-AA, Angiopoietin-2), as shown by inhibition experiments. Taken together, the hyperthermia of pancreatic adenocarcinoma cells in vitro impacts endothelial cells under defined environmental conditions (cell-to-cell contact, oxygen status, treatment temperature), whereby HIF-1α and VEGF secretion play a role in a complex context. Our observations could be exploited for the hyperthermic treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Wisdom O. Maduabuchi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Hans-Knöll-Str. 2, D-07745 Jena, Germany;
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| |
Collapse
|
2
|
Santra M, Owens M, Birch G, Bradley M. Near-Infrared-Emitting Hemicyanines and Their Photodynamic Killing of Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:8503-8508. [DOI: 10.1021/acsabm.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mithun Santra
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Matthew Owens
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Gavin Birch
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
3
|
Nasrollahi F, Nazir F, Tavafoghi M, Hosseini V, Ali Darabi M, Paramelle D, Khademhosseini A, Ahadian S. Graphene Quantum Dots for Fluorescent Labeling of Gelatin‐Based Shear‐Thinning Hydrogels. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fatemeh Nasrollahi
- Department of Bioengineering University of California-Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C-MIT) University of California-Los Angeles Los Angeles CA 90095 USA
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Farzana Nazir
- Department of Bioengineering University of California-Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C-MIT) University of California-Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry School of Natural Sciences National University of Science and Technology (NUST) Islamabad 44000 Pakistan
| | - Maryam Tavafoghi
- Department of Bioengineering University of California-Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C-MIT) University of California-Los Angeles Los Angeles CA 90095 USA
| | - Vahid Hosseini
- Department of Bioengineering University of California-Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C-MIT) University of California-Los Angeles Los Angeles CA 90095 USA
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Mohammad Ali Darabi
- Department of Bioengineering University of California-Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C-MIT) University of California-Los Angeles Los Angeles CA 90095 USA
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - David Paramelle
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| |
Collapse
|
4
|
Ono D, Asada K, Yui D, Sakaue F, Yoshioka K, Nagata T, Yokota T. Separation-related rapid nuclear transport of DNA/RNA heteroduplex oligonucleotide: unveiling distinctive intracellular trafficking. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:1360-1370. [PMID: 33738132 PMCID: PMC7933600 DOI: 10.1016/j.omtn.2020.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
DNA/RNA heteroduplex oligonucleotide (HDO), composed of DNA/locked nucleic acid (LNA) antisense oligonucleotide (ASO) and complementary RNA, is a next-generation antisense therapeutic agent. HDO is superior to the parental ASO in delivering to target tissues, and it exerts a more potent gene-silencing effect. In this study, we aimed to elucidate the intracellular trafficking mechanism of HDO-dependent gene silencing. HDO was more preferably transferred to the nucleus after transfection compared to the parental ASO. To determine when and where HDO is separated into the antisense strand (AS) and complementary strand (CS), we performed live-cell time-lapse imaging and fluorescence resonance energy transfer (FRET) assays. These assays demonstrated that HDO had a different intracellular trafficking mechanism than ASO. After endocytosis, HDO was separated in the early endosomes, and both AS and CS were released into the cytosol. AS was more efficiently transported to the nucleus than CS. Separation, endosomal release, and initiation of nuclear transport were a series of time-locked events occurring at a median of 30 s. CS cleavage was associated with efficient nuclear distribution and gene silencing in the nucleus. Understanding the unique intracellular silencing mechanisms of HDO will help us design more efficient drugs and might also provide insight into innate DNA/RNA cellular biology.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Ken Asada
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Daishi Yui
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Fumika Sakaue
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| |
Collapse
|
5
|
Rapid Target Binding and Cargo Release of Activatable Liposomes Bearing HER2 and FAP Single-Chain Antibody Fragments Reveal Potentials for Image-Guided Delivery to Tumors. Pharmaceutics 2020; 12:pharmaceutics12100972. [PMID: 33076292 PMCID: PMC7650594 DOI: 10.3390/pharmaceutics12100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Liposomes represent suitable tools for the diagnosis and treatment of a variety of diseases, including cancers. To study the role of the human epidermal growth factor receptor 2 (HER2) as target in cancer imaging and image-guided deliveries, liposomes were encapsulated with an intrinsically quenched concentration of a near-infrared fluorescent dye in their aqueous interior. This resulted in quenched liposomes (termed LipQ), that were fluorescent exclusively upon degradation, dye release, and activation. The liposomes carried an always-on green fluorescent phospholipid in the lipid layer to enable tracking of intact liposomes. Additionally, they were functionalized with single-chain antibody fragments directed to fibroblast activation protein (FAP), a marker of stromal fibroblasts of most epithelial cancers, and to HER2, whose overexpression in 20–30% of all breast cancers and many other cancer types is associated with a poor treatment outcome and relapse. We show that both monospecific (HER2-IL) and bispecific (Bi-FAP/HER2-IL) formulations are quenched and undergo HER2-dependent rapid uptake and cargo release in cultured target cells and tumor models in mice. Thereby, tumor fluorescence was retained in whole-body NIRF imaging for 32–48 h post-injection. Opposed to cell culture studies, Bi-FAP/HER2-IL-based live confocal microscopy of a high HER2-expressing tumor revealed nuclear delivery of the encapsulated dye. Thus, the liposomes have potentials for image-guided nuclear delivery of therapeutics, and also for intraoperative delineation of tumors, metastasis, and tumor margins.
