1
|
Zhang Z, Wang Q, Zhang X, Mei J, Tian H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS AU 2024; 4:1954-1965. [PMID: 38818060 PMCID: PMC11134381 DOI: 10.1021/jacsau.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qijing Wang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Xu WT, Peng Z, Wu P, Jiang Y, Li WJ, Wang XQ, Chen J, Yang HB, Wang W. Tuning vibration-induced emission through macrocyclization and catenation. Chem Sci 2024; 15:7178-7186. [PMID: 38756822 PMCID: PMC11095381 DOI: 10.1039/d4sc00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024] Open
Abstract
In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states. This work not only develops a new strategy for the design of new luminescent systems with tunable vibration induced emission, but also provides a promising platform for the construction of smart chiral luminescent materials for practical applications.
Collapse
Affiliation(s)
- Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University Shanghai 200241 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| |
Collapse
|
3
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
4
|
Xu WT, Li X, Wu P, Li WJ, Wang Y, Xu XQ, Wang XQ, Chen J, Yang HB, Wang W. Dual Stimuli-Responsive [2]Rotaxanes with Tunable Vibration-Induced Emission and Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202319502. [PMID: 38279667 DOI: 10.1002/anie.202319502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Aiming at the construction of novel stimuli-responsive fluorescent system with precisely tunable emissions, the typical 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) luminogen with attractive vibration-induced emission (VIE) behavior has been introduced into [2]rotaxane as a stopper. Taking advantage of their unique dual stimuli-responsiveness towards solvent and anion, the resultant [2]rotaxanes reveal both tunable VIE and switchable circularly polarized luminescence (CPL). Attributed to the formation of mechanical bonds, DPAC-functionalized [2]rotaxanes display interesting VIE behaviors including white-light emission upon the addition of viscous solvent, as evaluated in detail by femtosecond transient absorption (TA) spectra. In addition, ascribed to the regulation of chirality information transmission through anion-induced motions of chiral wheel, the resolved chiral [2]rotaxanes reveal unique switchable CPL upon the addition of anion, leading to significant increase in the dissymmetry factors (glum ) values with excellent reversibility. Interestingly, upon doping the chiral [2]rotaxanes in stretchable polymer, the blend films reveal remarkable emission change from white light to light blue with significant 6.5-fold increase in glum values up to -0.035 under external tensile stresses. This work provides not only a new design strategy for developing molecular systems with fluorescent tunability but also a novel platform for the construction of smart chiral luminescent materials for practical use.
Collapse
Affiliation(s)
- Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
5
|
Sun H, He M, Baryshnikov GV, Wu B, Valiev RR, Shen S, Zhang M, Xu X, Li Z, Liu G, Ågren H, Zhu L. Engineering Tunable Ratiometric Dual Emission in Single Emitter-based Amorphous Systems. Angew Chem Int Ed Engl 2024; 63:e202318159. [PMID: 38189634 DOI: 10.1002/anie.202318159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Molecular emitters with multi-emissive properties are in high demand in numerous fields, while these properties basically depend on specific molecular conformation and packing. For amorphous systems, special molecular arrangement is unnecessary, but it remains challenging to achieve such luminescent behaviors. Herein, we present a general strategy that takes advantage of molecular rigidity and S1 -T1 energy gap balance for emitter design, which enables fluorescence-phosphorescence dual-emission properties in various solid forms, whether crystalline or amorphous. Subsequently, the amorphism of the emitters based polymethyl methacrylate films endowed an in situ regulation of the dual-emissive characteristics. With the ratiometric regulation of phosphorescence by external stimuli and stable fluorescence as internal reference, highly controllable luminescent color tuning (yellow to blue including white emission) was achieved. There properties together with a persistent luminous behavior is of benefit for an irreplaceable set of optical information combination, featuring an ultrahigh-security anti-counterfeiting ability. Our research introduces a concept of eliminating the crystal-form and molecular-conformational dependence of complex luminescent properties through emitter molecular design. This has profound implications for the development of functional materials.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Menglu He
