1
|
Chen H, Chen H, Chen J, Song M. Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2962. [PMID: 38793817 PMCID: PMC11125222 DOI: 10.3390/s24102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. These include high porosity, large specific surface areas, adjustable morphologies and compositions, and diverse structural designs, improving gas-sensing performance. This review explores the application of variously structured and composed SMOs prepared by electrospinning in gas sensors. It highlights strategies to augment gas-sensing performance, such as noble metal modification and doping with transition metals, rare earth elements, and metal cations, all contributing to heightened sensitivity and selectivity. We also look at the fabrication of composite SMOs with polymers or carbon nanofibers, which addresses the challenge of high operating temperatures. Furthermore, this review discusses the advantages of hierarchical and core-shell structures. The use of spinel and perovskite structures is also explored for their unique chemical compositions and crystal structure. These structures are useful for high sensitivity and selectivity towards specific gases. These methodologies emphasize the critical role of innovative material integration and structural design in achieving high-performance gas sensors, pointing toward future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Hao Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Huayang Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Jiabao Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
He ZK, Zhao J, Li K, Zhao J, He H, Gao Z, Song YY. Rational Integration of SnMOF/SnO 2 Hybrid on TiO 2 Nanotube Arrays: An Effective Strategy for Accelerating Formaldehyde Sensing Performance at Room Temperature. ACS Sens 2023; 8:4189-4197. [PMID: 37870917 DOI: 10.1021/acssensors.3c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Formaldehyde is ubiquitously found in the environment, meaning that real-time monitoring of formaldehyde, particularly indoors, can have a significant impact on human health. However, the performance of commercially available interdigital electrode-based sensors is a compromise between active material loading and steric hindrance. In this work, a spaced TiO2 nanotube array (NTA) was exploited as a scaffold and electron collector in a formaldehyde sensor for the first time. A Sn-based metal-organic framework was successfully decorated on the inside and outside of TiO2 nanotube walls by a facile solvothermal decoration strategy. This was followed by regulated calcination, which successfully integrated the preconcentration effect of a porous Sn-based metal-organic framework (SnMOF) structure and highly active SnO2 nanocrystals into the spaced TiO2 NTA to form a Schottky heterojunction-type gas sensor. This SnMOF/SnO2@TiO2 NTA sensor achieved a high room-temperature formaldehyde response (1.7 at 6 ppm) with a fast response (4.0 s) and recovery (2.5 s) times. This work provides a new platform for preparing alternatives to interdigital electrode-based sensors and offers an effective strategy for achieving target preconcentrations for gas sensing processes. The as-prepared SnMOF/SnO2@TiO2 NTA sensor demonstrated excellent sensitivity, stability, reproducibility, flexibility, and convenience, showing excellent potential as a miniaturized device for medical diagnosis, environmental monitoring, and other intelligent sensing systems.
Collapse
Affiliation(s)
- Zhen-Kun He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Jiahui Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Keke Li
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Haoxuan He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Zhang F, Sun J, Shi F, Han Q, Shi Y, Yang L, Wang K, Dong B, Wang L, Xu L. Nanometric Surface-Selective Regulation of Au/In 2O 3 Nanofibers as an Exhaled H 2S Chemiresistor for Periodontitis Diagnosis. ACS Sens 2022; 7:3530-3539. [PMID: 36367464 DOI: 10.1021/acssensors.2c01926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
As one of the most prevalent diseases in the world, timely early intervention for periodontitis is a great challenge because the indicator is imperceptible. The exhaled H2S is considered to be a promising biomarker for fast and invasive periodontitis screening; however, the high-performance H2S gas sensor with excellent selectivity and sensitivity which is applicable to the oral cavity remains technically challenging. Herein, a self-assembled monolayer (SAM)-functionalized Au/In2O3 nanofiber (NF) sensor for H2S exhalation analysis was developed to flexibly and effectively modulate the selectivity of the sensor. Through optimizing the specific binding capacity to H2S by systematic adjustment with terminal groups and alkyl chains of SAMs, the sensing performance of the SAM-functionalized Au/In2O3 NF sensor is greatly enhanced. In the optimal (Au/In2O3-MPTES) sensor, the functionalization of the MPTES molecule could achieve significant response enhancement because of the stronger interaction between the sulfhydryl group at the end of the MPTES and H2S. Density functional theory simulation supports the proposed selective sensing mechanism via the analysis of adsorption energy and charge density distribution. The sensor exhibited a high response to H2S (1505.3-10 ppm) at an operating temperature of 100 °C with a low practical detection limit of 10 ppb and 13-145 fold enhanced selectivity. Furthermore, the Au/In2O3-MPTES sensor was successfully applied to distinguish the breath of healthy individuals and patients with severe periodontitis. This study provides novel design insights for the development of highly selective gas sensors for clinical aids in the diagnosis and detection of oral diseases such as periodontitis.