Collapse
|
6
|
Jogdand A, Alvi SB, Rajalakshmi PS, Rengan AK. NIR-dye based mucoadhesive nanosystem for photothermal therapy in breast cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111901. [PMID: 32480202 DOI: 10.1016/j.jphotobiol.2020.111901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the leading causes of mortality in women, worldwide. The average survival rate of patients suffering from advanced breast cancer is about 27% for five years. Photothermal therapy employing biodegradable nanoparticle are extensively researched for enhanced anticancer therapy in breast cancer treatment. In the current study, we report a chitosan based mucoadherant and biodegradable niosome nanoparticle entrapping near infrared (NIR) dye (IR 806) for the treatment of breast cancer. Niosome entrapping IR 806 (NioIR) showed encapsulation efficacy of about 56 ± 2%. The prepared nanoparticles (NioIR) were further coated with chitosan (NioIR-C) to impart mucoadhesive property to the nanosystem. NioIR-C showed minimal degradation following NIR laser irradiation, thus enhancing its photothermal stability. They also exhibited efficient photothermal transduction, when compared with IR 806 dye. NioIR-C were biocompatible when treated with normal cell lines (NIH 3T3 and L929) and showed cytotoxicity towards breast cancer cell lines (MCF-7 and MDA-MB 231). When triggered with NIR laser, NioIR-C showed photothermal cell death (approximately 93%). The presence of chitosan coating on NioIR led to mucoadherence potential that further enhances the therapeutic effect on breast cancer cells when compared with IR 806 dye and NioIR. Thus NioIR-C can be a promising nanosystem for effective treatment of breast cancer using photothermal therapy.
Collapse
Affiliation(s)
- Anil Jogdand
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Syed Baseeruddin Alvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - P S Rajalakshmi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
7
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgräber UK, Fahr A, Hilger I. Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes. Pharmaceutics 2020; 12:pharmaceutics12040370. [PMID: 32316521 PMCID: PMC7238156 DOI: 10.3390/pharmaceutics12040370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery.
Collapse
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| | - Ansgar M. Kollmeier
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital-Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany;
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany;
| | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany (A.F.)
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (A.M.K.); (U.K.T.)
- Correspondence: (F.L.T.); (R.R.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-949905 (R.R.); +49-3641-9325921 (I.H.)
| |
Collapse
|
8
|
Nasrollahi F, Sana B, Paramelle D, Ahadian S, Khademhosseini A, Lim S. Incorporation of Graphene Quantum Dots, Iron, and Doxorubicin in/on Ferritin Nanocages for Bimodal Imaging and Drug Delivery. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fatemeh Nasrollahi
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California—Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
- School of Chemical Engineering, College of EngineeringUniversity of Tehran P.O. Box: 11155/4563 Tehran Iran
| | - Barindra Sana
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457
- p53 LaboratoryAgency for Science Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - David Paramelle
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California—Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California—Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
- Department of Radiological Sciences, David Geffen School of MedicineDepartment of Chemical and Biomolecular EngineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
| | - Sierin Lim
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457
- NTU‐Northwestern Institute for Nanomedicine (NNIN)Nanyang Technological University 50 Nanyang Drive, Block N3.1, #01‐03 Singapore 637553
| |
Collapse
|
9
|
Liu Y, Yao T, Cai W, Yu S, Hong Y, Nguyen KT, Yuan B. A Biocompatible and Near-Infrared Liposome for In Vivo Ultrasound-Switchable Fluorescence Imaging. Adv Healthc Mater 2020; 9:e1901457. [PMID: 31957243 DOI: 10.1002/adhm.201901457] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence imaging is a remarkable tool for molecular targeting and multicolor imaging, but it suffers from low resolution in centimeter-deep tissues. The recently developed ultrasound-switchable fluorescence (USF) imaging has overcome this challenge and achieved in vivo imaging in a mouse with help from the indocyanine green (ICG) dye encapsulated poly(N-isopropylacrylamide) (ICG-PNIPAM) contrast agent. However, the ICG-PNIPAM has shortcomings, such as concerns about cytotoxicity and blueshifted excitation and emission spectra. This study introduces a newly developed ICG-encapsulated liposome to broaden the contrast agent selection for USF imaging and resolve the issues mentioned above. The emission peak of the ICG-liposome is 836 nm with excellent biostability and USF imaging capability. Furthermore, the cell viability test verifies the low cytotoxicity feature. Eventually, both ex vivo and in vivo USF imaging are successfully achieved and 3D USF images are acquired. The ex vivo result confirms that the ICG-liposome maintains the thermoresponsive characteristic at the right lobe of the liver and is able to conduct the USF imaging. The further in vivo USF imaging demonstrates that although the whole liver emitted fluorescence, only the right lobe of the liver contains the working ICG-liposome.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Ultrasound and Optical Imaging Laboratory Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
