1
|
Liu Z, Wang X, Chen Q, Ma F, Huang Y, Gao Y, Deng Q, Qiao Z, Xing X, Zhu J, Lu F, Wang H. Regulating Twisted Skeleton to Construct Organ‐Specific Perylene for Intensive Cancer Chemotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhonghua Liu
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Xuejuan Wang
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Yijian Gao
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science (UCAS) Beijing 100049 China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science (UCAS) Beijing 100049 China
| |
Collapse
|
2
|
Liu Z, Wang X, Chen Q, Ma F, Huang Y, Gao Y, Deng Q, Qiao ZY, Xing X, Zhu J, Lu F, Wang H. Regulating Twisted Skeleton to Construct Organ-Specific Perylene for Intensive Cancer Chemotherapy. Angew Chem Int Ed Engl 2021; 60:16215-16223. [PMID: 33971079 DOI: 10.1002/anie.202105607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/12/2022]
Abstract
The systemic use of pharmaceutical drugs for cancer patients is a compromise between desirable therapy and side effects because of the intrinsic shortage of organ-specific pharmaceutical drug. Design and construction of pharmaceutical drug to achieve the organ-specific delivery is thus desperately desirable. We herein regulate perylene skeleton to effect organ-specificity and present an example of lung-specific distribution on the basis of bay-twisted PDIC-NC. We further demonstrate that PDIC-NC can target into mitochondria to act as cellular respiration inhibitor, inducing insufficient production of adenosine triphosphate, promoting endogenous H2 O2 and . OH burst, elevating calcium overload, efficiently triggering the synergistic apoptosis, autophagy and endoplasmic reticulum stress of lung cancer cells. The antitumor performance of PDIC-NC is verified on in vivo xenografted, metastasis and orthotopic lung cancer, presenting overwhelming evidences for potentially clinical application. This study contributes a proof-of-concept demonstration of twisted perylene to well attain lung-specific distribution, and meanwhile achieves intensive lung cancer chemotherapy.
Collapse
Affiliation(s)
- Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Xuejuan Wang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yijian Gao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science (UCAS), Beijing, 100049, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science (UCAS), Beijing, 100049, China
| |
Collapse
|
3
|
Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health‐related applications. VIEW 2020. [DOI: 10.1002/viw.20200055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Wenyu Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Hongtao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chendong Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Guiping Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
4
|
Zhao ML, Zeng WJ, Chai YQ, Yuan R, Zhuo Y. An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications. Anal Chem 2020; 92:11044-11052. [DOI: 10.1021/acs.analchem.0c00152] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wei-Jia Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
5
|
Li J, Liu C, Hu Y, Ji C, Li S, Yin M. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy. Theranostics 2020; 10:166-178. [PMID: 31903113 PMCID: PMC6929613 DOI: 10.7150/thno.36999] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Organic chromophores have been well developed for multimodality imaging-guided photothermal therapy (PTT) due to their outstanding optical properties and excellent designability. However, the theranostic efficiencies of most currently available organic chromophores are restricted intrinsically, owing to their poor photostability or complex synthesis procedures. These drawbacks not only increase their cost of synthesis, but also cause side effects in PTT. Method: We presented a facile strategy for constructing a near-infrared (NIR)-absorbing perylenediimide structured with pH-responsive piperazine ring at the bay region. The chromophore was conjugated with carboxyl-end-capped PEG as side chains that can self-assemble into nanoparticles (NPs) in aqueous solution. The NIR optical properties and photothermal conversation ability of PPDI-NPs were investigated. We then studied the imaging-guided PTT of PPDI-NPs under NIR light illumination in 4T1 cells and mice respectively. Results: The excellent photostable PPDI-NPs had near-infrared fluorescence (NIRF) emission and high photothermal conversion efficiency in acidic microenvironment. Importantly, PPDI-NPs can be utilized for the precise detection of tumors by NIRF/photoacoustic/thermal trimodality imaging. Efficient PTT of PPDI-NPs was applied in vitro and in vivo with high biosafety. Conclusion: In summary, we developed pH-responsive perylenediimide nanoparticles as multifunctional phototheranostic agent with high stability and simple synthesis procedures. This study offers a promising organic chromophore for developing phototheranostics in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 the North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | | | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 the North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| |
Collapse
|
6
|
Gao Y, He Z, He X, Zhang H, Weng J, Yang X, Meng F, Luo L, Tang BZ. Dual-Color Emissive AIEgen for Specific and Label-Free Double-Stranded DNA Recognition and Single-Nucleotide Polymorphisms Detection. J Am Chem Soc 2019; 141:20097-20106. [DOI: 10.1021/jacs.9b09239] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuewen He
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Haoke Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Jun Weng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ben Zhong Tang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| |
Collapse
|
7
|