- Department of Chemistry, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Rashid R Valiev
- Tomsk State University, 36, Lenin Avenue, 634050, Tomsk, Russia
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Guofeng Liu
- Department of Chemistry, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516, SE-75120, Uppsala, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
6
|
Zhang Z, Wang Q, Zhang X, Mei D, Mei J. Modulating the Luminescence, Photosensitizing Properties, and Mitochondria-Targeting Ability of D-π-A-Structured Dihydrodibenzo[ a, c]phenazines. Molecules 2023; 28:6392. [PMID: 37687220 PMCID: PMC10490149 DOI: 10.3390/molecules28176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Herein, pyridinium and 4-vinylpyridinium groups are introduced into the VIE-active N,N'-disubstituted-dihydrodibenzo[a,c]phenazines (DPAC) framework to afford a series of D-π-A-structured dihydrodibenzo[a,c]phenazines in consideration of the aggregation-benefited performance of the DPAC module and the potential mitochondria-targeting capability of the resultant pyridinium-decorated DPACs (DPAC-PyPF6 and DPAC-D-PyPF6). To modulate the properties and elucidate the structure-property relationship, the corresponding pyridinyl/4-vinylpyridinyl-substituted DPACs, i.e., DPAC-Py and DPAC-D-Py, are designed and studied as controls. It is found that the strong intramolecular charge transfer (ICT) effect enables the effective separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of DPAC-PyPF6 and DPAC-D-PyPF6, which is conducive to the generation of ROS. By adjusting the electron-accepting group and the π-bridge, the excitation, absorption, luminescence, photosensitizing properties as well as the mitochondria-targeting ability can be finely tuned. Both DPAC-PyPF6 and DPAC-D-PyPF6 display large Stokes shifts (70-222 nm), solvent-dependent absorptions and emissions, aggregation-induced emission (AIE), red fluorescence in the aggregated state (λem = 600-650 nm), aggregation-promoted photosensitizing ability with the relative singlet-oxygen quantum yields higher than 1.10, and a mitochondria-targeting ability with the Pearson coefficients larger than 0.85. DPAC-D-PyPF6 shows absorption maximum at a longer wavelength, slightly redder fluorescence and better photosensitivity as compared to DPAC-PyPF6, which consequently leads to the higher photocytotoxicity under the irradiation of white light as a result of the larger π-conjugation.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Qijing Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Dong Mei
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| |
Collapse
|
7
|
Wang Z, Ma J, Li C, Zhang H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. BIOSENSORS 2023; 13:159. [PMID: 36831925 PMCID: PMC9953538 DOI: 10.3390/bios13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms' physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials' biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor-acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.
Collapse
|
8
|
Zhang Z, Jin X, Sun X, Su J, Qu DH. Vibration-induced emission: Dynamic multiple intrinsic luminescence. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
10
|
Lu K, Wang Y, Zhang H, Tian C, Wang W, Yang T, Qi B, Wu S. Rational Design of a Theranostic Agent Triggered by Endogenous Nitric Oxide in a Cellular Model of Alzheimer's Disease. J Med Chem 2022; 65:9193-9205. [PMID: 35729801 DOI: 10.1021/acs.jmedchem.2c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage caused by upregulated nitric oxide (NO) plays an important role in the pathogenesis of Alzheimer's disease (AD). Currently, stimulus-triggered theranostic agents have received much attention due to benefits on disease imaging and targeted therapeutic effects. However, the development of a theranostic agent triggered by NO for AD remains unexplored. Herein, through the mechanism analysis of the reaction between a fluorophore of 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) and NO, which we occasionally found and thereafter structure optimization of DPAC, a theranostic agent DPAC-(peg)4-memantine was fabricated. In an AD cellular model, DPAC-(peg)4-memantine exhibits NO sensing ability for AD imaging. Meanwhile, DPAC-(peg)4-memantine shows improved therapeutic by targeted drug release triggered by NO and sustained therapeutic effects owing to the synergetic antioxidative abilities via the anti-AD drug and NO scavenging. This work provides an unprecedented avenue for the studies on not only AD but also other diseases with NO upregulation.