| | - Tingfeng Yao
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Ultrasound and Optical Imaging Laboratory Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
| | - Wenbin Cai
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Ultrasound and Optical Imaging Laboratory Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
| | - Shuai Yu
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Ultrasound and Optical Imaging Laboratory Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
| | - Yi Hong
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
| | - Kytai T. Nguyen
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
| | - Baohong Yuan
- Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
- Joint Biomedical Engineering Program University of Texas at Arlington and University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Ultrasound and Optical Imaging Laboratory Department of Bioengineering University of Texas at Arlington Arlington TX 76010 USA
| |
Collapse
|
10
|
Xia Y, Xu C, Zhang X, Gao J, Wu Y, Li C, Wang Z. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging. Colloids Surf B Biointerfaces 2020; 188:110789. [PMID: 31955018 DOI: 10.1016/j.colsurfb.2020.110789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
Liposomes are of great interest and importance in tumor imaging, since they can greatly improve the imaging sensitivity and specificity by increasing the accumulation of contrast agents. Still, most liposome-based probes have high background signals during blood circulation, which limits enhancement of S/B ratio and tumor imaging sensitivity. To enhance the S/B ratio of tumor imaging, we construct a fluorescence resonance energy transfer (FRET) and aggregation induced emission (AIE) based liposomal fluorescence probe TPE/BHQ-lipo with excellent FRET effect (99 %) and great fluorescence enhancement upon liposome rupture (120-fold) as well as efficient fluorescence recovery in tumor cell imaging. Finally, we used the TPE/BHQ-lipo to image 4T1 tumor upon intravenous injection of liposomes and the group showed enhanced signal to background ratio of 4.1, compared to 1.8 from control AIE-based liposomal group (TPE-lipo). Our work offers an excellent FRET and AIE-based liposomal probe for high-sensitive tumor imaging.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Chunzhong Xu
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jingkai Gao
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yankun Wu
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Cairu Li
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhongliang Wang
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| |
Collapse
|
11
|
Wen S, Zhang W, Ren T, Zhang Q, Liu Y, Shi L, Hu R, Zhang X, Yuan L. Donor and Ring‐Fusing Engineering for Far‐Red to Near‐Infrared Triphenylpyrylium Fluorophores with Enhanced Fluorescence Performance for Sensing and Imaging. Chemistry 2019; 25:6973-6979. [DOI: 10.1002/chem.201900246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Si‐Yu Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Wei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Tian‐Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Qian‐Ling Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Yu‐Peng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Ling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal FormulaAnhui University of Chinese Medicine Hefei Anhui 230038 P.R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| |
Collapse
|
12
|
Xia Y, Xu C, Zhang X, Ning P, Wang Z, Tian J, Chen X. Liposome-based probes for molecular imaging: from basic research to the bedside. NANOSCALE 2019; 11:5822-5838. [PMID: 30888379 DOI: 10.1039/c9nr00207c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Molecular imaging is very important in disease diagnosis and prognosis. Liposomes are excellent carriers for different types of molecular imaging probes. In this work, we summarize current developments in liposome-based probes used for molecular imaging and their applications in image-guided drug delivery and tumour surgery, including computed tomography (CT), ultrasound imaging (USI), magnetic resonance imaging (MRI), positron emission tomography (PET), fluorescence imaging (FLI) and photoacoustic imaging (PAI). We also summarized liposome-based multimodal imaging probes and new targeting strategies for liposomes. This work will offer guidance for the design of liposome-based imaging probes for future clinical applications.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Shi L, Li K, Li LL, Chen SY, Li MY, Zhou Q, Wang N, Yu XQ. Novel easily available purine-based AIEgens with colour tunability and applications in lipid droplet imaging. Chem Sci 2018; 9:8969-8974. [PMID: 30647889 PMCID: PMC6301202 DOI: 10.1039/c8sc03369b] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, tetraphenylethene, triphenylamine and other man-made core AIE luminescent materials (AIEgens) have attracted significant scientific interest. However, the design and synthesis of natural product based, facile and color tunable AIEgens remains challenging. Herein, a novel series of AIEgens based on purine-core molecular rotors is reported, which can be facilely synthesized and shows color tunable emission. Moreover, these purine-based AIEgens exhibit lipid droplet specific properties in live cellular imaging with low background, high selectivity and excellent biocompatibility.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Meng-Yang Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Qian Zhou
