1
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Liu Y, Li Y, Shen W, Li M, Wang W, Jin X. Trend of albumin nanoparticles in oncology: a bibliometric analysis of research progress and prospects. Front Pharmacol 2024; 15:1409163. [PMID: 39070787 PMCID: PMC11272567 DOI: 10.3389/fphar.2024.1409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background Delivery systems based on albumin nanoparticles (NPs) have recently garnered substantial interest in anti-tumor drug development. However, systematic bibliometric analyses in this field remain lacking. This study aimed to analyze the current research status, hotspots, and frontiers in the application of albumin NPs in the field of oncology from a bibliometric perspective. Methods Using the Web of Science Core Collection (WOSCC) as the data source, retrieved articles were analyzed using software, such as VOSviewer 1.6.18 and CiteSpace 6.1.6, and the relevant visualization maps were plotted. Results From 1 January 2000, to 15 April 2024, 2,262 institutions from 67 countries/regions published 1,624 articles related to the application of albumin NPs in the field of oncology. The USA was a leader in this field and held a formidable academic reputation. The most productive institution was the Chinese Academy of Sciences. The most productive author was Youn YS, whereas Kratz F was the most frequently co-cited author. The most productive journal was the International Journal of Nanomedicine, whereas the Journal of Controlled Release was the most co-cited journal. Future research hotspots and frontiers included "rapid and convenient synthesis methods predominated by self-assembly," "surface modification," "construction of multifunctional NPs for theranostics," "research on natural active ingredients mainly based on phenolic compounds," "combination therapy," and "clinical applications." Conclusion Based on our bibliometric analysis and summary, we obtained an overview of the research on albumin NPs in the field of oncology, identified the most influential countries, institutions, authors, journals, and citations, and discussed the current research hotspots and frontiers in this field. Our study may serve as an important reference for future research in this field.
Collapse
Affiliation(s)
- Ye Liu
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi Li
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Wei Shen
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Min Li
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Wen Wang
- Department of Rheumatology and Immunology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Xin Jin
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Truong DH, Tran PTT, Tran TH. Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer. Pharm Dev Technol 2024; 29:221-235. [PMID: 38407140 DOI: 10.1080/10837450.2024.2322570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non invasive therapeutic approach for cancer treatment, offering unique advantages over conventional treatments. The combination of light activation and photosensitizing agents allows for targeted and localized destruction of cancer cells, reducing damage to surrounding healthy tissues. In recent years, the integration of nanoparticles with PDT has garnered significant attention due to their potential to enhance therapeutic outcomes. This review article aims to provide a comprehensive overview of the current state-of-the-art in utilizing nanoparticles for photodynamic therapy in cancer treatment. We summarized various nanoparticle-based approaches, their properties, and their implications in optimizing PDT efficacy, and discussed challenges and prospects in the field.
Collapse
Affiliation(s)
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| |
Collapse
|
4
|
Liu LH, Liu YF, Zhang HB, Liu XL, Zhang HW, Huang B, Lin F, Li WH. A Novel ANG-BSA/BCNU/ICG MNPs Integrated for Targeting Therapy of Glioblastoma. Technol Cancer Res Treat 2024; 23:15330338241281321. [PMID: 39444362 PMCID: PMC11526396 DOI: 10.1177/15330338241281321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Develop an albumin nanoparticle-based nanoprobe for targeted glioblastoma (GBM) diagnosis and treatment, utilizing Angopep-2 for low-density lipoprotein receptor-related protein (LRP) targeting. METHODS Combined albumin-coated superparamagnetic iron oxide (SPIO), Carmustine (BCNU), and indocyanine green (ICG). Assessed morphology, size, Zeta potential, fluorescence, and drug encapsulation. Conducted in vitro fluorescence/MRI imaging and cell viability assays, and in vivo nanoprobe accumulation evaluation in brain tumors. RESULTS ANG-BSA/BCNU/ICG MNPs exhibited superior targeting and cytotoxicity against GBM cells in vitro. In vivo, enhanced brain tumor accumulation during imaging was observed. CONCLUSION This targeted imaging and drug delivery system holds promise for efficient GBM therapy and intraoperative localization, addressing Blood-brain barrier (BBB) limitations with precise drug delivery and imaging capabilities.
Collapse
Affiliation(s)
- Li-Hong Liu
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China
| | - Yu-Feng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hong-Bo Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xiao-Lei Liu
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Biao Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, People's Republic of China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Fan Lin
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China
| |
Collapse
|
5
|
Lin W, Liu Y, Wang J, Zhao Z, Lu K, Meng H, Luoliu R, He X, Shen J, Mao ZW, Xia W. Engineered Bacteria Labeled with Iridium(III) Photosensitizers for Enhanced Photodynamic Immunotherapy of Solid Tumors. Angew Chem Int Ed Engl 2023; 62:e202310158. [PMID: 37668526 DOI: 10.1002/anie.202310158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Despite metal-based photosensitizers showing great potential in photodynamic therapy for tumor treatment, the application of the photosensitizers is intrinsically limited by their poor cancer-targeting properties. Herein, we reported a metal-based photosensitizer-bacteria hybrid, Ir-HEcN, via covalent labeling of an iridium(III) photosensitizer to the surface of genetically engineered bacteria. Due to its intrinsic self-propelled motility and hypoxia tropism, Ir-HEcN selectively targets and penetrates deeply into tumor tissues. Importantly, Ir-HEcN is capable of inducing pyroptosis and immunogenic cell death of tumor cells under irradiation, thereby remarkably evoking anti-tumor innate and adaptive immune responses in vivo and leading to the regression of solid tumors via combinational photodynamic therapy and immunotherapy. To the best of our knowledge, Ir-HEcN is the first metal complex decorated bacteria for enhanced photodynamic immunotherapy.
Collapse
Affiliation(s)
- Wenkai Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jinhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhennan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kai Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - He Meng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruiqi Luoliu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaojun He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
6
|
Wang M, He M, Zhang M, Xue S, Xu T, Zhao Y, Li D, Zhi F, Ding D. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy. Biomaterials 2023; 301:122257. [PMID: 37531778 DOI: 10.1016/j.biomaterials.2023.122257] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The efficacy of photodynamic therapy (PDT) is severely limited by the hypoxic tumor microenvironment (TME), while the performance of PDT-aroused antitumor immunity is frustrated by the immunosuppressive TME and deficient immunogenic cell death (ICD) induction. To simultaneously tackle these pivotal problems, we herein create an albumin-based nanoplatform co-delivering IR780, NLG919 dimer and a hypoxia-activated prodrug tirapazamine (TPZ) as the dual enhancer for synergistic cancer therapy. Under NIR irradiation, IR780 generates 1O2 for PDT, which simultaneously cleaves the ROS-sensitive linker for triggered TPZ release, and activates its chemotherapy via exacerbated tumor hypoxia. Meanwhile, firstly found by us, TPZ-mediated chemotherapy boosts PDT-induced tumor ICD to evoke stronger antitumor immunity including the development of tumor-specific cytotoxic T lymphocytes (CTLs). Eventually, enriched intratumoral GSH triggers the activation of NLG919 to mitigate the immunosuppressive TME via specific indoleamine 2,3-dioxygenase 1 (IDO-1) inhibition, consequently promoting the intratumoral infiltration of CTLs and the killing of both primary and distant tumors, while the resultant memory T cells allows nearly 100% suppression of tumor recurrence and metastasis. This nanoplatform sets up an example for dully enhanced photodynamic immunotherapy of breast cancer via hypoxia-activated chemotherapy, and paves a solid way for the treatment of other hypoxic and immunosuppressive malignant tumors.
