1
|
Zhang Z, Ou J, Li W, Amirfazli A. Folding characteristics of membranes in capillary origami. J Colloid Interface Sci 2023; 630:111-120. [DOI: 10.1016/j.jcis.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022]
|
2
|
Huang J, Huang G, Zhao Z, Wang C, Cui J, Song E, Mei Y. Nanomembrane-assembled nanophotonics and optoelectronics: from materials to applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:093001. [PMID: 36560918 DOI: 10.1088/1361-648x/acabf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics and optoelectronics are the keys to the information transmission technology field. The performance of the devices crucially depends on the light-matter interaction, and it is found that three-dimensional (3D) structures may be associated with strong light field regulation for advantageous application. Recently, 3D assembly of flexible nanomembranes has attracted increasing attention in optical field, and novel optoelectronic device applications have been demonstrated with fantastic 3D design. In this review, we first introduce the fabrication of various materials in the form of nanomembranes. On the basis of the deformability of nanomembranes, 3D structures can be built by patterning and release steps. Specifically, assembly methods to build 3D nanomembrane are summarized as rolling, folding, buckling and pick-place methods. Incorporating functional materials and constructing fine structures are two important development directions in 3D nanophotonics and optoelectronics, and we settle previous researches on these two aspects. The extraordinary performance and applicability of 3D devices show the potential of nanomembrane assembly for future optoelectronic applications in multiple areas.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhe Zhao
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Chao Wang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
3
|
Zhou C, Jia H, Liang S, Li Y, Li J, Chen H. Tailoring
3D
shapes of polyhedral milliparticles by adjusting orthogonal projection in a microfluidic channel. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Tribology Tsinghua University Beijing China
| | - He Jia
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Shuaishuai Liang
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Yongjian Li
- State Key Laboratory of Tribology Tsinghua University Beijing China
| | - Jiang Li
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Haosheng Chen
- State Key Laboratory of Tribology Tsinghua University Beijing China
| |
Collapse
|
4
|
Zhou C, Liang S, Li Y, Chen H, Li J. Fabrication of sharp-edged 3D microparticles via folded PDMS microfluidic channels. LAB ON A CHIP 2021; 22:148-155. [PMID: 34870665 DOI: 10.1039/d1lc00807b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
3D microparticles have promising applications in self-assembly, biomedical engineering, mechanical engineering, etc. The shape of microparticles plays a significant role in their functionalities. Although numerous investigations have been conducted to tailor the shape of microparticles, the diversity is still limited, and it remains a challenge to fabricate 3D microparticles with sharp edges. Here, we present a facile approach that combines a folded PDMS channel and orthogonal projection lithography for shaping sharp-edged 3D microparticles. By adjusting the number and the length of channel sides, both regular and irregular polyhedral cross-sections of the folded channel can be obtained. UV light with diverse patterns is applied vertically as the second shape controlling factor. A variety of 3D microparticles are obtained with sharp edges, which are potential templates for micromachining tools and abrasives. Some sharp-edged microparticles are assembled into 2D and 3D mesoscale structures, which demonstrates their prospective applications in self-assembly, tissue engineering, etc.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Shuaishuai Liang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongjian Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Park K, Kim H. Crystal capillary origami capsule with self-assembled nanostructures. NANOSCALE 2021; 13:14656-14665. [PMID: 34533158 DOI: 10.1039/d1nr02456f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The self-assembling mechanism of elasto-capillaries opens new applications in micro and nanotechnology by providing 3D assembly structures with 2D planar unit cells, so-called capillary origami. To date, the final structure has been designed based on the predetermined shape and size of the unit cell. Here, we show that plate-like salt crystallites grow and cover the emulsion interface, which is driven by Laplace pressure. Eventually, it creates a spherical capsule with self-assembled nanostructures. The capsule and the crystallite are investigated by scanning electron microscopy and X-ray diffraction analysis. To explain the mechanism, we develop a theoretical model to estimate the capsule size, the shell thickness, and the conditions necessary to form the shell based on a thin-walled pressure vessel. The proposed crystal capillary origami can fabricate a three-dimensional self-assembled salt capsule without any complicated procedures. We believe that it can offer a new physicochemical avenue for the spontaneous and facile fabrication of water-soluble carrier particles.