Collapse
Affiliation(s)
- Fanrou Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Fangyu Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qi Han
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Long Yang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Kun Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Zhao C, Shen J, Xu S, Wei J, Liu H, Xie S, Pan Y, Zhao Y, Zhu Y. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chem 2022; 392:133318. [DOI: 10.1016/j.foodchem.2022.133318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
5
|
Enhanced Response for Foodborne Pathogens Detection by Au Nanoparticles Decorated ZnO Nanosheets Gas Sensor. BIOSENSORS 2022; 12:bios12100803. [PMID: 36290940 PMCID: PMC9599186 DOI: 10.3390/bios12100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
Abstract
Listeria monocytogenes is a hazardous foodborne pathogen that is able to cause acute meningitis, encephalitis, and sepsis to humans. The efficient detection of 3-hydroxy-2-butanone, which has been verified as a biomarker for the exhalation of Listeria monocytogenes, can feasibly evaluate whether the bacteria are contained in food. Herein, we developed an outstanding 3-hydroxy-2-butanone gas sensor based on the microelectromechanical systems using Au/ZnO NS as a sensing material. In this work, ZnO nanosheets were synthesized by a hydrothermal reaction, and Au nanoparticles (~5.5 nm) were prepared via an oleylamine reduction method. Then, an ultrasonic treatment was carried out to modified Au nanoparticles onto ZnO nanosheets. The XRD, BET, TEM, and XPS were used to characterize their morphology, microstructure, catalytic structure, specific surface area, and chemical composition. The response of the 1.0% Au/ZnO NS sensors vs. 25 ppm 3-hydroxy-2-butanone was up to 174.04 at 230 °C. Moreover, these sensors presented fast response/recovery time (6 s/7 s), great selectivity, and an outstanding limit of detection (lower than 0.5 ppm). This work is full of promise for developing a nondestructive, rapid and practical sensor, which would improve Listeria monocytogenes evaluation in foods.
Collapse
|
6
|
Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review. Talanta 2022; 246:123527. [DOI: 10.1016/j.talanta.2022.123527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
7
|
Zhao L, Gong X, Tao W, Wang T, Sun P, Liu F, Liang X, Liu F, Wang Y, Lu G. Understanding the Increasing Trend of Sensor Signal with Decreasing Oxygen Partial Pressure by a Sensing-Reaction Model Based on O 2- Species. ACS Sens 2022; 7:1095-1104. [PMID: 35349276 DOI: 10.1021/acssensors.1c02753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the increasing trend of sensor signal with decreasing oxygen partial pressure was observed quite early, the underlying mechanism is still elusive, which is a hindrance to accurate gas detection under varying oxygen partial pressure. In this work, a sensing model based on previous experimental and theoretical results is proposed, in which the O2- species is determined to be the main oxygen species because O- species has not been observed by direct spectroscopic studies. On this basis, combined with the band bending of SnO2 at different oxygen partial pressures, the functional relationship between the surface electron concentration, oxygen partial pressure, and reducing gas concentration is established, which includes three forms corresponding to the depletion layer, accumulation layer, and flat band. In the depletion layer case, the variation of the sensor resistance to different concentrations of CO and oxygen can be well fitted with our function model. Besides, this model predicts that the response of sensors will no longer maintain the increasing trend in an extremely hypoxic atmosphere but will decrease and approach 1 with the background oxygen content further going down to 0.
Collapse
Affiliation(s)
- Liupeng Zhao
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xueqin Gong
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wei Tao
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tianshuang Wang
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Peng Sun
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xishuang Liang
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fengmin Liu
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanchao Wang
- State Key Laboratory of Superhard Materials and International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Geyu Lu
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Ren Y, Xie W, Li Y, Ma J, Li J, Liu Y, Zou Y, Deng Y. Noble Metal Nanoparticles Decorated Metal Oxide Semiconducting Nanowire Arrays Interwoven into 3D Mesoporous Superstructures for Low-Temperature Gas Sensing. ACS CENTRAL SCIENCE 2021; 7:1885-1897. [PMID: 34841059 PMCID: PMC8614104 DOI: 10.1021/acscentsci.1c00912] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 05/07/2023]
Abstract
Mesoporous materials have been extensively studied for various applications due to their high specific surface areas and well-interconnected uniform nanopores. Great attention has been paid to synthesizing stable functional mesoporous metal oxides for catalysis, energy storage and conversion, chemical sensing, and so forth. Heteroatom doping and surface modification of metal oxides are typical routes to improve their performance. However, it still remains challenging to directly and conveniently synthesize mesoporous metal oxides with both a specific functionalized surface and heteroatom-doped framework. Here, we report a one-step multicomponent coassembly to synthesize Pt nanoparticle-decorated Si-doped WO3 nanowires interwoven into 3D mesoporous superstructures (Pt/Si-WO3 NWIMSs) by using amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS), Keggin polyoxometalates (H4SiW12O40) and hydrophobic (1,5-cyclooctadiene)dimethylplatinum(II) as the as structure-directing agent, tungsten precursor and platinum source, respectively. The Pt/Si-WO3 NWIMSs exhibit a unique mesoporous structure consisting of 3D interwoven Si-doped WO3 nanowires with surfaces homogeneously decorated by Pt nanoparticles. Because of the highly porous structure, excellent transport of carriers in nanowires, and rich WO3/Pt active interfaces, the semiconductor gas sensors based on Pt/Si-WO3 NWIMSs show excellent sensing properties toward ethanol at low temperature (100 °C) with high sensitivity (S = 93 vs 50 ppm), low detection limit (0.5 ppm), fast response-recovery speed (17-7 s), excellent selectivity, and long-term stability.