Collapse
Affiliation(s)
- Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, D02 NY74, Ireland
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Yu H, Tiemuer A, Zhu Y, Sun Y, Zhang Y, Liu L, Liu Y. Albumin-based near-infrared phototheranostics for frequency upconversion luminescence/photoacoustic dual-modal imaging-guided photothermal therapy. Biomater Sci 2023. [PMID: 37183589 DOI: 10.1039/d3bm00239j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Engineering versatile phototheranostics for multimodal diagnostic imaging and effective therapy has great potential in cancer treatment. However, developing an inherently versatile molecule is a huge challenge. In this work, a near-infrared organic dye (NRh) was synthesized and further bound with bovine serum albumin (BSA) to construct facile "one-for-all" phototheranostics (NRh-BSA NPs), which exhibited enhanced frequency upconversion luminescence (FUCL, λex/em = 850/825 nm) and excellent photoacoustic (PA) and photothermal properties (λ'ex = 808 nm). Additionally, the BSA-modified phototheranostics NRh-BSA NPs showed specific accumulation in the tumor region through passive targeting. Based on the FUCL/PA dual modal imaging-guidance, the NRh-BSA NPs not only can guarantee the accuracy of imaging of the U87MG tumor sites, but also can improve the therapeutic effect on ablating tumors without recurrence by photothermal therapy (PTT). Collectively, our work proposed a novel strategy to construct versatile phototheranostics with the unique FUCL/PA imaging-guided technique for accurate cancer theranostics.
Collapse
Affiliation(s)
- Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Aliya Tiemuer
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanyan Zhu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Liu
- Clinical Laboratory, Xiantao First People's Hospital, Xiantao, 433000, China.
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
8
|
Wang Z, Liu A, Li X, Guan L, Xing H, He L, Fang L, Zvyagin AV, Yang X, Yang B, Lin Q. Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer. Talanta 2023; 256:124255. [PMID: 36652761 DOI: 10.1016/j.talanta.2023.124255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The high incidence and complex subtypes of prostate cancer put forward higher requirements for accurate diagnosis. Furthermore, advanced prostate cancer is prone to metastasis. Single biological imaging mode faces a challenge of sensitive and fast bioimaging of metastasic prostate cancer. Thus, exploring a nanoprobe with multi-mode imaging function has an important impact on preoperative imaging and intraoperative visualization guide of metastatic prostate cancer. Herein, based on the optical properties and X-ray attenuation capability of Au nanodots as well as the slow electronic relaxation of Gd3+, we designed and fabricated the multifunctional nanoprobe Au/Gd nanodots for multi-mode imaging and accurate diagnosis of bone metastatic prostate cancer. The results showed that multiple imaging modes complement each other to achieve high-precision of metastasic prostate cancer detection and accurately guide treatment. In addition, in vitro/vivo experiments showed that Au/Gd nanodots had good biocompatibility and biosafety. Therefore, the prepared multifunctional nanoprobe may provide new strategies and insights for precise diagnosis of metastatic prostate cancer in clinical practice.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Huiyuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Liang He
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, PR China.
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, PR China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, 2109, Australia; Australia and Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Xiaoyu Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
9
|
Liu X, Xie H, Zhuo S, Zhou Y, Selim MS, Chen X, Hao Z. Ru(II) Complex Grafted Ti 3C 2T x MXene Nano Sheet with Photothermal/Photodynamic Synergistic Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:958. [PMID: 36985852 PMCID: PMC10051588 DOI: 10.3390/nano13060958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
For a long time, the emergence of microbial drug resistance due to the abuse of antibiotics has greatly reduced the therapeutic effect of many existing antibiotics. This makes the development of new antimicrobial materials urgent. Light-assisted antimicrobial therapy is an alternative to antibiotic therapy due to its high antimicrobial efficiency and non-resistance. Here, we develop a nanocomposite material (Ru@MXene) which is based on Ru(bpy)(dcb)2+ connected to MXene nanosheets by ester bonding as a photothermal/photodynamic synergistic antibacterial material. The obtained Ru@MXene nanocomposites exhibit a strengthened antimicrobial capacity compared to Ru or MXene alone, which can be attributed to the higher reactive oxygen species (ROS) yield and the thermal effect. Once exposed to a xenon lamp, Ru@MXene promptly achieved almost 100% bactericidal activity against Escherichia coli (200 μg/mL) and Staphylococcus aureus (100 μg/mL). This is ascribed to its synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) capabilities. Consequently, the innovative Ru@MXene can be a prospective non-drug antimicrobial therapy that avoids antibiotic resistance in practice. Notably, this high-efficiency PTT/PDT synergistic antimicrobial material by bonding Ru complexes to MXene is the first such reported model. However, the toxic effects of Ru@MXene materials need to be studied to evaluate them for further medical applications.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongchi Xie
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Zhuo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanhong Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mohamed S. Selim
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Egyptian Petroleum Research Institute, Petroleum Application Department, Cairo 11727, Egypt
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Hao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023; 11:1829-1848. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
11
|
Ma D, Chen W, Wang L, Han R, Tang K. O 2 self-sufficient and glutathione-depleted nanoplatform for amplifying phototherapy synergistic thermodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113060. [PMID: 36538856 DOI: 10.1016/j.colsurfb.2022.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/28/2022]
Abstract
Tumor hypoxia and high levels of intracellular glutathione (GSH) significantly limit the efficacy of photodynamic therapy (PDT). In addition, a single PDT treatment strategy is relatively insufficient to eliminate tumor, further limiting its application in biomedicine. Therefore, we demonstrated an omnipotent nanoplatform based on 2,2'-azobis [2-(2 imidazolin-2-yl)propane] dihydrochloride (AIPH) loaded manganese dioxide (MnO2) nanoflower (abbreviated as MnO2-AIPH) with simultaneously self-supplying oxygen (O2), depleting GSH, performing PDT, photothermal (PTT) and thermodynamic therapy (TDT) for boosting antitumor effects. By 808 nm near infrared (NIR) light irradiation, MnO2-AIPH not only reveals highly toxic reactive oxygen species (ROS) generation and excellent photothermal conversion ability for PDT and PTT, but also generates alkyl radicals by decomposing AIPH for TDT simultaneously to eliminate tumor effectively. Once internalized into the tumor, MnO2 will be degraded to Mn2+ which catalyzes endogenous hydrogen peroxide (H2O2) into O2 for enhanced PDT. Moreover, MnO2 can facilitate GSH oxidation to amplify oxidative stress, further enhancing ROS and alkyl radicals mediated cancer cell killing. In brief, this study provides a paradigm of antitumor efficiency amplification by the combination of sustained oxygen supply, potent GSH depletion, and phototherapy synergistic TDT.
Collapse
Affiliation(s)
- Danhua Ma
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo 315010, PR China
| | - Wei Chen
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Liang Wang
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo 315010, PR China
| | - Renlu Han
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
12
|
Song L, Cheng H, Ren Z, Wang H, Lu J, Zhao Q, Wang S. Red light-emitting carbon dots for reduced phototoxicity and photothermal/photodynamic-enhanced synergistic tumor therapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Meng D, Yang S, Yang Y, Zhang L, Cui L. Synergistic chemotherapy and phototherapy based on red blood cell biomimetic nanomaterials. J Control Release 2022; 352:146-162. [PMID: 36252749 DOI: 10.1016/j.jconrel.2022.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Novel drug delivery systems (DDSs) have become the mainstay of research in targeted cancer therapy. By combining different therapeutic strategies, potential DDSs and synergistic treatment approaches are needed to effectively deal with evolving drug resistance and the adverse effects of cancer. Nowadays, developing and optimizing human cell-based DDSs has become a new research strategy. Among them, red blood cells can be used as DDSs as they significantly enhance the pharmacokinetics of the transported drug cargo. Phototherapy, as a novel adjuvant in cancer treatment, can be divided into photodynamic therapy and photothermal therapy. Phototherapy using erythropoietic nanocarriers to mimic the unique properties of erythrocytes and overcome the limitations of existing DDSs shows excellent prospects in clinical settings. This review provides an overview of the development of photosensitizers and research on bio-nano-delivery systems based on erythrocytes and erythrocyte membranes that are used in achieving synergistic outcomes during phototherapy/chemotherapy.