Collapse
Affiliation(s)
- Kwangseok Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
6
|
Liu X, Wei M, Wang Q, Tian Y, Han J, Gu H, Ding H, Chen Q, Zhou K, Gu Z. Capillary-Force-Driven Self-Assembly of 4D-Printed Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100332. [PMID: 33885192 DOI: 10.1002/adma.202100332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Capillary-force-driven self-assembly is emerging as a significant approach for the massive manufacture of advanced materials with novel wetting, adhesion, optical, mechanical, or electrical properties. However, academic value and practical applications of the self-assembly are greatly restricted because traditional micropillar self-assembly is always unidirectional. In this work, two-photon-lithography-based 4D microprinting is introduced to realize the reversible and bidirectional self-assembly of microstructures. With asymmetric crosslinking densities, the printed vertical microstructures can switch to a curved state with controlled thickness, curvature, and smooth morphology that are impossible to replicate by traditional 3D-printing technology. In different evaporating solvents, the 4D-printed microstructures can experience three states: (I) coalesce into clusters from original vertical states via traditional self-assembly, (II) remain curved, or (III) arbitrarily self-assemble (4D self-assembly) toward the curving directions. Compared to conventional approaches, this 4D self-assembly is distance-independent, which can generate varieties of assemblies with a yield as high as 100%. More importantly, the three states can be reversibly switched, allowing the development of many promising applications such as reversible micropatterns, switchable wetting, and dynamic actuation of microrobots, origami, and encapsulation.
Collapse
Affiliation(s)
- Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mengxiao Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Yujia Tian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiamian Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Hongcheng Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Qiang Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
7
|
Chen Q, Lv P, Huang J, Huang TY, Duan H. Intelligent Shape-Morphing Micromachines. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9806463. [PMID: 34056618 PMCID: PMC8139332 DOI: 10.34133/2021/9806463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 11/06/2022]
Abstract
Intelligent machines are capable of switching shape configurations to adapt to changes in dynamic environments and thus have offered the potentials in many applications such as precision medicine, lab on a chip, and bioengineering. Even though the developments of smart materials and advanced micro/nanomanufacturing are flouring, how to achieve intelligent shape-morphing machines at micro/nanoscales is still significantly challenging due to the lack of design methods and strategies especially for small-scale shape transformations. This review is aimed at summarizing the principles and methods for the construction of intelligent shape-morphing micromachines by introducing the dimensions, modes, realization methods, and applications of shape-morphing micromachines. Meanwhile, this review highlights the advantages and challenges in shape transformations by comparing micromachines with the macroscale counterparts and presents the future outlines for the next generation of intelligent shape-morphing micromachines.
Collapse
Affiliation(s)
- Qianying Chen
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- CAPT, HEDPS, Peking University, Beijing 100871, China
| | - Pengyu Lv
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tian-Yun Huang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- CAPT, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021; 13:563. [PMID: 33668617 PMCID: PMC7918883 DOI: 10.3390/polym13040563] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
Three-dimensional (3D) printing is a valuable tool in the production of complexes structures with specific shapes for tissue engineering. Differently from native tissues, the printed structures are static and do not transform their shape in response to different environment changes. Stimuli-responsive biocompatible materials have emerged in the biomedical field due to the ability of responding to other stimuli (physical, chemical, and/or biological), resulting in microstructures modifications. Four-dimensional (4D) printing arises as a new technology that implements dynamic improvements in printed structures using smart materials (stimuli-responsive materials) and/or cells. These dynamic scaffolds enable engineered tissues to undergo morphological changes in a pre-planned way. Stimuli-responsive polymeric hydrogels are the most promising material for 4D bio-fabrication because they produce a biocompatible and bioresorbable 3D shape environment similar to the extracellular matrix and allow deposition of cells on the scaffold surface as well as in the inside. Subsequently, this review presents different bioresorbable advanced polymers and discusses its use in 4D printing for tissue engineering applications.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Livia Pilatti
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Alberto Blay
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, Sao Paulo 07023-070, Brazil
| |
Collapse
|
9
|
Feng K, Gao N, Zhang W, Zhou K, Dong H, Wang P, Tian L, He G, Li G. Creation of Nonspherical Microparticles through Osmosis-Driven Arrested Coalescence of Microfluidic Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903884. [PMID: 31512376 DOI: 10.1002/smll.201903884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.