Collapse
Affiliation(s)
- Kang Lu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yu Wang
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Hao Zhang
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Cuiqing Tian
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wenxiang Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Tian Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Baiwen Qi
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Song Wu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
11
|
Wang Y, Weremiejczyk L, Strzelecka‐Kiliszek A, Maniti O, Amabile Veschi E, Bolean M, Ramos AP, Ben Trad L, Magne D, Bandorowicz‐Pikula J, Pikula S, Millán JL, Bottini M, Goekjian P, Ciancaglini P, Buchet R, Dou WT, Tian H, Mebarek S, He XP, Granjon T. Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e38. [PMID: 38939118 PMCID: PMC11080897 DOI: 10.1002/jex2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/29/2024]
Abstract
Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.
Collapse
Affiliation(s)
- Yubo Wang
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - Liliana Weremiejczyk
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | | | | | - Ekeveliny Amabile Veschi
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Mayte Bolean
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | | | - David Magne
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | | | - Slawomir Pikula
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Massimo Bottini
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - René Buchet
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | - Wei Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | | - Xiao P. He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | |
Collapse
|
12
|
Maggiore A, Qu Y, Guillot R, Pander P, Vasylieva M, Data P, Dias FB, Audebert P, Clavier G, Miomandre F. Novel Easy to Synthesize Benzonitrile Compounds with Mixed Carbazole and Phenoxazine Substituents Exhibiting Dual Emission and TADF Properties. J Phys Chem B 2022; 126:2740-2753. [PMID: 35353524 DOI: 10.1021/acs.jpcb.2c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photophysical and electrochemical properties of a new class of fluorinated benzonitrile compounds substituted with mixed phenoxazine and carbazole units have been investigated. When absorbing in a large range of the UV-vis spectrum due to both localized and charge-transfer absorptions, these compounds show dual broad emission in solution and intense emission in PMMA films, with photoluminescence quantum yields changing from a few percent in solution to 18% in a more rigid environment. The compounds also exhibit thermally activated delayed fluorescence demonstrated by the role of oxygen in the quenching of delayed fluorescence and by time-resolved luminescence studies, with an efficiency directly related to the number of phenoxazine substituents. Electrochemistry reveals dramatic changes in the reduction mechanisms according to the number of remaining fluorine atoms on the benzonitrile core. All these results demonstrate how it is possible to tune the photophysical and electrochemical properties of easily synthesizable derivatives by controlling the nature and relative number of the substituents on a simple aromatic platform.
Collapse
Affiliation(s)
- Antonio Maggiore
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Yangyang Qu
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | - Piotr Pander
- Department of Physics, University of Durham, South Road, DH1 3LE Durham, U.K.,Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Marharyta Vasylieva
- Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Przemyslaw Data
- Department of Physics, University of Durham, South Road, DH1 3LE Durham, U.K.,Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Fernando B Dias
- Department of Physics, University of Durham, South Road, DH1 3LE Durham, U.K
| | - Pierre Audebert
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Fabien Miomandre
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| |
Collapse
|
13
|
|
14
|
Lu W, Liu Y, Zhang ZY, Xiao J, Liu CY. Dual emissive amphiphilic carbon dots as ratiometric fluorescent probes for the determination of critical micelle concentration of surfactants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:672-677. [PMID: 35088063 DOI: 10.1039/d1ay02042k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sensitive determination of the critical micelle concentration (CMC) of surfactants is very important for their practical application. Due to their good sensitivity and simple operation, pyrene and its derivatives have been widely used as fluorescent probes to detect the CMC. However, their virulent and poor water-soluble nature has limited their wide employment. In the present work, environmentally friendly amphiphilic carbon dots (Cdots) with dual-color emission and absolute quantum yield (PLQY) values higher than 50% have been fabricated through a solvothermal process, which could successfully serve as self-calibrative, ratiometric fluorescent probes to estimate the CMC of both non-ionic and ionic surfactants. This work not only provides a new strategy to design green ratiometric fluorescent probes for the CMC measurement of surfactants but also expands the application of Cdots in the colloidal field.