Collapse
Affiliation(s)
- Di Meng
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China
| | - Shuoye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China.
| | - Yanan Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China
| | - Lu Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| | - Lan Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| |
Collapse
|
14
|
Mitochondrion, lysosome, and endoplasmic reticulum: Which is the best target for phototherapy? J Control Release 2022; 351:692-702. [PMID: 36150580 DOI: 10.1016/j.jconrel.2022.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Photodynamic therapy (PDT) is a robust cancer treatment modality, and the precise spatiotemporal control of its subcellular action site is crucial for its effectiveness. However, accurate comparison of the efficacy of different organelle-targeted PDT approaches is challenging since it is difficult to find a single system that can achieve separate targeting of different organelles with separable time windows and similar binding amounts. Herein, we conjugated chlorin e6 (Ce6) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (ammonium salt) (DSPE-PEG5000-NH2) to afford DSPE-PEG-Ce6, which could migrate from mitochondrion to lysosome and ultimately to endoplasmic reticulum (ER) after cellular internalization. Benefiting from the dynamic subcellular distribution of DSPE-PEG-Ce6 with tunable organelle-binding amounts, we accurately determined the PDT efficacy order of the molecule, i.e., mitochondrion > ER > lysosome. This work proposes an ideal model system for accurately evaluating the specific organelle-targeted PDT efficacy and may promote the future development of effective PDT strategies.
Collapse
|
15
|
Sun J, Zhu S, Xu W, Jiang G. Redox-responsive hyaluronan-conjugated polypyrrole nanoparticles targeting chemo-photothermal therapy for breast cancer. Front Bioeng Biotechnol 2022; 10:1049437. [PMID: 36353737 PMCID: PMC9637570 DOI: 10.3389/fbioe.2022.1049437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 12/09/2022] Open
Abstract
The combination of chemo-photothermal therapy has a wide application prospect in the intensive treatment of cancer. In this study, we developed a complex nanoparticle consist of polypyrrole, cystine dihydrochloride and hyaluronan. The polypyrrole nanoparticles loaded with paclitaxel exhibited good photothermal effects, and the drug release can be triggered by combined response of temperature and redox. In vitro biological studies indicated the nanoparticles could effectively induced apoptosis of MDA-MB-231 breast cancer cells involved in the potential mechanism of inhibition of biological expression of heat shock proteins and JAK-STAT signaling pathway. In addition, the nanoparticles have a significant inhibitory effect on cancer growth in breast tumor-bearing mice model, indicating that they have great potential for synergistic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Jingjun Sun
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Breast Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Jingjun Sun, ; Guoqin Jiang,
| | - Shuangjiu Zhu
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thyroid and Breast Surgery, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Weixuan Xu
- Department of Breast Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
- School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jingjun Sun, ; Guoqin Jiang,
| |
Collapse
|
16
|
Construction of MPDA@IR780 nano drug carriers and photothermal therapy of tumor cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Sekar R, Basavegowda N, Jena S, Jayakodi S, Elumalai P, Chaitanyakumar A, Somu P, Baek KH. Recent Developments in Heteroatom/Metal-Doped Carbon Dot-Based Image-Guided Photodynamic Therapy for Cancer. Pharmaceutics 2022; 14:1869. [PMID: 36145617 PMCID: PMC9504834 DOI: 10.3390/pharmaceutics14091869] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Carbon nanodots (CNDs) are advanced nanomaterials with a size of 2-10 nm and are considered zero-dimensional carbonaceous materials. CNDs have received great attention in the area of cancer theranostics. The majority of review articles have shown the improvement of CNDs for use in cancer therapy and bioimaging applications. However, there is a minimal number of consolidated studies on the currently developed doped CNDs that are used in various ways in cancer therapies. Hence, in this review, we discuss the current developments in different types of heteroatom elements/metal ion-doped CNDs along with their preparations, physicochemical and biological properties, multimodal-imaging, and emerging applications in image-guided photodynamic therapies for cancer.
Collapse
Affiliation(s)
- Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | | | - Saktishree Jena
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Pandian Elumalai
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500 085, Telangana, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
18
|
Fan Y, Li F, Zou H, Xu Z, Liu H, Luo R, Zhang G, Li R, Yan Y, Liu H. Photothermal effect of indocyanine green modified scaffold inhibits oral squamous cell carcinoma and promotes wound healing. BIOMATERIALS ADVANCES 2022; 137:212811. [PMID: 35929250 DOI: 10.1016/j.bioadv.2022.212811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
As the most prevalent malignant tumor of the oral and maxillofacial regions, squamous cell carcinoma (SCC) has relatively high recurrence and low survival rates. Currently, the most common treatment strategies are surgery and chemoradiotherapy. However, incomplete removal of the tumor can allow residual tumor cells to regrow and metastasis, resulting in treatment failure. Although postoperative adjuvant radiotherapy or chemotherapy can reduce recurrence, serious adverse reactions significantly compromise patients' quality of life. Large soft tissue defects after surgery are also difficult to heal. Therefore, therapies that eliminate residual tumor cells and promote tissue regeneration post-surgery are urgently needed. Indocyanine green (ICG) can convert absorbed light into heat to ablate tumor cells. Three-dimensional (3D) scaffolds are efficient drug carriers and support cell migration and proliferation. Here, we fabricated collagen/silk fibroin encapsulated ICG (I-CS) scaffolds by combining 3D printing with freeze-drying methods. The I-CS scaffolds delayed ICG decomposition and clearance, allowing the scaffolds to be used repeatedly for photothermal therapy (PTT). With the laser positioned at 4 cm from the 1.0 I-CS scaffold and irradiation for 10 min (1.0 W/cm2), temperatures above 50 °C were achieved, which effectively killed SCC-25 cells in vitro and suppressed tumor growth in vivo. Moreover, the I-CS scaffolds supported attachment and proliferation of rat buccal mucosa fibroblasts (RBMFs) and promoted the repair of buccal mucosal wounds in rats. These results suggested that I-CS scaffolds may be useful in preventing local recurrence and support regeneration of large soft tissue defects after oral SCC surgery.