Collapse
Affiliation(s)
- Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Wanlin Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Kang Zhou
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Hao Dong
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Peng Wang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Tian
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Rastogi P, Njuguna J, Kandasubramanian B. Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Yang Q, Gao B, Xu F. Recent Advances in 4D Bioprinting. Biotechnol J 2019; 15:e1900086. [DOI: 10.1002/biot.201900086] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/23/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu HospitalAir Force Military Medical University Xi'an 710038 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
12
|
Cheng X, Zhang Y. Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901895. [PMID: 31265197 DOI: 10.1002/adma.201901895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The miniaturization of electronics has been an important topic of study for several decades. The established roadmaps following Moore's Law have encountered bottlenecks in recent years, as planar processing techniques are already close to their physical limits. To bypass some of the intrinsic challenges of planar technologies, more and more efforts have been devoted to the development of 3D electronics, through either direct 3D fabrication or indirect 3D assembly. Recent research efforts into direct 3D fabrication have focused on the development of 3D transistor technologies and 3D heterogeneous integration schemes, but these technologies are typically constrained by the accessible range of sophisticated 3D geometries and the complexity of the fabrication processes. As an alternative route, 3D assembly methods make full use of mature planar technologies to form predefined 2D precursor structures in the desired materials and sizes, which are then transformed into targeted 3D mesostructures by mechanical deformation. The latest progress in the area of micro/nanoscale 3D assembly, covering the various classes of methods through rolling, folding, curving, and buckling assembly, is discussed, focusing on the design concepts, principles, and applications of different methods, followed by an outlook on the remaining challenges and open opportunities.
Collapse
Affiliation(s)
- Xu Cheng
- AML, Department of Engineering Mechanics, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Liu Y, Li G, Lu H, Yang Y, Liu Z, Shang W, Shen Y. Magnetically Actuated Heterogeneous Microcapsule-Robot for the Construction of 3D Bioartificial Architectures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25664-25673. [PMID: 31268290 DOI: 10.1021/acsami.9b05517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Core-shell microcapsules as one type of the most attractive carriers and reactors have been widely applied in the fields of drug screening and tissue engineering owing to their excellent biocompatibility and semi-permeability. Yet, the spatial organization of microcapsules with specific shapes into three-dimensional (3D) ordered architectures still remains a big challenge. Here, we present a method to assemble shape-controllable core-shell microcapsules using an untethered magnetic microcapsule-robot. The microcapsule-robot with the shape-matching design can grab the building components tightly during the transportation and assembly processes. The core-shell feature of the microcapsule effectively prevents the magnetic nanoparticles from interacting with bioactive materials. The assembly results of cell-loaded heterogeneous microcapsules reveal that this strategy not only allows the magnetic microcapsule-robot to work in different workspaces in vitro for the creation of 3D constructions but also offers a noninvasive and dynamical manipulation platform by remotely controlling the position and orientation of the soft and liquid-like microcapsule components individually.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong 999077 , China
| | - Gen Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Beijing Institute of Technology , Beijing 100081 , China
| | - Haojian Lu
- Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong 999077 , China
| | - Yuanyuan Yang
- Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong 999077 , China
| | - Zeyang Liu
- Stem Cell Therapy and Regenerative Medicine Lab , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , China
| | - Wanfeng Shang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Yajing Shen
- Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong 999077 , China
| |
Collapse
|
14
|
Yu H, Liu J, Zhao YY, Jin F, Dong XZ, Zhao ZS, Duan XM, Zheng ML. Biocompatible Three-Dimensional Hydrogel Cell Scaffold Fabricated by Sodium Hyaluronate and Chitosan Assisted Two-Photon Polymerization. ACS APPLIED BIO MATERIALS 2019; 2:3077-3083. [DOI: 10.1021/acsabm.9b00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hong Yu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, P. R. China
- School of Future Technologies, University of Chinese Academy of Sciences, Yanqihu Campus, Huaibei Town, Huaibei Zhuang, Huairou District, Beijing 101407, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, P. R. China
| | - Yuan-Yuan Zhao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, P. R. China
| | - Zhen-Sheng Zhao
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, P. R. China
| | - Xuan-Ming Duan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Shang J, Le X, Zhang J, Chen T, Theato P. Trends in polymeric shape memory hydrogels and hydrogel actuators. Polym Chem 2019. [DOI: 10.1039/c8py01286e] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, “smart” hydrogels with either shape memory behavior or reversible actuation have received particular attention and have been further developed into sensors, actuators, or artificial muscles.