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Nan Wang
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| |
Collapse
|
14
|
Laramie MD, Smith MK, Marmarchi F, McNally LR, Henary M. Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging. Molecules 2018; 23:E2766. [PMID: 30366395 PMCID: PMC6278390 DOI: 10.3390/molecules23112766] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Collapse
Affiliation(s)
- Matt D Laramie
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Mary K Smith
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Fahad Marmarchi
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Lacey R McNally
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
15
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. Dataset on the role of endoglin expression on melanin production in murine melanoma and on the influence of melanin on optical imaging. Data Brief 2018; 20:1048-1052. [PMID: 30225321 PMCID: PMC6138937 DOI: 10.1016/j.dib.2018.08.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022] Open
Abstract
The underlying data demonstrates that the expression of endoglin in murine melanoma cells influences melanin production in the cells. Also, the data shows that melanin production is further increased when the cells are subcutaneously implanted in mice models and that the high melanin production prevents detection of the cells by fluorescence imaging. The processed data presented herein is related to a research article by Tansi et al. (2018) entitled “Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes”.
Collapse
Affiliation(s)
- Felista L Tansi
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Ansgar M Kollmeier
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| |
Collapse
|
16
|
Xiao Q, Chen T, Chen S. Fluorescent contrast agents for tumor surgery. Exp Ther Med 2018; 16:1577-1585. [PMID: 30186374 PMCID: PMC6122374 DOI: 10.3892/etm.2018.6401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of cases of mortality worldwide. The most effective method to cure solid tumors is surgery. Every year, >50% of cancer patients receive surgery to remove solid tumors. Surgery may increase the cure rate of most solid tumors by 4–11 fold. Surgery has many challenges, including identifying small lesions, locating metastases and confirming complete tumor removal. Fluorescence guidance describes a new approach to improve surgical accuracy. Near-infrared fluorescence imaging allows for real-time early diagnosis and intraoperative imaging of lesion tissue. The results of previous preclinical studies in the field of near-infrared fluorescence imaging are promising. This review provides examples introducing the three kinds of fluorescent dyes: The passive fluorescent dye indocyanine green, which has been approved by the Food and Drug Administration for clinical use in the USA, the fluorescent prodrug 5-aminolevulinic acid, a porphyrin precursor in the heme synthesis, and biomarker-targeted fluorescent dyes, which allow conjugation to different target sites.
Collapse
Affiliation(s)
- Qi Xiao
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Tianming Chen
- Department of Surgery, Nanjing Medical University Third Affiliated Hospital, Nanjing, Jiangsu 211166, P.R. China
| | - Shilin Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
17
|
Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochim Biophys Acta Gen Subj 2018; 1862:1389-1400. [PMID: 29545133 DOI: 10.1016/j.bbagen.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endoglin (CD105) is overexpressed on tumor cells and tumor vasculatures, making it a potential target for diagnostic imaging and therapy of different neoplasms. Therefore, studies on nanocarrier systems designed for endoglin-directed diagnostic and drug delivery purposes would expose the feasibility of targeting endoglin with therapeutics. METHODS Liposomes carrying high concentrations of a near-infrared fluorescent dye in the aqueous interior were prepared by the lipid film hydration and extrusion procedure, then conjugated to single chain antibody fragments either selective for murine endoglin (termed mEnd-IL) or directed towards human endoglin (termed hEnd-IL). A combination of Dynamic Light Scattering, electron microscopy, cell binding and uptake assays, confocal microscopy and in vivo fluorescence imaging of mice bearing xenografted human breast cancer and human fibrosarcoma models were implemented to elucidate the potentials of the liposomes. RESULTS The mEnd-IL and hEnd-IL were highly selective for the respective murine- and human endoglin expressing cells in vitro and in vivo. Hence, the hEnd-IL bound distinctly to the tumor cells and enabled suitable fluorescence imaging of the tumors, whereas the mEnd-IL bound the tumor vasculature, but also to the liver, kidney and lung vasculature of mice. CONCLUSIONS The work highlights key differences between targeting vascular (murine) and neoplastic (human) endoglin in animal studies, and suggests that the hEnd-IL can serve as a delivery system that targets human endoglin overexpressed in pathological conditions. GENERAL SIGNIFICANCE The endoglin-targeting liposomes presented herewith represent strategic tools for the future implementation of endoglin-directed neoplastic and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Felista L Tansi
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany.
