1
|
Yang B, Gao L, Xue M, Wang H, Hou Y, Luo Y, Xiao H, Hu H, Cui C, Wang H, Zhang J, Li YF, Xie G, Tong X, Xie Y. Experimental and Simulation Research on the Preparation of Carbon Nano-Materials by Chemical Vapor Deposition. MATERIALS 2021; 14:ma14237356. [PMID: 34885507 PMCID: PMC8658281 DOI: 10.3390/ma14237356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Carbon nano-materials have been widely used in many fields due to their electron transport, mechanics, and gas adsorption properties. This paper introduces the structure and properties of carbon nano-materials the preparation of carbon nano-materials by chemical vapor deposition method (CVD)—which is one of the most common preparation methods—and reaction simulation. A major factor affecting the material structure is its preparation link. Different preparation methods or different conditions will have a great impact on the structure and properties of the material (mechanical properties, electrical properties, magnetism, etc.). The main influencing factors (precursor, substrate, and catalyst) of carbon nano-materials prepared by CVD are summarized. Through simulation, the reaction can be optimized and the growth mode of substances can be controlled. Currently, numerical simulations of the CVD process can be utilized in two ways: changing the CVD reactor structure and observing CVD chemical reactions. Therefore, the development and research status of computational fluid dynamics (CFD) for CVD are summarized, as is the potential of combining experimental studies and numerical simulations to achieve and optimize controllable carbon nano-materials growth.
Collapse
Affiliation(s)
- Bo Yang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (B.Y.); (Y.H.)
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Lanxing Gao
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Miaoxuan Xue
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Haihe Wang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
- Guizhou Ecological and Environment Monitoring Center, Guiyang 550014, China
| | - Yanqing Hou
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (B.Y.); (Y.H.)
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Yingchun Luo
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Han Xiao
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Can Cui
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Huanjiang Wang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Jianhui Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
| | - Yu-Feng Li
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.L.); (G.X.); (X.T.); (Y.X.)
| | - Gang Xie
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (B.Y.); (Y.H.)
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
- State Key Laboratory of Common Associated Non-Ferrous Metal Resources Pressure Hydrometallurgy Technology, Kunming 650503, China
- Correspondence: (Y.L.); (G.X.); (X.T.); (Y.X.)
| | - Xin Tong
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550014, China
- Correspondence: (Y.L.); (G.X.); (X.T.); (Y.X.)
| | - Yadian Xie
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China; (L.G.); (M.X.); (H.W.); (Y.L.); (H.X.); (H.H.); (C.C.); (H.W.); (J.Z.)
- Correspondence: (Y.L.); (G.X.); (X.T.); (Y.X.)
| |
Collapse
|
2
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
3
|
Toward large-scale CVD graphene growth by enhancing reaction kinetics via an efficient interdiffusion mediator and mechanism study utilizing CFD simulations. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhang A, Wang Z, Ouyang H, Lyu W, Sun J, Cheng Y, Fu B. Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. NANOMATERIALS 2021; 11:nano11071778. [PMID: 34361163 PMCID: PMC8308201 DOI: 10.3390/nano11071778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022]
Abstract
Owing to their extraordinary physical and chemical properties, two-dimensional (2D) materials have aroused extensive attention and have been widely used in photonic and optoelectronic devices, catalytic reactions, and biomedicine. In particular, 2D materials possess a unique bandgap structure and nonlinear optical properties, which can be used as saturable absorbers in ultrafast lasers. Here, we mainly review the top-down and bottom-up methods for preparing 2D materials, such as graphene, topological insulators, transition metal dichalcogenides, black phosphorus, and MXenes. Then, we focus on the ultrafast applications of 2D materials at the typical operating wavelengths of 1, 1.5, 2, and 3 μm. The key parameters and output performance of ultrafast pulsed lasers based on 2D materials are discussed. Furthermore, an outlook regarding the fabrication methods and the development of 2D materials in ultrafast photonics is also presented.
