1
|
Philippi M, Richter CP, Kappen M, Watrinet I, Miao Y, Runge M, Jorde L, Korneev S, Holtmannspötter M, Kurre R, Holthuis JCM, Garcia KC, Plückthun A, Steinhart M, Piehler J, You C. Biofunctional Nanodot Arrays in Living Cells Uncover Synergistic Co-Condensation of Wnt Signalodroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203723. [PMID: 36266931 DOI: 10.1002/smll.202203723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Qualitative and quantitative analysis of transient signaling platforms in the plasma membrane has remained a key experimental challenge. Here, biofunctional nanodot arrays (bNDAs) are developed to spatially control dimerization and clustering of cell surface receptors at the nanoscale. High-contrast bNDAs with spot diameters of ≈300 nm are obtained by capillary nanostamping of bovine serum albumin bioconjugates, which are subsequently biofunctionalized by reaction with tandem anti-green fluorescence protein (GFP) clamp fusions. Spatially controlled assembly of active Wnt signalosomes is achieved at the nanoscale in the plasma membrane of live cells by capturing the co-receptor Lrp6 into bNDAs via an extracellular GFP tag. Strikingly, co-recruitment is observed of co-receptor Frizzled-8 as well as the cytosolic scaffold proteins Axin-1 and Disheveled-2 into Lrp6 nanodots in the absence of ligand. Density variation and the high dynamics of effector proteins uncover highly cooperative liquid-liquid phase separation (LLPS)-driven assembly of Wnt "signalodroplets" at the plasma membrane, pinpointing the synergistic effects of LLPS for Wnt signaling amplification. These insights highlight the potential of bNDAs for systematically interrogating nanoscale signaling platforms and condensation at the plasma membrane of live cells.
Collapse
Affiliation(s)
- Michael Philippi
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Marie Kappen
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Isabelle Watrinet
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mercedes Runge
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Lara Jorde
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Sergej Korneev
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Joost C M Holthuis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich, 8057, Switzerland
| | - Martin Steinhart
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
2
|
Dirscherl C, Löchte S, Hein Z, Kopicki JD, Harders AR, Linden N, Karner A, Preiner J, Weghuber J, Garcia-Alai M, Uetrecht C, Zacharias M, Piehler J, Lanzerstorfer P, Springer S. Dissociation of β2m from MHC class I Triggers formation of Noncovalent, transient heavy chain dimers. J Cell Sci 2022; 135:274997. [PMID: 35393611 DOI: 10.1242/jcs.259498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (β2m), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single molecule co-tracking. We identify non-covalent MHC-I FHC dimers mediated by the α3 domain as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single molecule co-localization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to the β2m light chain.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Sara Löchte
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Noemi Linden
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany.,Centre for Structural Systems Biology, Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,European XFEL, Schenefeld, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | | | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| |
Collapse
|
3
|
Ruggiero FM, Springer S. Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:85-99. [PMID: 35647522 PMCID: PMC9133507 DOI: 10.1016/j.crimmu.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties. Major histocompatibility complex class I molecules form homotypic and heterotypic associations at the cell surface. Associations show distinctive stoichiometry and biochemical properties. Associations might regulate immunological and non-immunological processes. Heterotypic association with cell surface receptors might regulate receptor's activity. Homotypic associations have been related to pathological outcomes.
Collapse
|
4
|
Hager R, Müller U, Ollinger N, Weghuber J, Lanzerstorfer P. Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates. ACS Sens 2021; 6:4076-4088. [PMID: 34652152 PMCID: PMC8630788 DOI: 10.1021/acssensors.1c01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Analysis of protein–protein
interactions in living cells
by protein micropatterning is currently limited to the spatial arrangement
of transmembrane proteins and their corresponding downstream molecules.
Here, we present a robust and straightforward method for dynamic immunopatterning
of cytosolic protein complexes by use of an artificial transmembrane
bait construct in combination with microstructured antibody arrays
on cyclic olefin polymer substrates. As a proof, the method was used
to characterize Grb2-mediated signaling pathways downstream of the
epidermal growth factor receptor (EGFR). Ternary protein complexes
(Shc1:Grb2:SOS1 and Grb2:Gab1:PI3K) were identified, and we found
that EGFR downstream signaling is based on constitutively bound (Grb2:SOS1
and Grb2:Gab1) as well as on agonist-dependent protein associations
with transient interaction properties (Grb2:Shc1 and Grb2:PI3K). Spatiotemporal
analysis further revealed significant differences in stability and
exchange kinetics of protein interactions. Furthermore, we could show
that this approach is well suited to study the efficacy and specificity
of SH2 and SH3 protein domain inhibitors in a live cell context. Altogether,
this method represents a significant enhancement of quantitative subcellular
micropatterning approaches as an alternative to standard biochemical
analyses.