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| | - Ansgar M Kollmeier
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
18
|
Zhang J, Xing H, Lu Y. Translating molecular detections into a simple temperature test using a target-responsive smart thermometer. Chem Sci 2018; 9:3906-3910. [PMID: 29780521 PMCID: PMC5935027 DOI: 10.1039/c7sc05325h] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
While it has been well recognized that affordable and pocket-size devices play a major role in environmental monitoring, food safety and medical diagnostics, it often takes a tremendous amount of resources to develop such devices. Devices that have been developed are often dedicated devices that can detect only one or a few targets. To overcome these limitations, we herein report a novel target-responsive smart thermometer for translating molecular detection into a temperature test. The sensor system consists of a functional DNA-phospholipase A2 (PLA2) enzyme conjugate, a liposome-encapsulated NIR dye, and a thermometer interfaced with a NIR-laser device. The sensing principle is based on the target-induced release of PLA2 from the DNA-enzyme conjugate, which catalyzes the hydrolysis of liposome to release the NIR dye inside the liposome. Upon NIR-laser irradiation, the released dye can convert excitation energy into heat, producing a temperature increase in solution, which is detectable using a thermometer. Considering the low cost and facile incorporation of the system with suitable functional DNAs to recognize many targets, the system demonstrated here makes the thermometer an affordable and pocket-size meter for the detection and quantification of a wide range of targets.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| | - Hang Xing
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| | - Yi Lu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| |
Collapse
|
19
|
Activatable bispecific liposomes bearing fibroblast activation protein directed single chain fragment/Trastuzumab deliver encapsulated cargo into the nuclei of tumor cells and the tumor microenvironment simultaneously. Acta Biomater 2017; 54:281-293. [PMID: 28347861 DOI: 10.1016/j.actbio.2017.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Molecular targeting plays a significant role in cancer diagnosis and therapy. However, the heterogeneity of tumors is a limiting obstacle for molecular targeting. Consequently, clinically approved drug delivery systems such as liposomes still rely on passive targeting to tumors, which does not address tumor heterogeneity. In this work, we therefore designed and elucidated the potentials of activatable bispecific targeted liposomes for simultaneous detection of fibroblast activation protein (FAP) and the human epidermal growth factor receptor 2 (HER2). The bispecific liposomes were encapsulated with fluorescence-quenched concentrations of the near-infrared fluorescent dye, DY-676-COOH, making them detectable solely post processing within target cells. The liposomes were endowed with a combination of single chain antibody fragments specific for FAP and HER2 respectively, or with the FAP single chain antibody fragment in combination with Trastuzumab, which is specific for HER2. The Trastuzumab based bispecific formulation, termed Bi-FAP/Tras-IL revealed delivery of the encapsulated dye into the nuclei of HER2 expressing cancer cells and caused cell death at significantly higher rates than the free Trastuzumab. Furthermore, fluorescence imaging and live microscopy of tumor models in mice substantiated the delivery of the encapsulated cargo into the nuclei of target tumor cells and tumor stromal fibroblasts. Hence, they convey potentials to address tumor plasticity, to improve targeted cancer therapy and reduce Trastuzumab resistance in the future. STATEMENT OF SIGNIFICANCE This work demonstrates the design of activatable bispecific liposomes aimed to target HER2, a poor prognosis tumor marker in many tumor types, and fibroblast activation protein (FAP), a universal tumor marker overexpressed on tumor fibroblasts and pericytes of almost all solid tumors. Encapsulating liposomes with a quenched concentration of a NIRF dye which only fluoresced after cellular degradation and activation enabled reliable visualization of the destination of the cargo in cells and animal studies. Conjugating single chain antibody fragments directed to FAP, together with Trastuzumab, a humanized monoclonal antibody for HER2 resulted in the activatable bispecific liposomes. In animal models of xenografted human breast tumors, the remarkable ability of the bispecific probes to simultaneously deliver the encapsulated dye into the nuclei of target tumor cells and tumor fibroblasts could be demonstrated. Hence, the bispecific probes represent model tools with high significance to address tumor heterogeneity and manage Trastuzumab resistance in the future.