Collapse
Affiliation(s)
- Jiaojiao Shang
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Xiaoxia Le
- Department of Polymers and Composites
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- 315201 Ningbo
| | - Jiawei Zhang
- Department of Polymers and Composites
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- 315201 Ningbo
| | - Tao Chen
- Department of Polymers and Composites
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- 315201 Ningbo
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Institute for Biological Interfaces III
| |
Collapse
|
16
|
Liu Q, Xu B. Two- and three-dimensional self-folding of free-standing graphene by liquid evaporation. SOFT MATTER 2018; 14:5968-5976. [PMID: 29855650 DOI: 10.1039/c8sm00873f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2-D) atomically thin graphene has exhibited overwhelming excellent properties over its bulk counterpart graphite, yet the broad applications and explorations of its unprecedented properties require a diversity of its geometric morphologies, beyond its inherently planar structures. In this study, we present a self-folding approach for converting 2-D planar free-standing graphene to 2-D and 3-D folded structures through the evaporation of its liquid solutions. This approach involves competition between the surface energy of the liquid, and the deformation energy and van der Waals energy of graphene. An energy-based theoretical model is developed to describe the self-folding process during liquid evaporation by incorporating both graphene dimensions and surface wettability. The critical elastocapillary length by liquid evaporation is extracted and exemplified by investigating three typical graphene geometries with rectangular, circular and triangular shapes. After the complete evaporation of the liquid, the critical self-folding length of graphene that can enable a stable folded pattern by van der Waals energy is also obtained. In parallel, full-scale molecular dynamics (MD) simulations are performed to monitor the evolution of deformation energies and folded patterns with liquid evaporation. The simulation results demonstrate the formation of 2-D folded racket-like and 3-D folded cone-like patterns and show remarkable agreement with theoretical predictions in both energy variations and folded patterns. This work offers quantitative guidance for controlling the self-folding of graphene and other 2-D materials into complex structures by liquid evaporation.
Collapse
Affiliation(s)
- Qingchang Liu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
17
|
You S, Li J, Zhu W, Yu C, Mei D, Chen S. Nanoscale 3D printing of hydrogels for cellular tissue engineering. J Mater Chem B 2018; 6:2187-2197. [PMID: 30319779 PMCID: PMC6178227 DOI: 10.1039/c8tb00301g] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment is a crucial part of tissue engineering. It has been demonstrated that cell behaviors can be affected by not only the hydrogel's physical and chemical properties, but also its three dimensional (3D) geometrical structures. In order to study the influence of 3D geometrical cues on cell behaviors as well as the maturation and function of engineered tissues, it is imperative to develop 3D fabrication techniques to create micro and nanoscale hydrogel constructs. Among existing techniques that can effectively pattern hydrogels, two-photon polymerization (2PP)-based femtosecond laser 3D printing technology allows one to produce hydrogel structures with 100 nm resolution. This article reviews the basics of this technique as well as some of its applications in tissue engineering.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| | - Jiawen Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| | - Deqing Mei
- Department of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| |
Collapse
|
18
|
Zhang J, Zhao X, Liang L, Li J, Demirci U, Wang S. A decade of progress in liver regenerative medicine. Biomaterials 2017; 157:161-176. [PMID: 29274550 DOI: 10.1016/j.biomaterials.2017.11.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/05/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Liver diseases can be caused by viral infection, metabolic disorder, alcohol consumption, carcinoma or injury, chronically progressing to end-stage liver disease or rapidly resulting in acute liver failure. In either situation, liver transplantation is most often sought for life saving, which is, however, significantly limited by severe shortage of organ donors. Until now, tremendous multi-disciplinary efforts have been dedicated to liver regenerative medicine, aiming at providing transplantable cells, microtissues, or bioengineered whole liver via tissue engineering, or maintaining partial liver functions via extracorporeal support. In both directions, new compatible biomaterials, stem cell sources, and bioengineering approaches have fast-forwarded liver regenerative medicine towards potential clinical applications. Another important progress in this field is the development of liver-on-a-chip technologies, which enable tissue engineering, disease modeling, and drug testing under biomimetic extracellular conditions. In this review, we aim to highlight the last decade's progress in liver regenerative medicine from liver tissue engineering, bioartificial liver devices (BAL), to liver-on-a-chip platforms, and then to present challenges ahead for further advancement.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Liguo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China.
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA; Department of Electrical Engineering (By courtesy), Stanford University, Stanford, CA 94305, USA.
| | - ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China; Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
19
|
Liu W, Ren Y, Tao Y, Yao B, Li Y. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow. Electrophoresis 2017; 39:779-793. [DOI: 10.1002/elps.201700234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Weiyu Liu
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin P. R. China
| | - Ye Tao
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Bobin Yao
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| | - You Li
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| |
Collapse
|
20
|
Guo J, Duan J, Wu S, Guo J, Huang C, Zhang L. Robust and thermoplastic hydrogels with surface micro-patterns for highly oriented growth of osteoblasts. J Mater Chem B 2017; 5:8446-8450. [DOI: 10.1039/c7tb02412f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Robust and thermoplastic hydrogels combining the sol–gel transition behaviours of agarose and the double networks were constructed.
Collapse
Affiliation(s)
- Jinhua Guo
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Jiangjiang Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Shuangquan Wu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Jingmei Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University
- Wuhan
- China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University
- Wuhan
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|