Collapse
Affiliation(s)
- Yuan Ren
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Wenhe Xie
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jichun Li
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yan Liu
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
- State
Key Laboratory of Transducer Technology Shanghai Institute of Microsystem
and Information Technology, Chinese Academy
of Sciences, Shanghai 200050, China
| |
Collapse
|
9
|
Wang D, Chen GH, Yuan LB, Feng CC, Zhang J, Zhang L. Macrocyclic Inorganic Tin-Containing Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation. Chemistry 2021; 27:16117-16120. [PMID: 34505320 DOI: 10.1002/chem.202103226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/08/2022]
Abstract
In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10 -oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2 Ti6 and SnIn5 Ti6 complexes with Ti6 (SO4 )9 and SnIn5 (SO4 )12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Lv-Bing Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Cheng-Cheng Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| |
Collapse
|
10
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
11
|
Jang JS, Kim JK, Kim K, Jung WG, Lim C, Kim S, Kim DH, Kim BJ, Han JW, Jung W, Kim ID. Dopant-Driven Positive Reinforcement in Ex-Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003983. [PMID: 33000875 DOI: 10.1002/adma.202003983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The ex-solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high-temperature processing required for ex-solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low-temperature particle ex-solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex-solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex-solution at the oxide surface and eventually enables the formation of Ir particles (<3 nm) at temperatures as low as 300 °C. Low-temperature ex-solution effectively inhibits the agglomeration of WO3 sheets while maintaining well-dispersed ex-solved particles. Furthermore, the Ir-decorated WO3 sheets show excellent durability and H2 S selectivity when used as sensing materials, suggesting that this is a generalizable synthetic strategy for preparing highly robust heterogeneous catalysts for a variety of applications.
Collapse
Affiliation(s)
- Ji-Soo Jang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Wan-Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Chaesung Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Sangwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
12
|
Feng Li, Ma Q, Yu W, Dong X, Wang J, Liu G. Synthesis and Ethanol Sensing Properties of SnO2 Nanoparticles in SnO2 Nanotubes Composite. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Shin H, Jung WG, Kim DH, Jang JS, Kim YH, Koo WT, Bae J, Park C, Cho SH, Kim BJ, Kim ID. Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support via Carbon Nitride/SnO 2 Heterojunction Trapping. ACS NANO 2020; 14:11394-11405. [PMID: 32833436 DOI: 10.1021/acsnano.0c03687] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalysis with single-atom catalysts (SACs) exhibits outstanding reactivity and selectivity. However, fabrication of supports for the single atoms with structural versatility remains a challenge to be overcome, for further steps toward catalytic activity augmentation. Here, we demonstrate an effective synthetic approach for a Pt SAC stabilized on a controllable one-dimensional (1D) metal oxide nano-heterostructure support, by trapping the single atoms at heterojunctions of a carbon nitride/SnO2 heterostructure. With the ultrahigh specific surface area (54.29 m2 g-1) of the nanostructure, we obtained maximized catalytic active sites, as well as further catalytic enhancement achieved with the heterojunction between carbon nitride and SnO2. X-ray absorption fine structure analysis and HAADF-STEM analysis reveal a homogeneous atomic dispersion of Pt species between carbon nitride and SnO2 nanograins. This Pt SAC system with the 1D nano-heterostructure support exhibits high sensitivity and selectivity toward detection of formaldehyde gas among state-of-the-art gas sensors. Further ex situ TEM analysis confirms excellent thermal stability and sinter resistance of the heterojunction-immobilized Pt single atoms.
