1
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
2
|
Direct Synthesis of MoS2 Nanosheets in Reduced Graphene Oxide Nanoscroll for Enhanced Photodetection. NANOMATERIALS 2022; 12:nano12091581. [PMID: 35564290 PMCID: PMC9101584 DOI: 10.3390/nano12091581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022]
Abstract
Due to their unique tubular and spiral structure, graphene and graphene oxide nanoscrolls (GONS) have shown extensive applications in various fields. However, it is still a challenge to improve the optoelectronic application of graphene and GONS because of the zero bandgap of graphene. Herein, ammonium tetrathiomolybdate ((NH4)2MoS4) was firstly wrapped into the ((NH4)2MoS4@GONS) by molecular combing the mixture of (NH4)2MoS4 and GO solution on hydrophobic substrate. After thermal annealing, the (NH4)2MoS4 and GO were converted to MoS2 nanosheets and reduced GO (RGO) simultaneously, and, thus, the MoS2@RGONS was obtained. Raman spectroscopy and high-resolution transmission electron microscopy were used to confirm the formation of MoS2 nanosheets among the RGONS. The amount of MoS2 wrapped in RGONS increased with the increasing height of GONS, which is confirmed by the atomic force microscopy and Raman spectroscopy. The as-prepared MoS2@RGONS showed much better photoresponse than the RGONS under visible light. The photocurrent-to-dark current ratios of photodetectors based on MoS2@RGONS are ~570, 360 and 140 under blue, red and green lasers, respectively, which are 81, 144 and 35 times of the photodetectors based on RGONS. Moreover, the MoS2@RGONS-based photodetector exhibited good power-dependent photoresponse. Our work indicates that the MoS2@RGONS is expected to be a promising material in the fields of optoelectronic devices and flexible electronics.
Collapse
|
3
|
Zhao Y, You H, Li X, Pei C, Huang X, Li H. Solvent-Free Preparation of Closely Packed MoS 2 Nanoscrolls for Improved Photosensitivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9515-9524. [PMID: 35133788 DOI: 10.1021/acsami.1c24291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to their enhanced light absorption efficiency, one-dimensional (1D) transition metal dichalcogenide (TMDC) nanoscrolls derived from two-dimensional (2D) TMDC nanosheets have shown excellent optoelectronic properties. Currently, organic solvent and alkaline droplet-assisted scrolling methods are popular for preparing TMDC nanoscrolls. Unfortunately, the adsorption of organic solvent or alkaline impurities on TMDC is inevitable during the preparation, which affects the optoelectronic properties of TMDC. In this work, we report a solvent-free method to prepare closely packed MoS2 nanoscrolls by dragging a deionized water droplet onto the chemical vapor deposition grown monolayer MoS2 nanosheets at 100 °C (referred to as MoS2 NS-W). The as-prepared MoS2 NS-W was well characterized by optical microscopy, atomic force microscopy, and ultralow frequency (ULF) Raman spectroscopy. After high temperature annealing, the height of MoS2 nanoscrolls prepared using an ethanol droplet (referred to as MoS2 NS-E) greatly decreased, indicating the loss of encapsulated ethanol in MoS2 NS-E. While the height of MoS2 NS-W was almost unchanged under the same conditions, implying that no water was embedded in the scroll. Compared to the MoS2 NS-E, the MoS2 NS-W shows more ULF breathing mode peaks, confirming the stronger interlayer interaction. In addition, the MoS2 NS-W shows a higher Young's modulus than MoS2 NS-E, which could arise from the closely packed scroll structure. Importantly, the MoS2 NS-W device showed a photosensitivity 1 order of magnitude higher than that of the MoS2 NS-E device under blue, green, and red lasers, respectively. The decreased photosensitivity of MoS2 NS-E was attributed to the larger dark current, which might be assigned to the adsorbed ethanol between the adjacent layers in MoS2 NS-E. Our work provides a solvent-free method to prepare closely packed MoS2 nanoscrolls at large scale and demonstrates their great potential for high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hui You