Collapse
|
20
|
Tansi FL, Rüger R, Kollmeier AM, Böhm C, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. A fast and effective determination of the biodistribution and subcellular localization of fluorescent immunoliposomes in freshly excised animal organs. BMC Biotechnol 2017; 17:8. [PMID: 28100205 PMCID: PMC5242003 DOI: 10.1186/s12896-017-0327-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/06/2017] [Indexed: 01/27/2023] Open
Abstract
Background Preclinical research implementing fluorescence-based approaches is inevitable for drug discovery and technology. For example, a variety of contrast agents developed for biomedical imaging are usually evaluated in cell systems and animal models based on their conjugation to fluorescent dyes. Biodistribution studies of excised organs are often performed by macroscopic imaging, whereas the subcellular localization though vital, is often neglected or further validated by histological procedures. Available systems used to define the subcellular biodistribution of contrast agents such as intravital microscopes or ex vivo histological analysis are expensive and not affordable by the majority of researchers, or encompass tedious and time consuming steps that may modify the contrast agents and falsify the results. Thus, affordable and more reliable approaches to study the biodistribution of contrast agents are required. We developed fluorescent immunoliposomes specific for human fibroblast activation protein and murine endoglin, and used macroscopic fluorescence imaging and confocal microscopy to determine their biodistribution and subcellular localization in freshly excised mice organs at different time points post intravenous injection. Results Near infrared fluorescence macroscopic imaging revealed key differences in the biodistribution of the respective immunoliposomes at different time points post injection, which correlated to the first-pass effect as well as the binding of the probes to molecular targets within the mice organs. Thus, a higher accumulation and longer retention of the murine endoglin immunoliposomes was seen in the lungs, liver and kidneys than the FAP specific immunoliposomes. Confocal microscopy showed that tissue autofluorescence enables detection of organ morphology and cellular components within freshly excised, non-processed organs, and that fluorescent probes with absorption and emission maxima beyond the tissue autofluorescence range can be easily distinguished. Hence, the endoglin targeting immunoliposomes retained in some organs could be detected in the vascular endothelia cells of the organs. Conclusions The underlying work represents a quick, effective and more reliable setup to validate the macroscopic and subcellular biodistribution of contrast agents in freshly excised animal organs. The approach will be highly beneficial to many researchers involved in nanodrug design or in fluorescence-based studies on disease pathogenesis.
Collapse
Affiliation(s)
- Felista L Tansi
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743, Jena, Germany
| | - Ansgar M Kollmeier
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Claudia Böhm
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743, Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
21
|
Zhou X, Lai R, Beck JR, Li H, Stains CI. Nebraska Red: a phosphinate-based near-infrared fluorophore scaffold for chemical biology applications. Chem Commun (Camb) 2016; 52:12290-12293. [PMID: 27709196 PMCID: PMC5108567 DOI: 10.1039/c6cc05717a] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of novel phosphinate-based dyes displaying near-infrared fluorescence (NIR) are reported. These dyes exhibit remarkable photostability and brightness. The phosphinate functionality is leveraged as an additional reactive handle in order to tune cell permeability as well as provide a proof-of-principle for a self-reporting small molecule delivery vehicle.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Rui Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jon R Beck
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Hui Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
22
|
Liu J. Interfacing Zwitterionic Liposomes with Inorganic Nanomaterials: Surface Forces, Membrane Integrity, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4393-404. [PMID: 27093351 DOI: 10.1021/acs.langmuir.6b00493] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Zwitterionic phosphocholine (PC) lipids are the main constituent of the mammalian cell membrane. PC bilayers are known for their antifouling properties, yet they are adsorbed by all tested inorganic nanoparticles. This feature article is focused on the developments in my laboratory in the past few years on this topic. The main experimental techniques include fluorescence-based liposome leakage assays, adsorption and desorption, and cryo-TEM. Different materials interact with PC liposomes differently. PC liposomes adsorb on SiO2, followed by membrane fusion with the surface forming supported lipid bilayers. TiO2 and other metal oxides adsorb only intact PC liposomes via lipid phosphate bonding; the steric effect from the choline group hinders subsequent liposome fusion onto the particles. Citrate-capped AuNPs are adsorbed very strongly via van der Waals forces, inducing local gelation. The result is transient liposome leakage upon AuNP adsorption or desorption and AuNP aggregation on the liposome surface. All carbon-based nanomaterials (graphene oxides, carbon nanotubes, and nanodiamond) are adsorbed mainly via hydrogen bonding. The oxidation level of graphene oxide strongly influences the outcome of the final hybrid material. In the context of inorganic nanoparticle adsorption, insights are given regarding the lack of protein adsorption by PC bilayers. These inorganic/lipid hybrid materials can be used for controlled release, drug delivery, and fundamental studies. A few examples of application are covered toward the end, and future perspectives are given.