Collapse
Affiliation(s)
- Weiwei Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yun Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Zhi-Ying Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chun-Yan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
15
|
Gu F, Jiang T, Ma X. Visually Monitoring the Compactness of Polymer Matrixes Coded by Disparate Luminescence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43473-43479. [PMID: 34488339 DOI: 10.1021/acsami.1c15299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The intrinsic property disclosure of polymer systems by visual monitoring of photoluminescence behaviors is of great value in fundamental interest and promising applications. Three novel polymer films were obtained by simply doping methyl 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine-11-carboxylate (DPC) with three polymer materials. The photoluminescence behaviors of these films represented diverse fluorescence emissions from light orange to blue, especially room-temperature phosphorescence (RTP) emissions with ultralong lifetime, attributing to various configurations of DPC molecules provided by distinct microscopic environments in three polymer systems. The rigidity and regularity of polymer systems would be visually reflexed by luminescence regulation and temperature responses. In addition, irregular distribution of distinct polymer systems could be specifically monitored by both fluorescence and phosphorescence behaviors when doping different polymer materials into one blend film.
Collapse
Affiliation(s)
- Fan Gu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Tao Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
16
|
Chen SY, Li Z, Li K, Yu XQ. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213691] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Mitochondria-targeted fluorescent probe based on vibration-induced emission for real-time monitoring mitophagy-specific viscosity dynamic. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Sun G, Wei Y, Zhang Z, Lin J, Liu Z, Chen W, Su J, Chou P, Tian H. Diversified Excited‐State Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a Bent‐to‐Planar Motion of the Donor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangchen Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yu‐Chen Wei
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jia‐An Lin
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - Zong‐Ying Liu
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - Wei Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Pi‐Tai Chou
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
19
|
Sun G, Wei Y, Zhang Z, Lin J, Liu Z, Chen W, Su J, Chou P, Tian H. Diversified Excited‐State Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a Bent‐to‐Planar Motion of the Donor. Angew Chem Int Ed Engl 2020; 59:18611-18618. [DOI: 10.1002/anie.202005466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/06/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Guangchen Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yu‐Chen Wei
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jia‐An Lin
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - Zong‐Ying Liu
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - Wei Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Pi‐Tai Chou
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan R.O.C
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
20
|
Zhang Z, Sun G, Chen W, Su J, Tian H. The endeavor of vibration-induced emission (VIE) for dynamic emissions. Chem Sci 2020; 11:7525-7537. [PMID: 32874525 PMCID: PMC7448294 DOI: 10.1039/d0sc01591a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Organic chromophores with large Stokes shifts and dual emissions are fascinating because of their fundamental and applied interest. Vibration-induced emission (VIE) refers to a tunable multiple fluorescence exhibited by saddle-shaped N,N'-disubstituted-dihydribenzo[a,c]phenazines (DHPs), which involves photo-induced configuration vibrations from bent to planar form along the N-N axis. VIE-active molecules show intrinsic long-wavelength emissions in the unconstrained state (planar state) but bright short-wavelength emissions in the constrained state (bent state). The emission response for VIE-active luminogens is highly sensitive to steric