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinzhe Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chengjie Pei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Zhu L, Lang J, Zhou D, Wu Q, Li B. Fluid-Assisted Sorted Assembly of Graphene on Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5608-5617. [PMID: 32354211 DOI: 10.1021/acs.langmuir.0c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The significant size distribution of as-synthesized nanomaterials presents a challenge for reproducable and reliable applications. In this paper, we report a fluidic-assisted sorted assembly method in which nanomaterial sorting and enhanced assembly can be achieved simultaneously. As a proof of concept, a two-dimensional (2D) graphene flake, with a large size variation, was chosen as the target nanomaterial system. This study synergizes a novel fluidic assembly design, suspending a rotating disk over a polydimethylsiloxane (PDMS) substrate, and a computational fluid dynamics (CFD) model using Ansys CFX to disclose the mechanism of sorted assembly. By controlling the rotating speed and the gap between the disk and the substrate, the flow field is altered. In contrast to centrifugal sorting, where larger particles move outward, in this study, the size of assembled graphene flake (average lateral size, Xc) reduces significantly from the center (Xc = 3 μm) to the edge of the disk (Xc = 2 μm). The particle sorting process is dictated by the fluid shear-stress, with higher shear-stress leading to smaller particles, while the assembly process is mainly dominated by the pressure field with higher pressure magnitude leading to better assembly. Near the edge of the disk, enhanced particle sorting is coupled with an enhanced assembly where a continuous graphene film with smaller Xc can be formed. To prove the potential application of this method, an ultrasensitive strain sensor with one of the lowest detection limits, 0.02%, is demonstrated. This research presents a novel route toward large-scale and cost-effective manufacturing of nanomaterial-based flexible electronics.
Collapse
|
5
|
Jia J, Huang G, Wang M, Lv Y, Chen X, Deng J, Pan K. Multi-functional stretchable sensors based on a 3D-rGO wrinkled microarchitecture. NANOSCALE ADVANCES 2019; 1:4406-4414. [PMID: 36134427 PMCID: PMC9419508 DOI: 10.1039/c9na00429g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/23/2019] [Indexed: 06/16/2023]
Abstract
The structural design of sensing active layers plays a critical role in the development of electromechanical sensors. In this study, we established an innovative concept for constructing sensors, pre-straining & laser reduction (PS&LR), based on a laser-induced wrinkle effect. This method combines and highlights the advantages of a wrinkled structure in the flexibility of sensors and the advantages of laser in the efficient reduction of GO; thus, it can efficiently introduce tunable, stretchable 3D-rGO expansion bulges in wrinkled GO films. Particularly, the sensors based on this special structure (1.5 cm × 3 cm) demonstrated a multi-functional and distinguished sensing ability in the cases of bending, stretching and touching modes. Moreover, the 3D-rGO architecture endowed the sensors with great sensitivity and design flexibility, i.e., a high sensing factor of 122, relative current value change of 60 times at the bending angle of 60°, decreased relative resistance-strain curve and diverse bending strategies for various detection purposes. Thus, the established design and preparation strategy provides large design flexibility for various promising applications.
Collapse
Affiliation(s)
- Jin Jia
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Guotao Huang
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Mingti Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Yuhuan Lv
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiangyang Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianping Deng
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Kai Pan
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
6
|
Zhao W, Wang L, Pei C, Wei C, You H, Zhang J, Li H. Impact of pH on Regulating Ion Encapsulation of Graphene Oxide Nanoscroll for Pressure Sensing. NANOMATERIALS 2019; 9:nano9040548. [PMID: 30987290 PMCID: PMC6523837 DOI: 10.3390/nano9040548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022]
Abstract
Recently, graphene oxide nanoscroll (GONS) has attracted much attention due to its excellent properties. Encapsulation of nanomaterials in GONS can greatly enhance its performance while ion encapsulation is still unexplored. Herein, various ions including hydronium ion (H3O+), Fe3+, Au3+, and Zn2+ were encapsulated in GONSs by molecular combing acidic graphene oxide (GO) solution. No GONS was obtained when the pH of the GO solution was greater than 9. A few GONSs without encapsulated ion were obtained at the pH of 5–8. When the pH decreased from 5 to 0.15, high-density GONSs with encapsulated ions were formed and the average height of GONS was increased from ~50 to ~190 nm. These results could be attributed to the varied repulsion between carboxylic acid groups located at the edges of GO nanosheets. Encapsulated metal ions were converted to nanoparticles in GONS after high-temperature annealing. The resistance-type device based on reduced GONS (rGONS) mesh with encapsulated H3O+ showed good response for applied pressure from 600 to 8700 Pa, which manifested much better performance compared with that of a device based on rGONS mesh without H3O+.