Collapse
Affiliation(s)
- Yaru Fan
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China; School of Stomatology, Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, China
| | - Fengji Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China; School of Stomatology, Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, China
| | - Huiru Zou
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Zhaoyuan Xu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Han Liu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Rui Luo
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Guanmeng Zhang
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
| | - Yingbin Yan
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
| | - Hao Liu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
| |
Collapse
|
19
|
Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorg Chem 2022; 61:6852-6860. [PMID: 35477242 DOI: 10.1021/acs.inorgchem.2c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combined photothermal/photodynamic therapy is a promising strategy to achieve an enhanced anticancer effect. However, hypoxia is one of the representative characteristics of the microenvironment of solid tumors, which not only attenuates the therapeutic effects but also promotes tumor invasion and metastasis. Herein, a PtBi-β-CD-Ce6 nanoplatform for the generation of sustained O2 was constructed for more effective tumor therapy. In detail, the catalase (CAT)-like nanozyme, PtBi, which could decompose H2O2 to produce O2, was modified with β-cyclodextrin (β-CD). O2 would be converted into 1O2 by PtBi-β-CD-Ce6 for enhanced photodynamic therapy (PDT) under 650 nm laser irradiation. In addition, by reason of excellent absorption in the near-infrared-II (NIR-II) region, PtBi-β-CD-Ce6 was used for photoacoustic imaging (PA) and photothermal imaging (PT)-guided photothermal therapy (PTT) in the NIR-II biowindow. Furthermore, PtBi-β-CD-Ce6 could be elected to serve as a contrast agent for X-ray computed tomography (CT) imaging due to the apparent X-ray attenuation capability of the Pt and Bi elements themselves. Therefore, by integrating the advantages of overcoming the hypoxia function and photothermal effect into a single nanoplatform, PtBi-β-CD-Ce6 showed an immense possibility in multimodal imaging-guided combined PDT/PTT.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Shuiping Luo
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
20
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
Hu H, Liu X, Hong J, Ye N, Xiao C, Wang J, Li Z, Xu D. Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. J Colloid Interface Sci 2022; 612:246-260. [PMID: 34995863 DOI: 10.1016/j.jcis.2021.12.172] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/10/2023]
Abstract
Cancer phototherapy has attracted increasing attention for its effectiveness, relatively low side effect, and noninvasiveness. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has been shown to exhibit promising prospects in cancer treatment. However, the tumor hypoxia, high level of intracellular glutathione (GSH), and insufficient photosensitizer uptake significantly limit the PDT efficacy. In this work, we combine oxygen supply, GSH depletion, and tumor targeting in one nanoplatform, folate-decorated mesoporous polydopamine nanoparticles (FA-MPPD) co-loaded with new indocyanine green (IR-820) and perfluorooctane (PFO) (IR-820/PFO@FA-MPPD), to overcome the PDT resistance for enhanced cancer PDT/PTT. IR-820/PFO@FA-MPPD exhibit efficient singlet oxygen generation and photothermal effect under 808 nm laser irradiation, GSH-promoted IR-820 release, and efficient cellular uptake, resulting in high intracellular reactive oxygen species (ROS) level under 808 nm laser irradiation and strong photocytotoxicity in vitro. Following intratumoral injection, IR-820/PFO@FA-MPPD can relieve tumor hypoxia sustainably by PFO-mediated oxygen transport and deplete intracellular GSH by the Michael addition reaction, which boost the PDT effect and lead to the most potent antitumor effect upon 808 nm laser irradiation. The multifunctional IR-820/PFO@FA-MPPD developed in this work offer a relatively simple and effective strategy to potentiate PDT for efficient cancer phototherapy.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, China.
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
22
|
Li L, Wang X, Gao R, Zhang B, Liu Y, Zhou J, Fu L, Wang J. Inflammation-Triggered Supramolecular Nanoplatform for Local Dynamic Dependent Imaging-Guided Therapy of Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105188. [PMID: 35023331 PMCID: PMC8895155 DOI: 10.1002/advs.202105188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 05/20/2023]
Abstract
The aging of population has resulted in a significant increase in the prevalence of rheumatoid arthritis (RA), which is a persistent and recurrent synovial inflammation caused by abnormal immune activation. Herein, the authors designed an inflammation-triggered disassembly (ITD) nanoplatform by a supramolecular assembly method, which controls the decomposition and drug release through changes in cytokine concentrations and redox potentials during the onset of arthritis, and its dual-targeted synergistic effect on collagen-induced arthritis (CIA) rats resulted in higher cell death rate and immunosuppressive rate. Meanwhile, they propose the local dynamic dependent imaging (LDDI) technology to diagnose the disease status, which may produce corresponding changes with the fluctuation of inflammatory activity and improve the accuracy of dual-target therapy by monitoring the synovial changes through in situ photoactivation of the second near infrared light (NIR-II). Very importantly, histological analysis shows that ITD strategy relieved joint destruction and cartilage degeneration and its clinical score is similar to that of the healthy group. Their work provides an effective strategy for the early diagnosis and treatment of acute and chronic inflammation diseases, which can interfere to abnormal immune activation, rather than affecting the normal function of immune system.
Collapse
Affiliation(s)
- Luoyuan Li
- School of Pharmaceutical SciencesKey Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084P. R. China
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Xuelong Wang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Bei Zhang
- School of Pharmaceutical SciencesKey Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084P. R. China
| | - Yuxin Liu
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jian Wang
- School of Pharmaceutical SciencesKey Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
23
|
Chen Y, Ye J, Lv G, Liu W, Jiang H, Liu X, Wang X. Hydrogen Peroxide and Hypochlorite Responsive Fluorescent Nanoprobes for Sensitive Cancer Cell Imaging. BIOSENSORS 2022; 12:bios12020111. [PMID: 35200371 PMCID: PMC8870256 DOI: 10.3390/bios12020111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/10/2023]
Abstract
Accurate diagnosis of cancer cells directly affects the clinical treatment of cancer and can significantly improve the therapeutic effect of cancer patients. Cancer cells have a unique microenvironment with a large amount of peroxide inside, effectively differentiated from relevant microenvironment normal cells. Therefore, designing the high-sensitive probes to recognize and distinguish the special physiological microenvironment of cancer cells can shed light on the early diagnosis of cancers. In this article, we design and construct a fluorescence (FL) contrast agent for cancer cell recognition and imaging analysis. Firstly, luminol-gold NPs (Lum-AuNPs) have been initially built, and then successfully loaded with the fluorescent receptor Chlorin e6 (Ce6) to prepare the luminescent nanoprobes (Ce6@Lum-AuNPs) with green synthesis, i.e., with biocompatible agents and mild temperature. The as-prepared fluorescent Ce6@Lum-AuNPs can efficiently and sensitively realize FL bioimaging of cancer cells. The relevant bio-sensing mechanism pertains to the presence of hypochlorite (ClO-); hydrogen peroxide (H2O2) in cancer cells could readily interact with luminol to produce chemiluminescence, which can activate the Ce6 component to emit near-infrared (NIR) FL. Therefore, this raises the possibility of utilizing the Ce6@Lum-AuNPs as efficient fluorescent nanoprobes for promising cancer early diagnosis and other relevant disease bioanalysis.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (J.Y.); (W.L.); (H.J.); (X.L.)
| | - Jing Ye
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (J.Y.); (W.L.); (H.J.); (X.L.)
| | - Gang Lv
- Mathematical & Physical Science School, North China Electric Power University, Baoding 071003, China;
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (J.Y.); (W.L.); (H.J.); (X.L.)
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (J.Y.); (W.L.); (H.J.); (X.L.)
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (J.Y.); (W.L.); (H.J.); (X.L.)
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (J.Y.); (W.L.); (H.J.); (X.L.)
- Correspondence:
| |
Collapse
|
24
|
Fadel M, Fadeel DA, Tawfik A, El-Kholy AI, Mosaad YO. Rose Bengal-gold-polypyrrole nanoparticles as a photothermal / photodynamic dual treatment of recalcitrant plantar warts: Animal and clinical study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Cao D, Martinez JG, Hara ES, Jager EWH. Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107345. [PMID: 34877728 DOI: 10.1002/adma.202107345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Inspired by the dynamic process of initial bone development, in which a soft tissue turns into a solid load-bearing structure, the fabrication, optimization, and characterization of bioinduced variable-stiffness actuators that can morph in various shapes and change their properties from soft to rigid are hereby presented. Bilayer devices are prepared by combining the electromechanically active properties of polypyrrole with the compliant behavior of alginate gels that are uniquely functionalized with cell-derived plasma membrane nanofragments (PMNFs), previously shown to mineralize within 2 days, which promotes the mineralization in the gel layer to achieve the soft to stiff change by growing their own bone. The mineralized actuator shows an evident frozen state compared to the movement before mineralization. Next, patterned devices show programmed directional and fixated morphing. These variable-stiffness devices can wrap around and, after the PMNF-induced mineralization in and on the gel layer, adhere and integrate onto bone tissue. The developed biohybrid variable-stiffness actuators can be used in soft (micro-)robotics and as potential tools for bone repair or bone tissue engineering.