Ji C, Cheng W, Yuan Q, Müllen K, Yin M. From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides. Acc Chem Res 2019; 52:2266-2277. [PMID: 31373482 DOI: 10.1021/acs.accounts.9b00221] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fighting cancer with the means of chemistry remains a tremendous challenge and defines a pressing societal need. Compounds based on synthetic organic dyes have long been recognized as vital tools for cancer diagnosis and therapy (theranostics). Fluorescence and photoacoustic imaging of cancer as well as cancer treatment protocols such as photodynamic and photothermal therapy are all photobased technologies that require chromophores. However, a serious drawback of most chromophoric molecules is photobleaching over the course of their use in biological environments, which severely compromises the desired theranostic effects. At this point, rylenecarboximide (RI) dyes with ultrahigh photostability hold enormous promise. RI stands for a homologous series of dyes consisting of an aromatic core and carboximide auxochromic groups. They possess high molar extinction coefficients and finely tunable photophysical properties. RIs such as perylenebiscarboxylic acid monoimide (PMI), perylenetetracarboxylic acid diimide (PDI), terrylenetetracarboxylic acid diimide (TDI), and quaterrylene tetracarboxylic acid diimide (QDI) have attracted great scientific attention as colorants, components of organic photovoltaics and organic field-effect transistors, as well as tools for biological applications. PDI has appeared as one of the most widely studied RI dyes for fluorescence bioimaging. Our recent breakthroughs including chemotherapy with PDI-based DNA intercalators and photothermal therapy guided by photoacoustic imaging using PDI, TDI, or QDI, define urgent needs for further scientific research and clinical translation. In this Account, we tackle the relationship between chemical structures and photophysical and pharmacologic properties of RIs aiming at new contrast and anticancer agents, which then lay the ground for further biomedical applications. First, we introduce the design concepts for RIs with a focus on their structure-property relationships. Chemical structure has an enormous impact on the fluorescent, chemotoxic, photodynamic, and photothermal performance of RIs. Next, based on the resulting performance criteria, we employ RIs for fluorescence and photoacoustic cancer imaging as well as cancer therapies. When carrying electron donating substituents, PDIs and PMIs possess high fluorescence quantum yield and red-shifted emission which qualifies them for use in cancer fluorescence imaging. Also, some fluorescent PDIs are combined with chemodrugs or developed into DNA intercalators for chemotherapy. PDI-based photosensitizers are prepared by "heavy atom" substitution, showing potential for photodynamic therapy. Further, photothermal agents using PDI, TDI, and QDI with near-infrared absorption and excellent photothermal conversion efficiency offer high promise in photothermal cancer therapy monitored by photoacoustic imaging. Finally, looking jointly at the outstanding properties of RIs and the demands of current biomedicine, we offer an outlook toward further modifications of RIs as a powerful and practical platform for advanced cancer theranostics as well as treatment of other diseases.
Collapse
Affiliation(s)
- Chendong Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Wenyu Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
8
|
Yip AMH, Shum J, Liu HW, Zhou H, Jia M, Niu N, Li Y, Yu C, Lo KKW. Luminescent Rhenium(I)-Polypyridine Complexes Appended with a Perylene Diimide or Benzoperylene Monoimide Moiety: Photophysics, Intracellular Sensing, and Photocytotoxic Activity. Chemistry 2019; 25:8970-8974. [PMID: 30901122 DOI: 10.1002/chem.201900345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/30/2022]
Abstract
This communication reports novel luminescent rhenium(I)-polypyridine complexes appended with a perylene diimide (PDI) or benzoperylene monoimide (BPMI) moiety through a non-conjugated linker. The photophysical and photochemical properties originating from the interactions of the metal polypyridine and perylene units were exploited to afford new cellular reagents with thiol-sensing capability and excellent photocytotoxic activity.
Collapse
Affiliation(s)
- Alex Man-Hei Yip
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Hua-Wei Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Huipeng Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Meiqi Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Niu Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yongxin Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Centre for Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
9
|
Zhao Z, Du T, Liang F, Liu S. Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. Int J Mol Sci 2018; 19:E2283. [PMID: 30081520 PMCID: PMC6121482 DOI: 10.3390/ijms19082283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Due to the addressability and programmability, DNA has been applied not merely in constructing static elegant nanostructures such as two dimensional and three dimensional DNA nanostructures but also in designing dynamic nanodevices. Moreover, DNA could combine with hydrophobic organic molecules to be a new amphiphilic building block and then self-assemble into nanomaterials. Of particular note, a recent state-of-the-art research has turned our attention to the amphiphilic DNA organic hybrids including small molecule modified DNA (lipid-DNA, fluorescent molecule-DNA, etc.), DNA block copolymers, and DNA-dendron hybrids. This review focuses mainly on the development of their self-assembly behavior and their potential application in nanomaterial and biomedicine. The potential challenges regarding of the amphiphilic DNA organic hybrids are also briefly discussed, aiming to advance their practical applications in nanoscience and biomedicine.