Collapse
Affiliation(s)
- Aojie Zhang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zihao Wang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Hao Ouyang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wenhao Lyu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Jingxuan Sun
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yuan Cheng
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
5
|
Zhang Y, Huang D, Duan Y, Chen H, Tang L, Shi M, Li Z, Shi H. Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. NANOTECHNOLOGY 2021; 32:105603. [PMID: 33227718 DOI: 10.1088/1361-6528/abcceb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Batch production of continuous and uniform graphene films is critical for the application of graphene. Chemical vapor deposition (CVD) has shown great promise for mass producing high-quality graphene films. However, the critical factors affected the uniformity of graphene films during the batch production need to be further studied. Herein, we propose a method for batch production of uniform graphene films by controlling the gaseous carbon source to be uniformly distributed near the substrate surface. By designing the growth space of graphene into a rectangular channel structure, we adjusted the velocity of feedstock gas flow to be uniformly distributed in the channel, which is critical for uniform graphene growth. The monolayer graphene film grown inside the rectangular channel structure shows high uniformity with average sheet resistance of 345 Ω sq-1 without doping. The experimental and simulation results show that the placement of the substrates during batch growth of graphene films will greatly affect the distribution of gas-phase dynamics near the substrate surface and the growth process of graphene. Uniform graphene films with large-scale can be prepared in batches by adjusting the distribution of gas-phase dynamics.
Collapse
Affiliation(s)
- Yongna Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Deping Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Yinwu Duan
- Chongqing Engineering Research Center of Graphene Film Manufacturing, Chongqing 401329, People's Republic of China
| | - Hui Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Linlong Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Mingquan Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Zhancheng Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Haofei Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| |
Collapse
|
6
|
|
7
|
Hu J, Gou J, Yang M, Omar GJ, Tan J, Zeng S, Liu Y, Han K, Lim Z, Huang Z, Wee ATS, Ariando A. Room-Temperature Colossal Magnetoresistance in Terraced Single-Layer Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002201. [PMID: 32743844 DOI: 10.1002/adma.202002201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/21/2020] [Indexed: 05/28/2023]
Abstract
Disorder-induced magnetoresistance (MR) effect is quadratic at low perpendicular magnetic fields and linear at high fields. This effect is technologically appealing, especially in 2D materials such as graphene, since it offers potential applications in magnetic sensors with nanoscale spatial resolution. However, it is a great challenge to realize a graphene magnetic sensor based on this effect because of the difficulty in controlling the spatial distribution of disorder and enhancing the MR sensitivity in the single-layer regime. Here, a room-temperature colossal MR of up to 5000% at 9 T is reported in terraced single-layer graphene. By laminating single-layer graphene on a terraced substrate, such as TiO2 -terminated SrTiO3 , a universal one order of magnitude enhancement in the MR compared to conventional single-layer graphene devices is demonstrated. Strikingly, a colossal MR of >1000% is also achieved in the terraced graphene even at a high carrier density of ≈1012 cm-2 . Systematic studies of the MR of single-layer graphene on various oxide- and non-oxide-based terraced surfaces demonstrate that the terraced structure is the dominant factor driving the MR enhancement. The results open a new route for tailoring the physical property of 2D materials by engineering the strain through a terraced substrate.
Collapse
Affiliation(s)
- Junxiong Hu
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Ming Yang
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Ganesh Ji Omar
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Junyou Tan
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Shengwei Zeng
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yanpeng Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, MOE Key Laboratory for Intelligent Nano Materials and Devices and Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kun Han
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Zhishiuh Lim
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Zhen Huang
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Ariando Ariando
- NUSNNI, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| |
Collapse
|
8
|
Nagai Y, Sugime H, Noda S. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Jo J, Lee S, Gim J, Song J, Kim S, Mathew V, Alfaruqi MH, Kim S, Lim J, Kim J. Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181978. [PMID: 31183129 PMCID: PMC6502357 DOI: 10.1098/rsos.181978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Reduced graphene oxide (rGO) sheets were synthesized by a modified Hummer's method without additional reducing procedures, such as chemical and thermal treatment, by appropriate drying of graphite oxide under ambient atmosphere. The use of a moderate drying temperature (250°C) led to mesoporous characteristics with enhanced electrochemical activity, as confirmed by electron microscopy and N2 adsorption studies. The dimensions of the sheets ranged from nanometres to micrometres and these sheets were entangled with each other. These morphological features of rGO tend to facilitate the movement of guest ions larger than Li+. Impressive electrochemical properties were achieved with the rGO electrodes using various charge-transfer ions, such as Li+, Na+ and K+, along with high porosity. Notably, the feasibility of this system as the carbonaceous anode material for sodium battery systems is demonstrated. Furthermore, the results also suggest that the high-rate capability of the present rGO electrode can pave the way for improving the full cell characteristics, especially for preventing the potential drop in sodium-ion batteries and potassium-ion batteries, which are expected to replace the lithium-ion battery system.