Collapse
Affiliation(s)
- Danfeng Cao
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Jose G Martinez
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Edwin W H Jager
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| |
Collapse
|
26
|
Ge H, Du J, Long S, Xia X, Zheng J, Xu N, Yao Q, Fan J, Peng X. Near-Infrared Light Triggered H 2 Generation for Enhanced Photothermal/Photodynamic Therapy against Hypoxic Tumor. Adv Healthc Mater 2022; 11:e2101449. [PMID: 34879433 DOI: 10.1002/adhm.202101449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Indexed: 01/09/2023]
Abstract
The principle of photochemical transformation has shown significant inspiration on phototherapy of solid tumors. However, both photodynamic therapy (PDT) and photothermal therapy (PTT) can induce stress response of tumor cells, which draw the attention in recent. Herein, an asymmetric and lollipop like nanostructure consisting of gold nanorod/titanium dioxide (l-TiO2 -GNR) is developed by controlling single head growth of titanium dioxide (TiO2 ) on gold nanorods (GNR). Through the reasonable utilization of hot electrons of GNR by 808 nm light irradiation, l-TiO2 -GNR perform type I-PDT, mild PTT (48 °C), and H2 therapy which is efficient for hypoxic tumors. In particular, H2 can downregulate both triphosadenine and heat shock protein which are found to be main source of tumor stress response. l-TiO2 -GNR opens a new window for treatment of hypoxic tumor by the perfect synergy of type I-PDT, mild PTT, and H2 therapy.
Collapse
Affiliation(s)
- Haoying Ge
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Jiazhu Zheng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
27
|
Karges J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew Chem Int Ed Engl 2022; 61:e202112236. [PMID: 34748690 DOI: 10.1002/anie.202112236] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer has emerged over the last decades as one of the deadliest diseases in the world. Among the most commonly used techniques (i.e. surgery, immunotherapy, radiotherapy or chemotherapy), increasing attention has been devoted towards photodynamic therapy. However, the vast majority of clinically applied photosensitizers are not ideal and associated with several limitations including poor aqueous solubility, poor photostability and slow clearance from the body, causing photosensitivity. In an effort to overcome these drawbacks, much attention has been devoted towards the incorporation of a metal ion. Herein, the clinical development of metal-containing compounds including Purlytin® , Lutrin® /Antrin® , Photosens® , TOOKAD® soluble or TLD-1433 is critically reviewed.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
28
|
Karges J. Klinische Entwicklung von Metallkomplexen als Photosensibilisatoren für die photodynamische Therapie von Krebs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
29
|
Ouyang A, Zhao D, Wang X, Zhang W, Jiang T, Li A, Liu W. Covalent RGD-graphene-phthalocyanine nanocomposite for fluorescence imaging-guided dual active/passive tumor-targeted combinatorial phototherapy. J Mater Chem B 2021; 10:306-320. [PMID: 34935023 DOI: 10.1039/d1tb02254g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poor tumor selectivity, low stability and quenched fluorescence are the main challenges to be overcome for nanomedicine, and are mainly caused by the dissociation of the nanostructure and aggregation of chromophores in the biological environment. Herein, covalently connected nanoparticles RGD-graphene-phthalocyanine (RGD-GO-SiPc) were constructed based on RGD peptide, silicon phthalocyanine (SiPc) and graphene oxide (GO) via a conjugation reaction for fluorescence imaging-guided cancer-targeted combinatorial phototherapy. The prepared RGD-GO-SiPc exhibited supreme biological stability, high-contrast fluorescence imaging, significantly enhanced NIR absorption, high photothermal conversion efficiency (25.6%), greatly improved cancer-targeting capability, and synergistic photodynamic (PDT) and photothermal therapy (PTT) efficacy along with low toxicity. Both in vitro and in vivo biological studies showed that RGD-GO-SiPc is a kind of promising multifunctional nanomedicine for fluorescence imaging-guided combined photothermal and photodynamic therapy with dual active/passive tumor-targeting properties.
Collapse
Affiliation(s)
- Ancheng Ouyang
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Dongmu Zhao
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xianglei Wang
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Wei Zhang
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao - 266237, P. R. China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao - 266237, P. R. China
| | - Wei Liu
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
30
|
Bagheri AR, Aramesh N, Bilal M, Xiao J, Kim HW, Yan B. Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review. Bioorg Med Chem 2021; 51:116493. [PMID: 34781082 DOI: 10.1016/j.bmc.2021.116493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Cancer has become one of the main reasons for human death in recent years. Around 18 million new cancer cases and approximately 9.6 million deaths from cancer reported in 2018, and the annual number of cancer cases will have increased to 22 million in the next two decades. These alarming facts have rekindled researchers' attention to develop and apply different approaches for cancer therapy. Unfortunately, most of the applied methods for cancer therapy not only have adverse side effects like toxicity and damage of healthy cells but also have a short lifetime. To this end, introducing innovative and effective methods for cancer therapy is vital and necessary. Among different potential materials, carbon nanomaterials can cope with the rising threats of cancer. Due to unique physicochemical properties of different carbon nanomaterials including carbon, fullerene, carbon dots, graphite, single-walled carbon nanotube and multi-walled carbon nanotubes, they exhibit possibilities to address the drawbacks for cancer therapy. Carbon nanomaterials are prodigious materials due to their ability in drug delivery or remedial of small molecules. Functionalization of carbon nanomaterials can improve the cancer therapy process and decrement the side effects. These exceptional traits make carbon nanomaterials as versatile and prevalent materials for application in cancer therapy. This article spotlights the recent findings in cancer therapy using carbon nanomaterials (2015-till now). Different types of carbon nanomaterials and their utilization in cancer therapy were highlighted. The plausible mechanisms for the action of carbon nanomaterials in cancer therapy were elucidated and the advantages and disadvantages of each material were also illustrated. Finally, the current problems and future challenges for cancer therapy based on carbon nanomaterials were discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Kore; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, South Korea
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Zhao Z, Xu N, Wang Y, Ling G, Zhang P. Perylene diimide-based treatment and diagnosis of diseases. J Mater Chem B 2021; 9:8937-8950. [PMID: 34657950 DOI: 10.1039/d1tb01752g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Integrated treatment using imaging technology to monitor biological processes for the precise treatment and diagnosis of diseases to improve treatment outcomes is becoming a hot topic. Accordingly, perylene diimide (PDI) has excellent photothermal conversion and photostability, which can be used as a good material for disease treatment and diagnosis. Herein, we review the latest research progress on the real-time diagnosis of related diseases based on perylene diimide probes in the aspects of bioimaging, detection of biomarkers and determination of the pH in living cells. Furthermore, perylene diimide-based multifunctional nano-delivery systems are particularly emphasized, showing great therapeutic potential in the field of image-guided combination therapy in tumor therapy. Finally, the great opportunities and challenges still faced by perylene diimide before entering the clinic are comprehensively analyzed.