Collapse
Affiliation(s)
- Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ting Du
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
10
|
Grande V, Soberats B, Herbst S, Stepanenko V, Würthner F. Hydrogen-bonded perylene bisimide J-aggregate aqua material. Chem Sci 2018; 9:6904-6911. [PMID: 30210765 PMCID: PMC6124903 DOI: 10.1039/c8sc02409j] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
A water-soluble perylene bisimide dye self-assembles in aqueous media into thermoresponsive aqua materials with photoluminescence within the biological transparency window.
A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60–95 wt% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30–50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.
Collapse
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Bartolome Soberats
- Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Stefanie Herbst
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Vladimir Stepanenko
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
11
|
Wang L, Gao X, Wei Y, Liu K, Huang J, Wang J, Yan Y. Coordinating Self-Assembly of Copper Perylenetetracarboxylate Nanorods: Selectively Lighting up Normal Cells around Cancerous Ones for Better Cancer Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17630-17638. [PMID: 29733187 DOI: 10.1021/acsami.8b03211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific imaging of cancer cells has been well-accepted in cancer diagnosis although it cannot precisely mark the boundary between the normal and cancerous cells and report their mutual influence. We report a nanorod fluorescent probe of copper perylenetetracarbonate (PTC-Cu) that can specifically light up normal cells. In combination with cancer cell imaging, the cocultured normal and cancer cells can be lit up with different colors, offering a clear contrast between the normal and cancer cells when they coexist. Because cancerous cells are only 20-30% in cancer area, this provides a possibility to visibly detect the mutual influence between the cancer and normal cells during therapy. We expect this method is beneficial to better cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lizhi Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , People's Republic of China
| | - Xuedong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Ying Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Kaerdun Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , People's Republic of China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| |
Collapse
|
12
|
Tandon R, Luxami V, Kaur H, Tandon N, Paul K. 1,8-Naphthalimide: A Potent DNA Intercalator and Target for Cancer Therapy. CHEM REC 2017; 17:956-993. [PMID: 28375569 DOI: 10.1002/tcr.201600134] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/11/2022]
Abstract
The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of clinically used anticancer drugs. Therefore, the discovery of novel and effective drugs is still an extremely primary mission. Naphthalimide family is one of the highly active anticancer drug based upon effective intercalator with DNA. In this article, we review the discovery and development of 1,8-naphthalimide moiety, and, especially, pay much attention to the structural modifications and structure activity relationships. The review demonstrates how modulation of the moiety affecting naphthalimide compound for DNA binding that is achieved to afford a profile of antitumor activity. The DNA binding of imide and ring substitution at naphthalimide, bisnaphthalimide, naphthalimide-metal complexes is achieved by molecular recognition through intercalation mode. Thus, this synthetic/natural small molecule can act as a drug when activation or inhibition of DNA function, is required to cure or control the cancer disease. The present study is a review of the advances in 1,8-naphthalimide-related research, with a focus on how such derivatives are intercalated into DNA for their anticancer activities.
Collapse
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Physical Sciences, Lovely, Professional University, Phagwara-, 144411, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar University, Patiala-, 147004, India
| | - Harsovin Kaur
- Department of Chemistry, School of Physical Sciences, Lovely, Professional University, Phagwara-, 144411, India
| | - Nitin Tandon
- Department of Chemistry, School of Physical Sciences, Lovely, Professional University, Phagwara-, 144411, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar University, Patiala-, 147004, India
| |
Collapse
|
13
|
Ye Y, Zheng Y, Ji C, Shen J, Yin M. Self-Assembly and Disassembly of Amphiphilic Zwitterionic Perylenediimide Vesicles for Cell Membrane Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4534-4539. [PMID: 28094505 DOI: 10.1021/acsami.6b15592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Animal cells have complicated dynamics of cell membrane structures which require desirable dyes for in vivo imaging. Here, an asymmetric amphiphilic zwitterionic perylenediimide (ZP) derivative has been constructed by introducing an octyl chain and a zwitterionic head to each imide position of perylenediimide chromophore. ZP could self-assemble into vesicles in aqueous solution. The aggregated ZP vesicles have been explored to image cell inner or surface membrane structures by a controlled disassembly process. After being taken up into cells, ZP vesicles disassemble into monomers and then incorporate into cell inner membranes. The vesicles can also disassemble in acid food and incorporate into cell surface membrane of gut cells. The research provides a new tool to label the complicated cell membrane structures with up to 3 days long-term labeling for life science applications.
Collapse
Affiliation(s)
- Yong Ye
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Yang Zheng
- Department of Entomology, China Agricultural University , 100193 Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Jie Shen
- Department of Entomology, China Agricultural University , 100193 Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| |
Collapse
|