Collapse
Affiliation(s)
- Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wan-Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yoon Hwa Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Ho Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bong Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Liu D, Li H, Song L, Zhu X, Qin Y, Zu H, He J, Yang Z, Wang F. Modulating electrical and photoelectrical properties of one-step electrospun one-dimensional SnO 2 arrays. NANOTECHNOLOGY 2020; 31:335202. [PMID: 32344383 DOI: 10.1088/1361-6528/ab8dee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-dimensional nanostructured SnO2 has attracted intense research interest due to its advantageous properties, including a large surface-to-volume ratio, high optical transparency and typical n-type properties. However, how to fabricate high-performance and multifunctional electronic devices based on 1D nanostructured SnO2 via low-cost and efficient preparation techniques is still a huge challenge. In this work, a low-cost, one-step electrospun technology was employed to synthesize the SnO2 nanofiber (NF) and nanotube (NT) arrays. The electrical and photoelectrical parameters of SnO2 NTs-based devices were effectively controlled through simple changes to the amount of Sn in the precursor solution. The optimal 0.2 SnO2 NTs-based field effect transistors (FETs) with 0.2 g SnCl2*4H2O per 5 ml in the precursor solution exhibit a high saturation current (∼9 × 10-5 A) and a large on/off ratio exceeding 2.4 × 106. Additionally, 0.2 SnO2 NTs-based FET also exhibit a narrowband deep-UV photodetectivity (240-320 nm), including an ultra-high photocurrent of 307 μA, a high photosensitivity of 2003, responsibility of 214 A W-1 and detectivity of 2.19 × 1013 Jones. Furthermore, the SnO2 NTs-based transparent photodetectors were as well be integrated with fluorine-doped tin oxide glass and demonstrated a high optical transparency and photosensitivity (∼199). All these results elucidate the significant advantages of these electrospun SnO2 NTs for next-generation multifunctional electronics and transparent photonics.
Collapse
Affiliation(s)
- Di Liu
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li Z, Wang Y, Elzatahry AA, Yang X, Pu S, Luo W, Cheng X, Deng Y. Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Wang D, Deng L, Cai H, Yang J, Bao L, Zhu Y, Wang X. Bimetallic PtCu Nanocrystal Sensitization WO 3 Hollow Spheres for Highly Efficient 3-Hydroxy-2-butanone Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18904-18912. [PMID: 32251603 DOI: 10.1021/acsami.0c02523] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As a foodborne bacterium, Listeria monocytogenes (LM) can cause serious diseases and even death to weak people. 3-Hydroxy-2-butanone (3H-2B) has been proven to be a biomarker for exhalation of LM. Detection of 3H-2B is a fast and effective method for determining whether the food is infected. Herein, we present an excellent 3H-2B gas sensor based on bimetallic PtCu nanocrystal modified WO3 hollow spheres. The structure and morphology of the PtCu/WO3 were characterized, and their gas sensitivities were measured by a static testing method. The results showed that the sensor response of WO3 hollow spheres was enhanced by about 15 times after modification with bimetallic PtCu nanocrystal. The maximum response value of the PtCu/WO3 sensor to 10 ppm 3H-2B is as high as 221.2 at 110 °C. In addition, the PtCu/WO3 sensor also exhibited good selectivity to 3H-2B, fast response/recovery time (9 s/28 s), and low limit of detection (LOD < 0.5 ppm). Furthermore, the sensitivity mechanism was studied by monitoring the reaction products by gas chromatography-mass spectrometry. The excellent gas-sensing performance can be attributed to the synergy between PtCu and WO3, including the unique spillover effect of O2 on PtCu nanoparticles, the regulated depletion layer by p-type CuxO to n-type WO3, and their selective catalysis to 3H-2B. Hence, this work offers the rational design and synthesis of highly efficient sensitive materials for the detection of LM for food security.
Collapse
Affiliation(s)
- Ding Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lifeng Deng
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haijie Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jialin Yang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Bao
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xianying Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
17
|
Zhao T, Qiu P, Fan Y, Yang J, Jiang W, Wang L, Deng Y, Luo W. Hierarchical Branched Mesoporous TiO 2-SnO 2 Nanocomposites with Well-Defined n-n Heterojunctions for Highly Efficient Ethanol Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902008. [PMID: 31871868 PMCID: PMC6918105 DOI: 10.1002/advs.201902008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Indexed: 05/19/2023]
Abstract
The direct assembly of functional nanoparticles into a highly crystalline mesoporous semiconductor with oriented configurations is challenging but of significance. Herein, an evaporation induced oriented co-assembly strategy is reported to incorporate SnO2 nanocrystals (NCs) into a 3D branched mesoporous TiO2 framework by using poly(ethylene oxide)-block-polystyrene (PEO-b-PS) as the template, SnO2 NCs as the direct tin source, and titanium butoxide (TBOT) as the titania precursor. Owing to the combined properties of ultrasmall particle size (3-5 nm), excellent dispersibility and presence of abundant hydroxyl groups, SnO2 NCs can easily interact with PEO block of the template through hydrogen bonding and co-assemble with hydrolyzed TBOT to form a novel hierarchical branched mesoporous structure (SHMT). After calcination, the obtained composites exhibit a unique 3D flower-like structure, which consists of numerous mesoporous rutile TiO2 branches with uniform cylindrical mesopores (≈9 nm). More importantly, the SnO2 NCs are homogeneously distributed in the mesoporous TiO2 matrix, forming numerous n-n heterojunctions. Due to the unique textual structures, the SHMT-based gas sensors show excellent gas sensing performance with fast response/recovery dynamics, high sensitivity, and selectivity toward ethanol.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Yonghui Deng
- Department of ChemistryState Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsiChEMFudan UniversityShanghai200433China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| |
Collapse
|
18
|
Zhu Y, Zhang L, Zhang J. Assembly of high-nuclearity Sn26 , Sn34 -oxo clusters: solvent strategies and inorganic Sn incorporation. Chem Sci 2019; 10:9125-9129. [PMID: 31762984 PMCID: PMC6855196 DOI: 10.1039/c9sc02503k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/03/2022] Open
Abstract
A series of unprecedented high-nuclearity tin-oxo nanoclusters (up to Sn34 ) with structural diversity have been obtained. The characteristics of the applied solvents had great influence on the assembly of these Sn-O clusters. Pure alcohol environments only gave rise to small clusters of Sn6 , whilst the introduction of water significantly increased the nuclearity to Sn26 , which greatly exceeds those of the known tin-oxo clusters (≤14); the use of aprotic CH3CN finally produced the largest Sn34 to date. Apart from the nuclearity breakthrough, the obtained tin-oxo clusters also present new structural types that are not found in previous reports, including a layered nanorod-like structure of Sn26 and the cage-dimer structure of Sn34 . The layered Sn26 clusters represent good molecular models for SnO2 materials. Moreover, an electrode derived from TOC-17 with a {Sn26 } core shows better electrocatalytic CO2 reduction activity than that from TOC-18 with Sn34 . This work not only provides an efficient methodology for the rational assembly of high-nuclearity Sn-O clusters, but also extends their potential applications in energy conversion.