Collapse
Affiliation(s)
- Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Yan Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
32
|
Wei J, Liu Y, Yu J, Chen L, Luo M, Yang L, Li P, Li S, Zhang XH. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103127. [PMID: 34510742 DOI: 10.1002/smll.202103127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
33
|
Xiang H, Xin C, Hu Z, Aigouy L, Chen Z, Yuan X. Long-Term Stable Near-Infrared-Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45957-45965. [PMID: 34520660 DOI: 10.1021/acsami.1c11674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 μm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 μs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Chenghao Xin
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhelu Hu
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Lionel Aigouy
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhuoying Chen
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Xiaojiao Yuan
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
34
|
Gao X, Wei M, Ma D, Yang X, Zhang Y, Zhou X, Li L, Deng Y, Yang W. Engineering of a Hollow‐Structured Cu
2−
X
S Nano‐Homojunction Platform for Near Infrared‐Triggered Infected Wound Healing and Cancer Therapy. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202106700] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiangyu Gao
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Daichuan Ma
- Analytical & Testing Center Sichuan University Chengdu 610065 China
| | - Xuyang Yang
- Department of Gastrointestinal Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Yang Zhang
- Department of Gastrointestinal Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Xiong Zhou
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Limei Li
- Science and Technology Achievement Incubation Center Kunming Medical University Kunming 650500 China
| | - Yi Deng
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Mechanical Engineering The University of Hong Kong Hong Kong SAR 999077 China
| | - Weizhong Yang
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
35
|
Zhang B, Yan H, Meng Z, Li P, Jiang X, Wu Z, Xiao JA, Su W. Photodynamic and Photothermal Ce6-Modified Gold Nanorod as a Potent Alternative Candidate for Improved Photoinactivation of Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:6742-6757. [PMID: 35006976 DOI: 10.1021/acsabm.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The global rise of antibiotic resistance of pathogenic bacteria has become an increasing medical and public concern, which is further urging the development of antimicrobial channels for treating infectious diseases. The combination of photodynamic therapy (PDT) with photothermal therapy (PTT) has been considered as a promising alternative way for the replacement of traditional antibiotic therapy. In this research, the newly fabricated Chlorin-e6 (Ce6) conjugated mesoporous silica-coated AuNRs, designated AuNR@SiO2-NH2-Ce6, exhibited synergistic photothermal effects and single oxygen localized generation property, and showed stronger photoinactivation for bacteria compared with Ce6. AuNR@SiO2-NH2-Ce6 can anchor to the cell membrane and accumulate in the interior of cells. Furthermore, the unique porous structure of AuNR@SiO2NH2 enabled Ce6 encapsulation in the mesopores and was subsequently released and activated by photothermic effect, allowing the generated single oxygen to penetrate into the cytoplasmic membrane or directly enter the interior of bacteria cells, thus overcoming the inherent defects of single oxygen. AuNR@SiO2-NH2-Ce6 not only damaged the integrity of the cell membrane of bacteria but also facilitated the cellular permeation and accumulation of external nanoagents in the bacteria upon light irradiation. In addition, AuNR@SiO2-NH2-Ce6 exhibited negligible cytotoxicity toward mammalian cells and hemolytic activity. Therefore, AuNR@SiO2-NH2-Ce6 may be highly promising candidates as topical antibacterial agents, and this study has wide implications on the design of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Baoqu Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhouting Meng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Xiantao Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
36
|
Liu X, Liu Y, Guo Y, Shi W, Sun Y, He Z, Shen Y, Zhang X, Xiao H, Ge D. Metabolizable pH/H 2O 2 dual-responsive conductive polymer nanoparticles for safe and precise chemo-photothermal therapy. Biomaterials 2021; 277:121115. [PMID: 34488118 DOI: 10.1016/j.biomaterials.2021.121115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/10/2023]
Abstract
Conductive polymers with high near-infrared absorbance, have attracted considerable attention in the design of intelligent nanomedicines for cancer therapy, especially chemo-photothermal therapy. However, the unknown long-term biosafety of conductive polymers in vivo due to non-degradability hinders their clinic application. Herein, a H2O2-triggered degradable conductive polymer, polyacrylic acid (PAA) stabilized poly(pyrrole-3-COOH) (PAA@PPyCOOH), is fabricated to form nanoparticles with doxorubicin (DOX) for safe and precise chemo-phototherapy. The PAA@PPyCOOH was found to be an ideal photothermal nano-agent with good dispersity, excellent biocompatibility and high photothermal conversion efficiency (56%). After further loading of doxorubicin (DOX), PAA@PPyCOOH@DOX demonstrates outstanding photothermal performance, as well as pH/H2O2 dual-responsive release of DOX in tumors with an acidic and overexpressed H2O2 microenvironment, resulting in superior chemo-photothermal therapeutic effects. The degradation mechanism of PAA@PPyCOOH is proposed to be the ring-opening reaction between the pyrrole-3-COOH unit and H2O2. More importantly, the nanoparticles can be specifically degraded by excess H2O2 in tumor, and the degradation products were confirmed to be excreted via urine and feces. In vivo therapeutic evaluation of chemo-photothermal therapy reveals tumor growth of 4T1 breast cancer model is drastically inhibited and no apparent side-effect is detected, thus indicating substantial potential in clinic application.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China; Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528300, PR China
| | - Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yijun Guo
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuqing Shen
- Transfusion Department, Woman and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiuming Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
37
|
Oligoarginine Peptide Conjugated to BSA Improves Cell Penetration of Gold Nanorods and Nanoprisms for Biomedical Applications. Pharmaceutics 2021; 13:pharmaceutics13081204. [PMID: 34452165 PMCID: PMC8400532 DOI: 10.3390/pharmaceutics13081204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gold nanoparticles (AuNPs) have been shown to be outstanding tools for drug delivery and biomedical applications, mainly owing to their colloidal stability, surface chemistry, and photothermal properties. The biocompatibility and stability of nanoparticles can be improved by capping the nanoparticles with endogenous proteins, such as albumin. Notably, protein coating of nanoparticles can interfere with and decrease their cell penetration. Therefore, in the present study, we functionalized albumin with the r8 peptide (All-D, octaarginine) and used it for coating NIR-plasmonic anisotropic gold nanoparticles. Gold nanoprisms (AuNPrs) and gold nanorods (AuNRs) were coated with bovine serum albumin (BSA) previously functionalized using a cell penetrating peptide (CPP) with the r8 sequence (BSA-r8). The effect of the coated and r8-functionalized AuNPs on HeLa cell viability was assessed by the MTS assay, showing a low effect on cell viability after BSA coating. Moreover, the internalization of the nanostructures into HeLa cells was assessed by confocal microscopy and transmission electron microscopy (TEM). As a result, both nanoconstructs showed an improved internalization level after being capped with BSA-r8, in contrast to the BSA-functionalized control, suggesting the predominant role of CPP functionalization in cell internalization. Thus, our results validate both novel nanoconstructs as potential candidates to be coated by endogenous proteins and functionalized with a CPP to optimize cell internalization. In a further approach, coating AuNPs with CPP-functionalized BSA can broaden the possibilities for biomedical applications by combining their optical properties, biocompatibility, and cell-penetration abilities.
Collapse
|
38
|
Zhou J, Lei M, Peng XL, Wei DX, Yan LK. Fenton Reaction Induced by Fe-Based Nanoparticles for Tumor Therapy. J Biomed Nanotechnol 2021; 17:1510-1524. [PMID: 34544529 DOI: 10.1166/jbn.2021.3130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fenton reaction, a typical inorganic reaction, is broadly utilized in the field of wastewater treatment. Recently In case of its ability to inhibit the growth of cancer cells, it has been frequently reported in cancer treatment. Using the unique tumor microenvironment in cancer cells, many iron-based nanoparticles have been developed to release iron ions in cancer cells to induce Fenton reaction. In this mini review, we outline several different types of iron-based nanoparticles and several main means to enhance Fenton reaction in cancer cells. Finally, we discussed the advantages and disadvantages of iron-based nanoparticles for cancer therapy, prospected the future development of iron-based nanoparticles. It is believed that iron-based nanoparticles can make certain contribution to the cause of human cancer in the future.