Collapse
Affiliation(s)
- Roland Hager
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Ulrike Müller
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Nicole Ollinger
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| |
Collapse
|
5
|
Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells. Biomolecules 2020; 10:biom10040540. [PMID: 32252486 PMCID: PMC7225972 DOI: 10.3390/biom10040540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
Collapse
|
6
|
Motsch V, Brameshuber M, Baumgart F, Schütz GJ, Sevcsik E. A micropatterning platform for quantifying interaction kinetics between the T cell receptor and an intracellular binding protein. Sci Rep 2019; 9:3288. [PMID: 30824760 PMCID: PMC6397226 DOI: 10.1038/s41598-019-39865-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
A complete understanding of signaling processes at the plasma membrane depends on a quantitative characterization of the interactions of the involved proteins. Fluorescence recovery after photobleaching (FRAP) is a widely used and convenient technique to obtain kinetic parameters on protein interactions in living cells. FRAP experiments to determine unbinding time constants for proteins at the plasma membrane, however, are often hampered by non-specific contributions to the fluorescence recovery signal. On the example of the interaction between the T cell receptor (TCR) and the Syk kinase ZAP70, we present here an approach based on protein micropatterning that allows the elimination of such non-specific contributions and considerably simplifies analysis of FRAP data. Specifically, detection and reference areas are created within single cells, each being either enriched or depleted in TCR, which permits the isolation of ZAP70-TCR binding in a straight-forward manner. We demonstrate the applicability of our method by comparing it to a conventional FRAP approach.
Collapse
Affiliation(s)
- Viktoria Motsch
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Florian Baumgart
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria.
| |
Collapse
|
7
|
Philippi M, You C, Richter CP, Schmidt M, Thien J, Liße D, Wollschläger J, Piehler J, Steinhart M. Close-packed silane nanodot arrays by capillary nanostamping coupled with heterocyclic silane ring opening. RSC Adv 2019; 9:24742-24750. [PMID: 35528685 PMCID: PMC9069738 DOI: 10.1039/c9ra03440d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022] Open
Abstract
We report the parallel generation of close-packed ordered silane nanodot arrays with nanodot diameters of few 100 nm and nearest-neighbor distances in the one-micron range.
Collapse
Affiliation(s)
- Michael Philippi
- Institute for Chemistry of New Materials
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Changjiang You
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Christian P. Richter
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Mercedes Schmidt
- Institute for Chemistry of New Materials
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Jannis Thien
- Department of Physics
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Domenik Liße
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | | | - Jacob Piehler
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Martin Steinhart
- Institute for Chemistry of New Materials
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| |
Collapse
|
8
|
Hager R, Arnold A, Sevcsik E, Schütz GJ, Howorka S. Tunable DNA Hybridization Enables Spatially and Temporally Controlled Surface-Anchoring of Biomolecular Cargo. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15021-15027. [PMID: 30160973 PMCID: PMC6291803 DOI: 10.1021/acs.langmuir.8b01942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/30/2018] [Indexed: 05/04/2023]
Abstract
The controlled immobilization of biomolecules onto surfaces is relevant in biosensing and cell biological research. Spatial control is achieved by surface-tethering molecules in micro- or nanoscale patterns. Yet, there is an increasing demand for temporal control over how long biomolecular cargo stays immobilized until released into the medium. Here, we present a DNA hybridization-based approach to reversibly anchor biomolecular cargo onto micropatterned surfaces. Cargo is linked to a DNA oligonucleotide that hybridizes to a sequence-complementary, surface-tethered strand. The cargo is released from the substrate by the addition of an oligonucleotide that disrupts the duplex interaction via toehold-mediated strand displacement. The unbound tether strand can be reloaded. The generic strategy is implemented with small-molecule or protein cargo, varying DNA sequences, and multiple surface patterning routes. The approach may be used as a tool in biological research to switch membrane proteins from a locally fixed to a free state, or in biosensing to shed biomolecular receptors to regenerate the sensor surface.
Collapse
Affiliation(s)
- Roland Hager
- Center
for Advanced Bioanalysis GmbH. Linz, 4020, Austria
| | - Andreas Arnold
- Institute
of Applied Physics, TU Wien, Wien, 1040, Austria
| | - Eva Sevcsik
- Institute
of Applied Physics, TU Wien, Wien, 1040, Austria
| | | | - Stefan Howorka
- Center
for Advanced Bioanalysis GmbH. Linz, 4020, Austria
- Department
of Chemistry, Institute for Structural and Molecular Biology, University College London (UCL), London, WC1E 6BT, U.K.
| |
Collapse
|
9
|
Dirscherl C, Hein Z, Ramnarayan VR, Jacob-Dolan C, Springer S. A two-hybrid antibody micropattern assay reveals specific in cis interactions of MHC I heavy chains at the cell surface. eLife 2018; 7:e34150. [PMID: 30180933 PMCID: PMC6125123 DOI: 10.7554/elife.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | - Zeynep Hein
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | | | | | | |
Collapse
|
10
|
Cytomegalovirus gp40/m152 Uses TMED10 as ER Anchor to Retain MHC Class I. Cell Rep 2018; 23:3068-3077. [DOI: 10.1016/j.celrep.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 02/03/2023] Open
|
11
|
Dirscherl C, Springer S. Protein micropatterns printed on glass: Novel tools for protein-ligand binding assays in live cells. Eng Life Sci 2017; 18:124-131. [PMID: 32624894 DOI: 10.1002/elsc.201700010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Micrometer-sized patterns of proteins on glass or silica surfaces are in widespread use as protein arrays for probing with ligands or recombinant proteins. More recently, they have been used to capture the surface proteins of mammalian cells seeded onto them, and to arrange these surface proteins into pattern structures. Binding of small molecule ligands or of other proteins, transmembrane or intracellular, to these captured surface proteins can then be quantified. However, reproducible production of protein micropatterns on surfaces can be technically difficult. In this review, we outline the wide potential and the current practical uses of printed protein micropatterns in a historical overview, and we detail some potential pitfalls and difficulties from our own experience, as well as ways to circumvent them.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and Chemistry Jacobs University Bremen Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry Jacobs University Bremen Germany
| |
Collapse
|