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China .
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China .
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China .
| |
Collapse
|
19
|
Chen Q, Wang Y, Wang M, Ma S, Wang P, Zhang G, Chen W, Jiao H, Liu L, Xu X. Enhanced acetone sensor based on Au functionalized In-doped ZnSnO 3 nanofibers synthesized by electrospinning method. J Colloid Interface Sci 2019; 543:285-299. [PMID: 30822660 DOI: 10.1016/j.jcis.2019.02.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
Abstract
Nobel metal modification could be a valuable method for the fabrication of advanced chemiresistive gas sensor. Herein, a series of Au loaded In-doped ZnSnO3 nanofibers were prepared via electrospinning technique. The crystal structure, morphology and chemical composition of the synthesized materials were characterized by field-emission X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental mapping, X-ray photoelectron spectroscopy (XPS) and Brunauere-Emmette-Teller (BET) analyses. The optimal sensor, which was based on 0.25 mol% Au loaded In-doped ZnSnO3 nanofibers, could detect 50 ppm acetone effectively, it possessed a high response (19.3) and fast response/recovery time (10/13 s) at low operating temperature (200 °C). The enhanced gas sensing performance was mainly derived from proper introduction of Au. Since the electronic catalysis of Au nanoparticles created Schottky barrier-type junctions at Au and ZnSnO3 interfaces which could cause tremendous change of resistance and induce to high sensitivity, meanwhile the chemical catalysis of Au nanoparticles promoted the chemisorption and dissociation of gas molecules which could accelerate the reaction with gas sensing material. Moreover, the Au loaded In-doped ZnSnO3 sensors displayed certain stability under different humidity condition, it meant that the negative influence of water vapor on gas sensing performance could be inhibited by loading Au nanoparticles.
Collapse
Affiliation(s)
- Qiong Chen
- College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, Northwest Minzu University, Lanzhou, Gansu 730030, PR China; Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730030, PR China; Postdoctoral Scientific Research Working Station of Lanzhou Mapping Information Center, Lanzhou, Gansu 730000, PR China.
| | - Yuhua Wang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730030, PR China
| | - Mingxiao Wang
- Postdoctoral Scientific Research Working Station of Lanzhou Mapping Information Center, Lanzhou, Gansu 730000, PR China
| | - Shuyi Ma
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Peiyu Wang
- College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Guoheng Zhang
- College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Wanjun Chen
- College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Haiyan Jiao
- College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Liwei Liu
- College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Xiaoli Xu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
20
|
Chen W, Li S, Li X, Zhang C, Hu X, Zhu F, Shen G, Feng F. Iron sulfur clusters in protein nanocages for photocatalytic hydrogen generation in acidic aqueous solutions. Chem Sci 2019; 10:2179-2185. [PMID: 30881642 PMCID: PMC6385480 DOI: 10.1039/c8sc05293j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022] Open
Abstract
We took advantage of the iron binding affinity of apoferritin to immobilize iron-sulfur clusters into apoferritin up to 312 moieties per protein, with a loading rate as high as 25 wt%. The photocatalytic hydrogen generation activity in acidic aqueous solutions was achieved with TONs up to 31 (based on a single catalyst moiety) or 8.3 × 103 (based on a single protein) upon 3 h of visible light irradiation. The present study provides a versatile strategy to construct uniform protein/photocatalyst supramolecular systems with FeFe-H2ase activity.