Collapse
Affiliation(s)
- Jian Zhou
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Miao Lei
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Xue-Liang Peng
- Electronics Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Electronics Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lu-Ke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
39
|
Iron Hydroxide/Oxide-Reduced Graphene Oxide Nanocomposite for Dual-Modality Photodynamic and Photothermal Therapy In Vitro and In Vivo. NANOMATERIALS 2021; 11:nano11081947. [PMID: 34443776 PMCID: PMC8402170 DOI: 10.3390/nano11081947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
Minimal invasive phototherapy utilising near-infrared (NIR) laser to generate local reactive oxygen species (ROS) and heat has few associated side effects and is a precise treatment in cancer therapy. However, high-efficiency and safe phototherapeutic tumour agents still need developing. The application of iron hydroxide/oxide immobilised on reduced graphene oxide (FeOxH–rGO) nanocomposites as a therapeutic agent in integration photodynamic cancer therapy (PDT) and photothermal cancer therapy (PTT) was discussed. Under 808 nm NIR irradiation, FeOxH–rGO offers a high ROS generation and light-to-heat conversion efficiency because of its strong NIR absorption. These phototherapeutic effects lead to irreversible damage in FeOxH–rGO-treated T47D cells. Using a tumour-bearing mouse model, NIR ablated the breast tumour effectively in the presence of FeOxH–rGO. The tumour treatment response was evaluated to be 100%. We integrated PDT and PTT into a single nanodevice to facilitate effective cancer therapy. Our FeOxH–rGO, which integrates the merits of FeOxH and rGO, displays an outstanding tumoricidal capacity, suggesting the utilization of this nanocomposites in future medical applications.
Collapse
|
40
|
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27749-27773. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving controlled and accurate delivery of photosensitizers (PSs) into tumor sites is a major challenge in conventional photodynamic therapy (PDT). Aptamer is a short oligonucleotide sequence (DNA or RNA) with a folded three-dimensional structure, which can selectively bind to specific small molecules, proteins, or the whole cells. Aptamers could act as ligands and be modified onto PSs or nanocarriers, enabling specific recognition and binding to tumor cells or their membrane proteins. The resultant aptamer-modified PSs or PSs-containing nanocarriers generate amounts of reactive oxygen species with light irradiation and obtain superior photodynamic therapeutic efficiency in tumors. Herein, we overview the recent progress in the designs and applications of aptamer-targeted photodynamic platforms for tumor therapy. First, we focus on the progress on the rational selection of aptamers and summarize the applications of aptamers which have been applied for targeted tumor diagnosis and therapy. Then, aptamer-targeted photodynamic therapies including various aptamer-PSs, aptamer-nanocarriers containing PSs, and aptamer-nano-photosensitizers are highlighted. The aptamer-targeted synergistically therapeutic platforms including PDT, photothermal therapy, and chemotherapy, as well as the imaging-guided theranostics, are also discussed. Finally, we offer an insight into the development trends and future perspectives of aptamer-targeted photodynamic platforms for tumor therapy.
Collapse
Affiliation(s)
- Jincong Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
41
|
Li B, Wang X, Hong S, Wang Q, Li L, Eltayeb O, Dong C, Shuang S. MnO 2 nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors. Food Funct 2021; 12:6334-6347. [PMID: 34100053 DOI: 10.1039/d1fo00032b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, PPy@MnO2 nanocomposites were first harvested by anchoring MnO2 nanosheets on polypyrrole (PPy) nanoparticles via an in situ redox reaction, then polyethylene glycol (PEG) modifier and methylene blue (MB) photosensitizer were linked through electrostatic interactions to obtain PPy@MnO2-PEG-MB nanoarchitectures. PPy nanoparticles ensure photothermal therapy (PTT) ability and MnO2 nanosheets ameliorate tumor hypoxia for enhanced photodynamic therapy (PDT). Therefore, a multifunctional nanotherapeutic system was constructed for the combined PTT/PDT of tumors. For extracellular photothermal properties, the optimal temperature elevation was 52.6 °C with 54.4% photothermal conversion efficiency. The extracellular PDT ability was measured by detecting 1O2 generation; more 1O2 was produced under acidic conditions in the presence of H2O2 (a simulated tumor microenvironment). The effective cellular uptake of the nanotherapeutic system in HeLa cells was observed by confocal laser scanning microscopy (CLSM). CLSM also indicated that more 1O2 was generated by the nanotherapeutic system as compared to free MB in HeLa cells, confirming the amelioration of tumor hypoxia by MnO2 nanosheets. MTT assays demonstrated that the nanotherapeutic system possessed superior biocompatibility without laser irradiation, and the lowest cell viabilities for single PTT and PDT groups were 13.78%, 38.82% respectively, while there was only 1.29% cell viability in the combined PTT and PDT group. These results suggest that the strategy of assembling PPy with MnO2 for a multifunctional PTT and enhanced PDT nanoplatform was realized, and opens up an unimpeded approach for integrating photothermal reduction materials with MnO2 for use in synergistic PTT and PDT.
Collapse
Affiliation(s)
- Bei Li
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tang S, Huang W, Gao Y, An N, Wu Y, Yang B, Yan M, Cao J, Guo C. Low-work-function LaB 6 for realizing photodynamic-enhanced photothermal therapy. J Mater Chem B 2021; 9:4380-4389. [PMID: 34017968 DOI: 10.1039/d1tb00544h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is great potential for photodynamic therapy (PDT)-enhanced photothermal therapy (PTT) to be used for tumor therapy, especially for the single material-mediated process that could greatly simplify the experimental arrangements. This study presents a new cancer phototherapeutic agent consisting of low-work-function lanthanum hexaboride particles, which are excellent light absorbers in the near-infrared (NIR) region. The photothermal effect and reactive oxygen species production were realized by LaB6 under NIR light irradiation. Theoretical calculations based on density functional theory confirmed that the strong NIR light absorption by LaB6 was attributed to the local plasmonic resonance effect and the excellent photodynamic effect derived from the low work function. In vivo treatment of HepG2 tumor-bearing mice revealed that LaB6-mediated phototherapy resulted in excellent tumor inhibitory effects, and no adverse effects on mice were observed. These results indicate that LaB6 is a promising phototherapeutic agent for cancer synergetic phototherapy.
Collapse
Affiliation(s)
- Shuanglong Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Weicheng Huang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Na An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yadong Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Bin Yang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150001, China.
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
43
|
Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021; 16. [PMID: 33882463 DOI: 10.1088/1748-605x/abfa6e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT), as non-invasive therapy approaches, have gained accumulated attention for cancer treatment in past years. PTT and PDT can generate local hyperthermia effects and reactive oxygen species (ROS) respectively, for tumor eradication. To improve the therapeutic performance while minimizing the reverse side effects of phototherapy, extensive efforts have been devoted to developing stimuli-activatable (e.g. pH, redox, ROS, enzyme, etc) nanomaterials for tumor-specific delivery/activation of the phototherapeutics. In this review, we first overviewed the recent advances of the engineered stimuli-responsive nanovectors for the phototherapy of cancer. We particularly summarized the progress of stimuli-activatable nanomaterials-based combinatory therapy strategies for augmenting the performance of phototherapy. We further discuss challenges for the clinical translation of nanomaterials-based phototherapy.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Lili Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Ding-Yi Fu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Weiqi Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,Peking University Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
44
|
Kim TE, Jang HJ, Park SW, Wei J, Cho S, Park WI, Lee BR, Yang CD, Jung YK. Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy. ACS APPLIED BIO MATERIALS 2021; 4:3453-3461. [PMID: 35014429 DOI: 10.1021/acsabm.1c00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polypyrrole nanoparticles (PPy-NPs) with excellent near-infrared absorption are commonly used as photothermal therapy (PTT) agents; however, PTT using PPy-NPs has a limitation in that it is difficult to maximize their therapeutic effect because of the lack of specific targeting. In this study, to overcome the difficulty of targeting, folic acid functionalized carbon dots (FA-CDs) with bright green fluorescence properties were combined with carboxylated PPy-NPs via the EDC/NHS coupling reaction to yield a PTT imaging agent. The synthesized FA-CD/PPy-NPs with excellent photostability performed folate receptor (FR) positive HeLa cancer cell imaging by green fluorescence signals of FA-CDs and exhibited high cell viability (above 90%) even at 500 μg/mL. The viability of HeLa cells incubated with 200 μg/mL FA-CD/PPy-NPs was dramatically decreased to 25.02 ± 1.85% by NIR laser irradiation, through photothermal therapeutic effects of FA-CD/PPy-NPs with high photothermal conversion efficiency (η = 40.80 ± 1.54%). The cancer cell death by FA-CD/PPy-NPs was confirmed by fluorescence imaging of FA-CDs as well as live/dead cell staining assay (calcein-AM/PI). These results demonstrate that the FA-CD/PPy-NPs can be utilized as multifunctional theranostic agents for specific bioimaging and treatment of FR-positive cancer cells.