Collapse
Affiliation(s)
- Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Tansi FL, Rüger R, Böhm C, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases. Biomaterials 2016; 88:70-82. [PMID: 26945457 DOI: 10.1016/j.biomaterials.2016.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/16/2022]
Abstract
Despite intensive research and medical advances met, metastatic disease remains the most common cause of death in cancer patients. This results from late diagnosis, poor therapeutic response and undetected micrometastases and tumor margins during surgery. One approach to overcome these challenges involves fluorescence imaging, which exploits the properties of fluorescent probes for diagnostic detection of molecular structures at the onset of transformation and for intraoperative detection of metastases and tumor margins in real time. Considering these benefits, many contrast agents suitable for fluorescence imaging have been reported. However, most reports only demonstrate the detection of primary tumors and not the detection of metastases or their application in models of image-guided surgery. In this work, we demonstrate the influence of fibroblast activation protein (FAP) on the metastatic potential of fibrosarcoma cells and elucidate the efficacy of activatable FAP-targeting immunoliposomes (FAP-IL) for image-guided detection of the spontaneous metastases in mice models. Furthermore, we characterized the biodistribution and cellular localization of the liposomal fluorescent components in mice organs and traced their excretion over time in urine and feces. Taken together, activatable FAP-IL enhances intraoperative imaging of metastases. Their high accumulation in metastases, subsequent localization in the bile canaliculi and liver kupffer cells and suitable excretion in feces substantiates their potency as contrast agents for intraoperative imaging.
Collapse
Affiliation(s)
- Felista L Tansi
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| | - Claudia Böhm
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ulf K Teichgraeber
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Ingrid Hilger
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
| |
Collapse
|
24
|
Cheng FR, Chen Y, Su T, Cao H, Li S, Cao J, He B, Gu ZW, Luo XL. Intracellular pH-induced fluorescence used to track nanoparticles in cells. J Mater Chem B 2015; 3:5411-5414. [PMID: 32262512 DOI: 10.1039/c5tb00756a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanoparticle with pH-induced fluorescence was reported for intracellular tracking. The fluorescence was evoked by the isomerization of the ring-closed form spiropyran (SP) to the ring-open form merocyanine (MC) in the weak acidic environment of cells. The SP-MC switch accelerated the dissociation of nanoparticles to trigger the release of trapped paclitaxel.
Collapse
Affiliation(s)
- F R Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Domey J, Teichgräber U, Hilger I. Gold nanoparticles allow detection of early-stage edema in mice via computed tomography imaging. Int J Nanomedicine 2015; 10:3803-14. [PMID: 26082631 PMCID: PMC4459621 DOI: 10.2147/ijn.s77383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Due to their high X-ray attenuation, gold nanoparticles (GNPs) emerged as preclinical contrast agents by giving high vasculature contrast. For this reason, GNPs are regularly applied for computed tomography (CT) imaging of tumors but not for the visualization of inflammation. The aim of this study was to evaluate the biocompatibility and applicability of preclinical GNPs (AuroVist™) of two different sizes (1.9 nm and 15 nm) for the detection of inflammation-associated phagocytes in early-stage edema. Both GNP variants were stable under in vitro conditions and achieved high micro-CT (mCT) contrast after embedment into agarose. Fifteen-nanometer GNPs were detected after uptake into macrophages via mCT imaging exhibiting higher X-ray contrast than cells treated with 1.9 nm GNPs and untreated ones. Both 1.9 nm and 15 nm GNPs exhibited good biocompatibility on murine macrophages according to ATP and cellular dehydrogenase levels. Reactive oxygen species levels produced by phagocytic cells decreased significantly (P≤0.05) after co-incubation with GNPs regardless of the size of the nanoparticle (NP) in comparison to untreated control cells. In vivo mCT studies of inflammation imaging revealed that GNPs with a diameter of 15 nm accumulated within subcutaneous edema 2 hours after injection with a maximum signaling 8 hours postinjection and could be detected up to 48 hours within the edema region. In contrast, 1.9 nm GNPs were not shown to accumulate at the site of the inflammation region and were mostly excreted via the renal system 2–4 hours after injection. In conclusion, our study demonstrated that both GNP variants (1.9 nm and 15 nm) were stable and biocompatible under in vitro conditions. However, only 15 nm NPs have the potential as contrast agent for phagocyte labeling and applications in CT imaging of inflammation on a cellular level.