Collapse
Affiliation(s)
- Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Chi Zhang
- School of Chemistry & Chemical Engineering , Shangqiu Normal University , Shangqiu 476000 , China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Fan Zhu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Guosong Shen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|
21
|
Wang T, Zhang S, Yu Q, Wang S, Sun P, Lu H, Liu F, Yan X, Lu G. Novel Self-Assembly Route Assisted Ultra-Fast Trace Volatile Organic Compounds Gas Sensing Based on Three-Dimensional Opal Microspheres Composites for Diabetes Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32913-32921. [PMID: 30176721 DOI: 10.1021/acsami.8b13010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of ultra-fast response semiconductor gas sensors for high-accuracy detection of trace volatile organic compounds in human exhaled breath still remains a challenge. Herein, we propose a novel self-assembly synthesis concept for preparing intricate three-dimensional (3D) opal porous (OP) SnO2-ZnO hollow microspheres (HM), by employing sulfonated polystyrene (S-PS) spheres template-assisted ultrasonic spray pyrolysis. The high gas accessibility of the unique opal hollow structures resulted in the existence of 3D interconnection and bimodal (mesoscale and macroscale) pores, and the n-n heterojunction-induced change in oxygen adsorption. The 3D OP SnO2-ZnO HM sensor exhibited high response and ultra-fast dynamic process (response time ∼4 s and recovery time ∼17 s) to 1.8 ppm acetone under highly humid ambient condition (98% relative humidity), and it could rapidly identify the states of the exhaled breath of healthy people and simulated diabetics. In addition, the rational structure design of the 3D OP SnO2 HM enables the ultra-fast detection (within 1 s) of ethanol in simulation drunk driving testing. Our results obtained in this work provided not only a facile self-assembly approach to fabricate metal oxides with 3D OP HM structures but also a new methodology for achieving noninvasive real-time exhaled breath detection.
Collapse
Affiliation(s)
- Tianshuang Wang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Sufang Zhang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Qi Yu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Siping Wang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Peng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Huiying Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| |
Collapse
|
22
|
Chen H, Zhao Y, Shi L, Li GD, Sun L, Zou X. Revealing the Relationship between Energy Level and Gas Sensing Performance in Heteroatom-Doped Semiconducting Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29795-29804. [PMID: 30095885 DOI: 10.1021/acsami.8b10057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cation substitutional doping of metal oxide semiconductors plays pivotal roles in improving the gas sensing performances, but the doping effect on surface sensing reaction is still not well understood. In this study, indium oxides doped with various heteroatoms are investigated to obtain in-depth understanding of how doping (or the resulting change in the electronic structure) alters the surface-absorbed oxygen chemistry and subsequent sensing process. The experimental results reveal that energy level of In2O3 can be modulated by introduction of these dopants, some of which (e.g., Al, Ga, and Zr) lead to the elevation of Fermi level, whereas others (e.g., Ti, V, Cr, Mo, W, and Sn) bring about relative drop in Fermi level. However, only the former can improve the response to formaldehyde, indicating a strong link between Fermi level and sensing properties. Mechanistic study suggests that the elevation of Fermi level increases energy level difference between oxide semiconductor and oxygen molecules and facilitates the surface absorption of oxygen species, resulting in superior formaldehyde sensing activity. Especially, Al-doped In2O3 exhibits remarkably enhanced sensing performances toward formaldehyde at low working temperature (150 °C) with high response, good selectivity, ultralow limit of detection (60 ppb), and short response time (2-23 s). Our findings not only promote the understanding of sensing reaction process and its correlation with the semiconductor electronic structure but also offer a general guideline for large-scale screening of promising oxide semiconductor-based sensing materials for gas detection.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Yanfang Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Guo-Dong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Lei Sun
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics , Dalian 116023 P. R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
23
|
Liu H, Wei D, Yan Y, Li A, Chuai X, Lu G, Wang Y. Silver Nanowire Templating Synthesis of Mesoporous SnO
2
Nanotubes: An Effective Gas Sensor for Methanol with a Rapid Response and Recovery. ChemistrySelect 2018. [DOI: 10.1002/slct.201801663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huali Liu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| | - Dongdong Wei
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University Changchun 130012, P. R. China
| | - Yan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| | - Ang Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| | - Xiaohong Chuai
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University Changchun 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University Changchun 130012, P. R. China
| | - Yu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| |
Collapse
|
24
|
Cha JH, Kim DH, Choi SJ, Koo WT, Kim ID. Sub-Parts-per-Million Hydrogen Sulfide Colorimetric Sensor: Lead Acetate Anchored Nanofibers toward Halitosis Diagnosis. Anal Chem 2018; 90:8769-8775. [DOI: 10.1021/acs.analchem.8b01273] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jun-Hwe Cha
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Choi SJ, Yu H, Jang JS, Kim MH, Kim SJ, Jeong HS, Kim ID. Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703934. [PMID: 29443449 DOI: 10.1002/smll.201703934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen-doped reduced graphene oxide (nRGO) fiber on colorless polyimide film is proposed. Ultralong graphene oxide (GO) fibers are synthesized by solution assembly of large GO sheets assisted by lyotropic liquid crystal behavior. Chemical modification by nitrogen-doping is carried out under thermal annealing in H2 (4%)/N2 (96%) ambient to obtain highly conductive nRGO fiber. Very small (≈2 nm) Pt nanoparticles are tightly anchored on the surface of the nRGO fiber as water dissociation catalysts by an optical sintering process. As a result, nRGO fiber can effectively detect wide humidity levels in the range of 6.1-66.4% relative humidity (RH). Furthermore, a 1.36-fold higher sensitivity (4.51%) at 66.4% RH is achieved using a Pt functionalized nRGO fiber (i.e., Pt-nRGO fiber) compared with the sensitivity (3.53% at 66.4% RH) of pure nRGO fiber. Real-time and portable humidity sensing characteristics are successfully demonstrated toward exhaled breath using Pt-nRGO fiber integrated on a portable sensing module. The Pt-nRGO fiber with high sensitivity and wide range of humidity detection levels offers a new sensing platform for wearable humidity sensors.