Collapse
Affiliation(s)
- Weihao Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengjie Pei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Cong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Hui You
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jindong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
7
|
Fang X, Wei P, Wang L, Wang X, Chen B, He Q, Yue Q, Zhang J, Zhao W, Wang J, Lu G, Zhang H, Huang W, Huang X, Li H. Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13011-13018. [PMID: 29600705 DOI: 10.1021/acsami.8b01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One-dimensional (1D) nanoscrolls derived from two-dimensional (2D) nanosheets own unusual physical and chemical properties that arise from the spiraled 1D morphology and the atomic thin 2D building blocks. Unfortunately, preparation of large-sized nanoscrolls of transition-metal dichalcogenides (TMDCs) remains a big challenge, which greatly restricts the fabrication of single-scroll devices for their fundamental studies and further applications. In this work, we report a universal and facile method, by making use of the evaporation process of volatile organic solvent, to prepare TMDC (e.g., MoS2 and WS2) nanoscrolls with lengths of several tens to one hundred micrometers from their 2D precursors presynthesized by chemical vapor deposition on Si/SiO2. Both atomic force microscopy and electron microscopy characterizations confirmed the spirally rolledup structure in the resulting nanoscrolls. An interlayer spacing of as small as ∼0.65 nm was observed, suggesting the strong coupling between adjacent layers, which was further evidenced by the emergence of new breathing mode peaks in the ultralow frequency Raman spectrum. Importantly, compared with the photodetector fabricated from a monolayer MoS2 or WS2 nanosheet, the device based on an MoS2 or WS2 nanoscroll showed the much enhanced performance, respectively, with the photosensitivity greatly increased up to 2 orders of magnitude. Our work suggests that turning 2D TMDCs into 1D scrolls is promising in achieving high performances in various electronic/optoelectronic applications, and our general method can be extended to the preparation of large-sized nanoscrolls of other kinds of 2D materials that may bring about new properties and phenomena.
Collapse
Affiliation(s)
- Xiangru Fang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Pei Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Xiaoshan Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qiyuan He
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qiuyan Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Jindong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Weihao Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Jialiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , P. R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| |
Collapse
|
8
|
Wang L, Yang P, Liu Y, Fang X, Shi X, Wu S, Huang L, Li H, Huang X, Huang W. Scrolling up graphene oxide nanosheets assisted by self-assembled monolayers of alkanethiols. NANOSCALE 2017; 9:9997-10001. [PMID: 28682391 DOI: 10.1039/c7nr03072j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a simple and novel method for the fabrication of high-quality nanoscrolls of graphene oxide (GO) and graphene oxide decorated with silver nanoparticles (GO-Ag) on a gold substrate through a scrolling process assisted by the self-assembly of alkanethiol monolayers. The yield and rate of the scrolling process were highly dependent on the lengths of the alkanethiol molecules, and could be well described by power law functions. Importantly, compared to nanosheets, nanoscrolls of GO and GO-Ag showed superior performance in humidity sensing due to their unique scrolled structures.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South PuZhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Wang L, Zhang H, Ran F, Yang P, Li H. Graphene oxide scroll meshes encapsulated Ag nanoparticles for humidity sensing. RSC Adv 2017. [DOI: 10.1039/c7ra06177c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
rGO–Ag scroll meshes shows 3 orders of magnitude higher humidity response compared to that of rGO scroll meshes.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
| | - Hao Zhang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
| | - Feirong Ran
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
| | - Peng Yang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
| |
Collapse
|
10
|
|
11
|
Liimatainen V, Shah A, Johansson LS, Houbenov N, Zhou Q. Maskless, High-Precision, Persistent, and Extreme Wetting-Contrast Patterning in an Environmental Scanning Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1847-1853. [PMID: 26880568 DOI: 10.1002/smll.201503127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/20/2016] [Indexed: 06/05/2023]
Abstract
A maskless and programmable direct electron beam writing method is reported for making high-precision superhydrophilic-superhydrophobic wetting patterns with 152° contact angle contrast using an environmental scanning electron microscope (ESEM). The smallest linewidth achieved is below 1 μm. The reported effects of the electron beam induced local plasma may also influence a variety of microscopic wetting studies in ESEM.