Collapse
Affiliation(s)
- Jeonggeun Jo
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Seulgi Lee
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Jihyeon Gim
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Jinju Song
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Sungjin Kim
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Vinod Mathew
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Muhammad Hilmy Alfaruqi
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Seokhun Kim
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| | - Jinsub Lim
- Korea Institute of Industrial Technology (KITECH), Buk-gu, Gwangju 61012, South Korea
| | - Jaekook Kim
- Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Deng B, Liu Z, Peng H. Toward Mass Production of CVD Graphene Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800996. [PMID: 30277604 DOI: 10.1002/adma.201800996] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/14/2018] [Indexed: 05/09/2023]
Abstract
Chemical vapor deposition (CVD) is considered to be an efficient method for fabricating large-area and high-quality graphene films due to its excellent controllability and scalability. Great efforts have been made to control the growth of graphene to achieve large domain sizes, uniform layers, fast growth, and low synthesis temperatures. Some attempts have been made by both the scientific community and startup companies to mass produce graphene films; however, there is a large difference in the quality of graphene synthesized on a laboratory scale and an industrial scale. Here, recent progress toward the mass production of CVD graphene films is summarized, including the manufacturing process, equipment, and critical process parameters. Moreover, the large-scale homogeneity of graphene films and fast characterization methods are also discussed, which are crucial for quality control in mass production.
Collapse
Affiliation(s)
- Bing Deng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| | - Hailin Peng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| |
Collapse
|
11
|
Lin L, Deng B, Sun J, Peng H, Liu Z. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chem Rev 2018; 118:9281-9343. [PMID: 30207458 DOI: 10.1021/acs.chemrev.8b00325] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Graphene, in its ideal form, is a two-dimensional (2D) material consisting of a single layer of carbon atoms arranged in a hexagonal lattice. The richness in morphological, physical, mechanical, and optical properties of ideal graphene has stimulated enormous scientific and industrial interest, since its first exfoliation in 2004. In turn, the production of graphene in a reliable, controllable, and scalable manner has become significantly important to bring us closer to practical applications of graphene. To this end, chemical vapor deposition (CVD) offers tantalizing opportunities for the synthesis of large-area, uniform, and high-quality graphene films. However, quite different from the ideal 2D structure of graphene, in reality, the currently available CVD-grown graphene films are still suffering from intrinsic defective grain boundaries, surface contaminations, and wrinkles, together with low growth rate and the requirement of inevitable transfer. Clearly, a gap still exits between the reality of CVD-derived graphene, especially in industrial production, and ideal graphene with outstanding properties. This Review will emphasize the recent advances and strategies in CVD production of graphene for settling these issues to bridge the giant gap. We begin with brief background information about the synthesis of nanoscale carbon allotropes, followed by the discussion of fundamental growth mechanism and kinetics of CVD growth of graphene. We then discuss the strategies for perfecting the quality of CVD-derived graphene with regard to domain size, cleanness, flatness, growth rate, scalability, and direct growth of graphene on functional substrate. Finally, a perspective on future development in the research relevant to scalable growth of high-quality graphene is presented.
Collapse
Affiliation(s)
- Li Lin
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Jingyu Sun
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Physics, Optoelectronics and Energy , Soochow University , Suzhou 215006 , P. R. China.,Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P. R. China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China.,Beijing Graphene Institute (BGI) , Beijing 100095 , P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China.,Beijing Graphene Institute (BGI) , Beijing 100095 , P. R. China
| |
Collapse
|