Collapse
Affiliation(s)
- Seon-Jin Choi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Hayoung Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonrabuk-do, 565-905, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min-Hyeok Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang-Joon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonrabuk-do, 565-905, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Advanced Nanosensor Research Center, KAIST Institute for the NanoCentury, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
26
|
Zhu H, Li Q, Ren Y, Gao Q, Chen J, Wang N, Deng J, Xing X. A New Insight into Cross-Sensitivity to Humidity of SnO 2 Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703974. [PMID: 29377613 DOI: 10.1002/smll.201703974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 05/25/2023]
Abstract
The efficiency of gas sensors varies enormously from fundamental study to practical application. This big gap comes mainly from the complex and unpredictable effect of atmospheric environment, especially in humidity. Here, the cross-sensitivity to humidity of a SnO2 sensor from local structural and lattice evolutions is studied. The sensing response of ethanol is found to be efficiently activated by adsorbing trace of water but inhibited as humidity increases. By X-ray diffraction, pair distribution function of synchrotron and ab initio calculations, the independent effect of water and ethanol on lattice and local structure are clearly revealed, which elucidate the intricate sensing reactions. The formation of hydrogen bonds and repulsion of ethoxides play key roles in the structural distortions, and also in adsorption energies that are critical to the sensitive behavior. The results show the sensor performance coupled with local structural evolution, which provides a new insight into the controversial effects of humidity on SnO2 sensors.
Collapse
Affiliation(s)
- He Zhu
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Li
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Ren
- Argonne National Laboratory, X-Ray Science Division, Argonne, IL, 60439, USA
| | - Qilong Gao
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Na Wang
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinxia Deng
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xianran Xing
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
27
|
Jung JW, Jang JS, Yun TG, Yoon KR, Kim ID. Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe 2O 3 Nanoparticles for High-Performance Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6531-6540. [PMID: 29381322 DOI: 10.1021/acsami.7b15421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lithium-oxygen batteries have been considered as one of the most viable energy source options for electric vehicles due to their high energy density. However, they are still faced with technical challenges, such as low round-trip efficiency and short cycle life, which mainly originate from the cathode part of the battery. In this work, we designed a three-dimensional nanofibrous air electrode consisted of hierarchically structured carbon nanotube-bridged hollow Fe2O3 nanoparticles (H-Fe2O3/CNT NFs). Composite nanofibers consisted of hollow Fe2O3 NPs anchored by multiple CNTs offered enhanced catalytic sites (interconnected hollow Fe2O3 NPs) and fast charge-transport highway (bridged CNTs) for facile formation and decomposition of Li2O2, leading to outstanding cell performance: (1) Swagelok cell exhibited highly reversible cycling characteristics for 250 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 500 mA g-1. (2) A module composed of two pouch-type cells stably powered an light-emitting diode lamp operated at 5.0 V.
Collapse
Affiliation(s)
- Ji-Won Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae Gwang Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Ro Yoon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Kim SJ, Choi SJ, Jang JS, Cho HJ, Koo WT, Tuller HL, Kim ID. Exceptional High-Performance of Pt-Based Bimetallic Catalysts for Exclusive Detection of Exhaled Biomarkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700737. [PMID: 28758254 DOI: 10.1002/adma.201700737] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/21/2017] [Indexed: 05/20/2023]
Abstract
Achieving an improved understanding of catalyst properties, with ability to predict new catalytic materials, is key to overcoming the inherent limitations of metal oxide based gas sensors associated with rather low sensitivity and selectivity, particularly under highly humid conditions. This study introduces newly designed bimetallic nanoparticles (NPs) employing bimetallic Pt-based NPs (PtM, where M = Pd, Rh, and Ni) via a protein encapsulating route supported on mesoporous WO3 nanofibers. These structures demonstrate unprecedented sensing performance for detecting target biomarkers (even at p.p.b. levels) in highly humid exhaled breath. Sensor arrays are further employed to enable pattern recognition capable of discriminating between simulated biomarkers and controlled breath. The results provide a new class of multicomponent catalytic materials, demonstrating potential for achieving reliable breath analysis sensing.