hindrance encountered during the planarization process such that a tiny structural variation can induce an evident change in fluorescence. This can often be achieved by tuning the intensity ratio of short- and long-wavelength bands. In some special cases, the alterations in the emission wavelength of VIE fluorophores can be achieved step by step by harnessing the degree of bending angle motion in the excited state. In this perspective, we summarize the latest progress in the field of VIE research. New bent heterocyclic structures, as novel types of VIE molecules, are being developed, and the general features of the chemical structures are also being proposed. Technologically, novel emission color-tuning approaches and VIE-based probes for visualizing biological activity are presented to demonstrate how the dynamic VIE effect can be exploited for cutting-edge applications.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Guangchen Sun
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Wei Chen
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Jianhua Su
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - He Tian
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| |
Collapse
|
21
|
Sun G, Pan J, Wu Y, Liu Y, Chen W, Zhang Z, Su J. Supramolecular Assembly-Driven Color-Tuning and White-Light Emission Based on Crown-Ether-Functionalized Dihydrophenazine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10875-10882. [PMID: 32041400 DOI: 10.1021/acsami.0c00780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of color-tunable white-light-emitting systems is significant for artificial smart materials. Recently, a set of conformational dependent fluorophores N,N'-diaryl-dihydrodibenzo[a,c]phenazines (DPACs) have been developed with unique photoluminescence mechanism vibration-induced emission (VIE). DPACs can emit intrinsical blue emission at a bent excited state and abnormal orange-red emission at a planar excited state, which are due to the varied π-conjugation via excited-state configuration transformation along the N-N' axis from bent to planar form. Herein, a novel VIE-active compound DPAC-[B15C5]2 is designed and synthesized with two wings of benzo-15-crown-5. The excited-state vibration of the DPAC moiety can be modulated by tuning the supramolecular assembly and disassembly via chelation competition of K+ between 15-crown-5 and 18-crown-6, and hence, a wide-color-tuning emission is achieved from blue to orange-red including white. Dynamic light scattering and transmission electron microscopy experiments were conducted to exhibit the supramolecular assembling process. Additionally, the moisture detection in organic solvents is realized since the water could dissociate the supramolecular assembly.
Collapse
Affiliation(s)
- Guangchen Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jiajie Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yifan Wu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yue Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Wei Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
22
|
Li X, Zhang C, Wang C, Ye W, Zhang Q, Zhang Z, Su J, Chen Y, Tian H. Modular synthesis of (C-10 to C-13)-substituted-9,14-diaryl-9,14-dihydrodibenzo[a,c]phenazines via a subsequent Buchwald-Hartwig amination and C-H amination strategy. Chem Commun (Camb) 2020; 56:2260-2263. [PMID: 31984387 DOI: 10.1039/c9cc09997b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we report a modular synthetic approach of (C-10 to C-13)-substituted 9,14-diaryl-9,14-dihydrodibenzo[a,c]phenazine derivatives. This synthetic route enables the aromatic substitution in a predictable and programmed manner to obtain products in synthetically useful isolated yield.
Collapse
Affiliation(s)
- Xiaobin Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Wenqiang Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qian Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
23
|
Gong Q, Qin W, Xiao P, Wu X, Li L, Zhang G, Zhang R, Sun J, Yao SQ, Huang W. Internal standard fluorogenic probe based on vibration-induced emission for visualizing PTP1B in living cells. Chem Commun (Camb) 2020; 56:58-61. [DOI: 10.1039/c9cc07680h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, as a proof of concept, we developed the first enzymatic VIE fluorogenic probe for protein tyrosine phosphatase 1B (PTP1B).