Collapse
Affiliation(s)
- Jenny Domey
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| |
Collapse
|
26
|
van Duijnhoven SMJ, Robillard MS, Langereis S, Grüll H. Bioresponsive probes for molecular imaging: concepts and in vivo applications. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:282-308. [PMID: 25873263 DOI: 10.1002/cmmi.1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly two classes of bioresponsive imaging probes. The first class consists of probes that show direct activation of the imaging label (from "off" to "on" state) and have been applied in optical imaging and magnetic resonance imaging (MRI). The other class consists of probes that show specific retention of the imaging label at the site of target interaction and these probes have found application in all different imaging modalities, including photoacoustic imaging and nuclear imaging. In this review, we present a comprehensive overview of bioresponsive imaging probes in order to discuss the various molecular imaging strategies. The focus of the present article is the rationale behind the design of bioresponsive molecular imaging probes and their potential in vivo application for the detection of endogenous molecular targets in pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sander M J van Duijnhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Marc S Robillard
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
27
|
Tansi FL, Rüger R, Rabenhold M, Steiniger F, Fahr A, Hilger I. Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging. J Vis Exp 2015:e52136. [PMID: 25591069 DOI: 10.3791/52136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Optical imaging offers a wide range of diagnostic modalities and has attracted a lot of interest as a tool for biomedical imaging. Despite the enormous number of imaging techniques currently available and the progress in instrumentation, there is still a need for highly sensitive probes that are suitable for in vivo imaging. One typical problem of available preclinical fluorescent probes is their rapid clearance in vivo, which reduces their imaging sensitivity. To circumvent rapid clearance, increase number of dye molecules at the target site, and thereby reduce background autofluorescence, encapsulation of the near-infrared fluorescent dye, DY-676-COOH in liposomes and verification of its potential for in vivo imaging of inflammation was done. DY-676 is known for its ability to self-quench at high concentrations. We first determined the concentration suitable for self-quenching, and then encapsulated this quenching concentration into the aqueous interior of PEGylated liposomes. To substantiate the quenching and activation potential of the liposomes we use a harsh freezing method which leads to damage of liposomal membranes without affecting the encapsulated dye. The liposomes characterized by a high level of fluorescence quenching were termed Lip-Q. We show by experiments with different cell lines that uptake of Lip-Q is predominantly by phagocytosis which in turn enabled the characterization of its potential as a tool for in vivo imaging of inflammation in mice models. Furthermore, we use a zymosan-induced edema model in mice to substantiate the potential of Lip-Q in optical imaging of inflammation in vivo. Considering possible uptake due to inflammation-induced enhanced permeability and retention (EPR) effect, an always-on liposome formulation with low, non-quenched concentration of DY-676-COOH (termed Lip-dQ) and the free DY-676-COOH were compared with Lip-Q in animal trials.
Collapse
Affiliation(s)
- Felista L Tansi
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital;
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena;
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena
| | | | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital;
| |
Collapse
|
28
|
Rüger R, Tansi FL, Rabenhold M, Steiniger F, Kontermann RE, Fahr A, Hilger I. In vivo near-infrared fluorescence imaging of FAP-expressing tumors with activatable FAP-targeted, single-chain Fv-immunoliposomes. J Control Release 2014; 186:1-10. [PMID: 24810115 DOI: 10.1016/j.jconrel.2014.04.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/01/2022]
Abstract
Molecular and cellular changes that precede the invasive growth of solid tumors include the release of proteolytic enzymes and peptides in the tumor stroma, the recruitment of phagocytic and lymphoid infiltrates and alteration of the extracellular matrix. The reactive tumor stroma consists of a large number of myofibroblasts, characterized by high expression of fibroblast activation protein alpha (FAP). FAP, a type-II transmembrane sialoglycoprotein is an attractive target in diagnosis and therapy of several pathologic disorders especially cancer. In the underlying work, a fluorescence-activatable liposome (fluorescence-quenched during circulation and fluorescence activation upon cellular uptake), bearing specific single-chain Fv fragments directed against FAP (scFv'FAP) was developed, and its potential for use in fluorescence diagnostic imaging of FAP-expressing tumor cells was evaluated by whole body fluorescence imaging. The liposomes termed anti-FAP-IL were prepared via post-insertion of ligand-phospholipid-conjugates into preformed DY-676-COOH-containing liposomes. The anti-FAP-IL revealed a homogeneous size distribution and showed specific interaction and binding with FAP-expressing cells in vitro. The high level of fluorescence quenching of the near-infrared fluorescent dye sequestered in the aqueous interior of the liposomes enables fluorescence imaging exclusively upon uptake and degradation by cells, which results in fluorescence activation. Only FAP-expressing cells were able to take up and activate fluorescence of anti-FAP-IL in vitro. Furthermore, anti-FAP-IL accumulated selectively in FAP-expressing xenograft models in vivo, as demonstrated by blocking experiments using free scFv'FAP. The local tumor fluorescence intensities were in agreement with the intrinsic degree of FAP-expression in different xenograft models. Thus, anti-FAP-IL can serve as a suitable in vivo diagnostic tool for pathological disorders accompanied by high FAP-expression.
Collapse
Affiliation(s)
- Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| | - Felista L Tansi
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital-Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital-Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| | - Ingrid Hilger
- Dept. of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital-Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
| |
Collapse
|