Collapse
Affiliation(s)
- Sang-Joon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Jin Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Applied Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Harry L Tuller
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
29
|
Jang JS, Koo WT, Choi SJ, Kim ID. Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. J Am Chem Soc 2017; 139:11868-11876. [DOI: 10.1021/jacs.7b05246] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ji-Soo Jang
- Department of Materials Science and Engineering and §Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering and §Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seon-Jin Choi
- Department of Materials Science and Engineering and §Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering and §Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
30
|
Abstract
As a futuristic diagnosis platform, breath analysis is gaining much attention because it is a noninvasive, simple, and low cost diagnostic method. Very promising clinical applications have been demonstrated for diagnostic purposes by correlation analysis between exhaled breath components and specific diseases. In addition, diverse breath molecules, which serve as biomarkers for specific diseases, are precisely identified by statistical pattern recognition studies. To further improve the accuracy of breath analysis as a diagnostic tool, breath sampling, biomarker sensing, and data analysis should be optimized. In particular, development of high performance breath sensors, which can detect biomarkers at the ppb-level in exhaled breath, is one of the most critical challenges. Due to the presence of numerous interfering gas species in exhaled breath, selective detection of specific biomarkers is also important. This Account focuses on chemiresistive type breath sensors with exceptionally high sensitivity and selectivity that were developed by combining hollow protein templated nanocatalysts with electrospun metal oxide nanostructures. Nanostructures with high surface areas are advantageous in achieving high sensitivity because the sensing signal is dominated by the surface reaction between the sensing layers and the target biomarkers. Furthermore, macroscale pores between one-dimensional (1D) nanostructures can facilitate fast gas diffusion into the sensing layers. To further enhance the selectivity, catalytic functionalization of the 1D metal oxide nanostructure is essential. However, the majority of conventional techniques for catalytic functionalization have failed to achieve a high degree of dispersion of nanoscale catalysts due to aggregation on the surface of the metal oxide, which severely deteriorates the sensing properties by lowering catalytic activity. This issue has led to extensive studies on monolithically dispersed nanoscale particles on metal oxides to maximize the catalytic performances. As a pioneering technique, a bioinspired templating route using apoferritin, that is, a hollow protein cage, has been proposed to obtain nanoscale (∼2 nm) catalyst particles with high dispersity. Nanocatalysts encapsulated by a protein shell were first used in chemiresistive type breath sensors for catalyst functionalization on 1D metal oxide structures. We discuss the robustness and versatility of the apoferrtin templating route for creating highly dispersive catalytic NPs including single components (Au, Pt, Pd, Rh, Ag, Ru, Cu, and La) and bimetallic catalysts (PtY and PtCo), as well as the core-shell structure of Au-Pd (Au-core@Pd-shell). The use of these catalysts is essential to establish high performance sensors arrays for the pattern recognition of biomarkers. In addition, novel multicomponent catalysts provide unprecedented sensitivity and selectivity. With this in mind, we discuss diverse synthetic routes for nanocatalysts using apoferritin and the formation of various catalyst-1D metal oxide composite nanostructures. Furthermore, we discuss detection capability of a simulated biomarker gas using the breath sensor arrays and principal component analysis. Finally, future prospects with the portable breath analysis platform are presented by demonstrating the potential feasibility of real-time and on-site breath analysis using chemiresistive sensors.
Collapse
Affiliation(s)
- Sang-Joon Kim
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
- Applied
Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Jin Cho
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Chen H, Hu J, Li GD, Gao Q, Wei C, Zou X. Porous Ga-In Bimetallic Oxide Nanofibers with Controllable Structures for Ultrasensitive and Selective Detection of Formaldehyde. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4692-4700. [PMID: 28084720 DOI: 10.1021/acsami.6b13520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The design of appropriate composite materials with unique surface structures is an important strategy to achieve ideal chemical gas sensing. In this paper, efficient and selective detection of formaldehyde vapor has been realized by a gas sensor based on porous GaxIn2-xO3 nanofibers assembled by small building blocks. By tuning the Ga/In atomic ratios in the materials, crystallite phase, nanostructure, and band gap of as-obtained GaxIn2-xO3 nanofibers can be rationally altered. This further offers a good opportunity to optimize the gas sensing performances. In particular, the sensor based on porous Ga0.6In1.4O3 nanofibers assembled by small nanoparticles (∼4.6 nm) exhibits best sensing performances. Toward 100 ppm formaldehyde, its highest response (Ra/Rg = 52.4, at 150 °C) is ∼4 times higher than that of the pure In2O3 (Ra/Rg = 13.0, at 200 °C). Meanwhile, it has superior ability to selectively detect formaldehyde against other interfering volatile organic compound gases. The significantly improved sensing performance makes the Ga0.6In1.4O3 sensor very promising for selective detection of formaldehyde.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University , Changchun 130025, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Jiabo Hu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Guo-Dong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Qian Gao
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University , Changchun 130025, P. R. China
| | - Cundi Wei
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University , Changchun 130025, P. R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| |
Collapse
|