Collapse
Affiliation(s)
- Qiuyu Gong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
- Department of Chemistry
| | - Wenjing Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education
- Department of Biochemistry and Molecular Biology
- Shandong University School of Medicine
- Jinan
- P. R. China
| | - Xiang Wu
- Key Laboratory Experimental Teratology of the Ministry of Education
- Department of Biochemistry and Molecular Biology
- Shandong University School of Medicine
- Jinan
- P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Gaobin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Renshuai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education
- Department of Biochemistry and Molecular Biology
- Shandong University School of Medicine
- Jinan
- P. R. China
| | - Shao Q. Yao
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)
| |
Collapse
|
24
|
Bauri K, Saha B, Banerjee A, De P. Recent advances in the development and applications of nonconventional luminescent polymers. Polym Chem 2020. [DOI: 10.1039/d0py01285h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, nonconventional luminescent polymers (NLPs) have emerged as the most sought-after alternative luminescent materials. This review provides a thorough description of the importance and applications of each class of state-of-the-art NLPs.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- Raghunathpur - 723133
- India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur - 741246
- India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur - 741246
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur - 741246
- India
| |
Collapse
|
25
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
26
|
Yuan Y, Chen X, Chen Q, Jiang G, Wang H, Wang J. New switch on fluorescent probe with AIE characteristics for selective and reversible detection of mercury ion in aqueous solution. Anal Biochem 2019; 585:113403. [DOI: 10.1016/j.ab.2019.113403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
27
|
Tian LJ, Min Y, Wang XM, Chen JJ, Li WW, Ma JY, Yu HQ. Biogenic Quantum Dots for Sensitive, Label-Free Detection of Mercury Ions. ACS APPLIED BIO MATERIALS 2019; 2:2661-2667. [DOI: 10.1021/acsabm.9b00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Li-Jiao Tian
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xue-Meng Wang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jing-Yuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Han-Qing Yu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Zhou Z, Chen DG, Saha ML, Wang H, Li X, Chou PT, Stang PJ. Designed Conformation and Fluorescence Properties of Self-Assembled Phenazine-Cored Platinum(II) Metallacycles. J Am Chem Soc 2019; 141:5535-5543. [PMID: 30835458 DOI: 10.1021/jacs.9b01368] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of platinum(II) metallacycles were prepared via the coordination-driven self-assembly of a phenazine-cored dipyridyl donor with a 90° Pt(II) acceptor and various dicarboxylate donors in a 1:1:2 ratio. While the metallacycles display similar absorption profiles, they exhibit a trend of blue-shifted fluorescence emission with the decrease in the bite angles between the carboxylate building blocks. Comprehensive spectroscopic and dynamic studies as well as a computational approach were conducted, revealing that the difference in the degree of constraint imposed on the excited-state planarization of the phenazine core within these metallacycles results in their distinct photophysical behaviors. As such, a small initial difference in the dicarboxylate building blocks is amplified into distinct photophysical properties of the metallacycles, which is reminiscent of the efficient functional tuning observed in natural systems. In addition to the pre-assembly approach, the photophysical properties of a metallacycle can also be modulated using a post-assembly modification to the dicarboxylate building block, suggesting another strategy for functional tuning. This research illustrated the potential of coordination-driven self-assembly for the preparation of materials with precisely tailored functionalities at the molecular level.
Collapse
Affiliation(s)
- Zhixuan Zhou
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Deng-Gao Chen
- Department of Chemistry , National Taiwan University , Taipei , 10617 Taiwan , R.O.C
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Heng Wang
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Pi-Tai Chou
- Department of Chemistry , National Taiwan University , Taipei , 10617 Taiwan , R.O.C
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
29
|
Wang H, Li Y, Zhang Y, Mei J, Su J. A new strategy for achieving single-molecular white-light emission: using vibration-induced emission (VIE) plus aggregation-induced emission (AIE) mechanisms as a two-pronged approach. Chem Commun (Camb) 2019; 55:1879-1882. [DOI: 10.1039/c8cc08513g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecular white-light emissions were achieved through the simple but judicious combination of vibration-induced emission (VIE) and aggregation-induced emission (AIE) mechanisms.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Yiru Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Yiyao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Ju Mei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
30
|
Huang R, Liu K, Liu H, Wang G, Liu T, Miao R, Peng H, Fang Y. Film-Based Fluorescent Sensor for Monitoring Ethanol–Water-Mixture Composition via Vapor Sampling. Anal Chem 2018; 90:14088-14093. [DOI: 10.1021/acs.analchem.8b04897] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Huijing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, PR China
| |
Collapse
|
31
|
Sun G, Zhou H, Liu Y, Li Y, Zhang Z, Mei J, Su J. Ratiometric Indicator Based on Vibration-Induced Emission for in Situ and Real-Time Monitoring of Gelation Processes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20205-20212. [PMID: 29770689 DOI: 10.1021/acsami.8b06461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monitoring specific processes such as gelation in a ratiometric and visual manner is of scientific value and has practical implications but remains challenging. Herein, an innovative fluorescent low-molecular-weight gelator (DPAC-CHOL) capable of revealing and self-revealing the gelation processes in situ and in real time via the ratiometric fluorescence change from orange-red to blue has been developed. By virtue of its vibration-induced emission attribute, the gelation point, critical gelation concentration, and the internal stiffness of the gel networks of DPAC-CHOL and other gelation systems could be facilely evaluated in a ratiometric and naked-eye-observable fashion. Noteworthily, the DPAC-CHOL-doped gelation system Ph-CHOL can quantitatively identify the environmental temperature in a daily-concerned range (i.e., 20-55 °C). This work not only provides a versatile advanced material but also opens up a new avenue for the investigation of gelation systems.