Collapse
Affiliation(s)
- Ville Liimatainen
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Otaniementie 17, Espoo, 02150, Finland
| | - Ali Shah
- Department of Micro- and Nanosciences, School of Electrical Engineering, Aalto University, Otaniementie 17, Espoo, 02150, Finland
| | - Leena-Sisko Johansson
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, Otaniementie 17, Espoo, 02150, Finland
| | - Nikolay Houbenov
- Department of Applied Physics, School of Science, Aalto University, Otaniementie 17, Espoo, 02150, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Otaniementie 17, Espoo, 02150, Finland
| |
Collapse
|
12
|
Yang H, Song Y, Downton MT, Wang S, Xu J, Hou Z, Zhang X. Tailoring graphene oxide assemblies by pinning on the contact line of a dissolving microdroplet. SOFT MATTER 2015; 11:8479-8483. [PMID: 26364811 DOI: 10.1039/c5sm01731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The controlled dissolution of microdroplets on a supporting substrate is an effective approach that can be used to tune the assembled microstructure of basic units suspended within the droplet. In this work, we studied the self-assembly of two-dimensional graphene oxide (GO) nanosheets driven by the dissolution of a microdroplet situated at the interface between a solid substrate and the surrounding liquid phase. We found that although uniform microstructures form at the liquid-liquid interface of the droplets, the contact between the droplet and the substrate can give rise to a variety of different morphologies near the base of the droplet. In particular, pinning effects at the boundary of the dissolving droplet on the substrate lead to non-spherical GO assemblies. The results in this work demonstrate the possibility that tailored three-dimensional architectures of nanosheets assembled in a dissolving droplet may be achieved through control of the wetting properties of the droplet on the supporting substrate.
Collapse
Affiliation(s)
- Haijun Yang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, VIC 3001, Australia.
| | - Yuting Song
- School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, VIC 3001, Australia. and Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Songtao Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan Province, China
| | - Jianxin Xu
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan Province, China
| | - Zhengchi Hou
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Xuehua Zhang
- School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
13
|
Tian Z, Xu C, Li J, Zhu G, Wu J, Shi Z, Wang Y. A facile preparation route for highly conductive borate cross-linked reduced graphene oxide paper. NEW J CHEM 2015. [DOI: 10.1039/c5nj00906e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple evolvement process was used to illustrate the fabrication of GO-based paper with excellent conductivity.
Collapse
Affiliation(s)
- Zhengshan Tian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Jitao Li
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Gangyi Zhu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Jing Wu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zengliang Shi
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Yueyue Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| |
Collapse
|
14
|
Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X. Graphene field-effect transistor and its application for electronic sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4042-65. [PMID: 25044546 DOI: 10.1002/smll.201400463] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/19/2014] [Indexed: 05/28/2023]
Abstract
Graphene, because of its excellent mechanical, electrical, chemical, physical properties, sparked great interest to develop and extend its applications. Particularly, graphene based field-effect transistors (GFETs) present exciting and bright prospects for sensing applications due to their greatly higher sensitivity and stronger selectivity. This Review highlights a selection of important topics pertinent to GFETs and their application in electronic sensors. This article begins with a description of the fabrications and characterizations of GFETs, and then introduces the new developments in physical, chemical, and biological electronic detection using GFETs. Finally, several perspective and current challenges of GFETs development are presented, and some proposals are suggested for further development and exploration.
Collapse
Affiliation(s)
- Beibei Zhan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, 210046, China
| | | | | | | | | | | |
Collapse
|