Collapse
Affiliation(s)
- Tae Eun Kim
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Hyeon Jeong Jang
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Seok Won Park
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyong National University, Pusan, 48513, Republic of Korea
| | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang Duk Yang
- Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Yun Kyung Jung
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| |
Collapse
|
45
|
Demir Duman F, Forgan RS. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J Mater Chem B 2021; 9:3423-3449. [PMID: 33909734 DOI: 10.1039/d1tb00358e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoscale metal-organic frameworks (NMOFs) are an interesting and unique class of hybrid porous materials constructed by the self-assembly of metal ions/clusters with organic linkers. The high storage capacities, facile synthesis, easy surface functionalization, diverse compositions and excellent biocompatibilities of NMOFs have made them promising agents for theranostic applications. By combination of a large variety of metal ions and organic ligands, and incorporation of desired molecular functionalities including imaging modalities and therapeutic molecules, diverse MOF structures with versatile functionalities can be obtained and utilized in biomedical imaging and drug delivery. In recent years, NMOFs have attracted great interest as imaging agents in optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and photoacoustic imaging (PAI). Furthermore, the significant porosity of MOFs allows them to be loaded with multiple imaging agents and therapeutics simultaneously and applied for multimodal imaging and therapy as a single entity. In this review, which is intended as an introduction to the use of MOFs in biomedical imaging for a reader entering the subject, we summarize the up-to-date progress of NMOFs as bioimaging agents, giving (i) a broad perspective of the varying imaging techniques that MOFs can enable, (ii) the different routes to manufacturing functionalised MOF nanoparticles and hybrids, and (iii) the integration of imaging with differing therapeutic techniques. The current challenges and perspectives of NMOFs for their further clinical translation are also highlighted and discussed.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
46
|
Zhou X, Song Y, Wang D, Fang C, Xie L, Yao T, Zhang X, Zhang J. Functional nano‐fillers in waterborne polyurethane/acrylic composites and the thermal, mechanical, and dielectrical properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- School of Materials Science and Engineering Xi'an University of Technology Xi'an China
| | - Yonghua Song
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Dong Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- School of Materials Science and Engineering Xi'an University of Technology Xi'an China
| | - Changqing Fang
- School of Materials Science and Engineering Xi'an University of Technology Xi'an China
| | - Li Xie
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Taiping Yao
- Department of Electrical Engineering Northeast Electric Power University Jilin City Jilin China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Jiawei Zhang
- Department of Electrical Engineering Northeast Electric Power University Jilin City Jilin China
- Department of Electrical Engineering Xi'an University of Technology Xi'an Shanxi China
| |
Collapse
|
47
|
Ma W, Yang H, Hu Y, Chen L. Fabrication of
PEGylated
porphyrin/reduced graphene oxide/doxorubicin nanoplatform for tumour combination therapy. POLYM INT 2021. [DOI: 10.1002/pi.6216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weiqian Ma
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Huailin Yang
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Yanfang Hu
- Fachgruppe Chemie Institut für Organische Chemie, RWTH Aachen Aachen Germany
| | - Li Chen
- Department of Chemistry Northeast Normal University Changchun PR China
| |
Collapse
|
48
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
49
|
Akakuru OU, Xu C, Liu C, Li Z, Xing J, Pan C, Li Y, Nosike EI, Zhang Z, Iqbal ZM, Zheng J, Wu A. Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. ACS NANO 2021; 15:3079-3097. [PMID: 33464053 DOI: 10.1021/acsnano.0c09590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The desire for all-organic-composed nanoparticles (NPs) of considerable biocompatibility to simultaneously diagnose and treat cancer is undeniably interminable. Heretofore, metal-based agents dominate the landscape of available magnetic resonance imaging (MRI) contrast agents and photothermal therapeutic agents, but with associated metal-specific downsides. Here, an all-organic metal-free nanoprobe, whose appreciable biocompatibility is synergistically contributed by its tetra-organo-components, is developed as a viable alternative to metal-based probes for MRI-guided tumor-targeted photothermal therapy (PTT). This rationally entails a glycol chitosan (GC)-linked polypyrrole (PP) nanoscaffold that provides abundant primary and secondary amino groups for amidation with the carboxyl groups in a nitroxide radical (TEMPO) and folic acid (FA), to obtain GC-PP@TEMPO-FA NPs. Advantageously, the appreciably benign GC-PP@TEMPO-FA features high nitroxide loading (r1 = 1.58 mM-1 s-1) and in vivo nitroxide-reduction resistance, prolonged nitroxide-systemic circulation times, appreciable water dispersibility, potential photodynamic therapeutic and electron paramagnetic resonance imaging capabilities, considerable biocompatibility, and ultimately achieves a 17 h commensurate MRI contrast enhancement. Moreover, its GC component conveys a plethora of PP to tumor sites, where FA-mediated tumor targeting enables substantial NP accumulation with consequential near-complete tumor regression within 16 days in an MRI-guided PTT. The present work therefore promotes the engineering of organic-based metal-free biocompatible NPs in synergism, in furtherance of tumor-targeted image-guided therapy.
Collapse
Affiliation(s)
- Ozioma U Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis I Nosike
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Zubair M Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou 310018, China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| |
Collapse
|
50
|
Yang J, Wang H, Liu J, Ding M, Xie X, Yang X, Peng Y, Zhou S, Ouyang R, Miao Y. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv 2021; 11:3241-3263. [PMID: 35424280 PMCID: PMC8694185 DOI: 10.1039/d0ra09878g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metal organic-frameworks (MOFs) are novel materials that have attracted increasing attention for applications in a wide range of research, owing to their unique advantages including their small particle size, porous framework structure and high specific surface area. Because of their adjustable size, nanoscale MOFs (nano-MOFs) can be prepared as carriers of biotherapy drugs, thus enabling biotherapeutic applications. Nano-MOFs' metal ion catalytic activity and organic group functional characteristics can be exploited in biological treatments. Furthermore, the applications of nano-MOFs can be broadened by hybridization with other materials to form composites. This review focuses on the preparation and recent advances in nano-MOFs as drug carriers, therapeutic materials and functionalized materials in drug delivery and tumor therapy based on the single/multiple stimulus response of drug release to achieve the targeted therapy, offering a comprehensive reference for drug carrier design. At the end, the current challenges and prospects are discussed to provide significant insight into the design and applications of nano-MOFs in drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yaru Peng
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine Shanghai 200092 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|