Collapse
Affiliation(s)
- Guangchen Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Haitao Zhou
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Yang Liu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Yiru Li
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Zhiyun Zhang
- Department of Chemistry , National Taiwan University , Taipei , 10617 Taiwan , ROC
| | - Ju Mei
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Jianhua Su
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
32
|
Li Y, Liu Y, Zhou H, Chen W, Mei J, Su J. Ratiometric Hg2+
/Ag+
Probes with Orange Red-White-Blue Fluorescence Response Constructed by Integrating Vibration-Induced Emission with an Aggregation-Induced Emission Motif. Chemistry 2017; 23:9280-9287. [DOI: 10.1002/chem.201700945] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yiru Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry & Molecular Engineering; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - Yang Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry & Molecular Engineering; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - Haitao Zhou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry & Molecular Engineering; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - Wei Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry & Molecular Engineering; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - Ju Mei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry & Molecular Engineering; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry & Molecular Engineering; East China University of Science & Technology; Shanghai 200237 P. R. China
| |
Collapse
|
33
|
Zhang X, Su L, Qiu L, Fan Z, Zhang X, Lin S, Huang Q. Palladium-catalyzed C–H olefination of uracils and caffeines using molecular oxygen as the sole oxidant. Org Biomol Chem 2017; 15:3499-3506. [DOI: 10.1039/c7ob00616k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The palladium-catalyzed oxidative C–H olefination of uracils or caffeines with alkenes using an atmospheric pressure of molecular oxygen as the sole oxidant has been disclosed.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| | - Lv Su
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| | - Lin Qiu
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| | - Zhenwei Fan
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| | - Xiaofeng Zhang
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| | - Shen Lin
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| | - Qiufeng Huang
- College of Chemistry & Chemical Engineering
- Fujian Normal University
- Fuzhou 350007
- People's Republic of China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
34
|
Dou WT, Chen W, He XP, Su J, Tian H. Vibration-Induced-Emission (VIE) for imaging amyloid β fibrils. Faraday Discuss 2017; 196:395-402. [DOI: 10.1039/c6fd00156d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper discusses the use of N,N′-disubstituted-dihydrodibenzo[a,c]phenazines with typical Vibration-Induced-Emission (VIE) properties for imaging amyloid β (Aβ) fibrils, which are a signature of neurological disorders such as Alzheimer's disease. A water-soluble VIEgen with a red fluorescence emission shows a pronounced, blue-shifted emission with Aβ peptide monomers and fibrils. The enhancement in blue fluorescence can be ascribed to the restriction of the molecular vibration by selectively binding to Aβ. We determine an increasing blue-to-red emission ratio of the VIEgen with both the concentration and fibrogenesis time of Aβ, thereby enabling a ratiometric detection of Aβ in its different morphological forms. Importantly, the VIEgen was proven to be suitable for the fluorescence imaging of small Aβ plaques in the hippocampus of a transgenic mouse brain (five months old), with the blue and red emissions well overlapped on the Aβ. This research offers a new rationale to design molecular VIE probes for biological applications.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Wei Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jianhua Su
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| |
Collapse
|
35
|
Zhang Yuan W, Zhang Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28420] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|