1
|
Liu J, Zeng S, Zhang M, Xiong J, Gu H, Wang Z, Hu Y, Zhang X, Du Y, Ren L. Giant Piezoelectric Output and Stability Enhancement in Piezopolymer Composites with Liquid Metal Nanofillers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304096. [PMID: 37705125 PMCID: PMC10754131 DOI: 10.1002/advs.202304096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/15/2023]
Abstract
Integrating nanomaterials into the polymer matrix is an effective strategy to optimize the performance of polymer-based piezoelectric devices. Nevertheless, the trade-off between the output enhancement and stability maintenance of piezoelectric composites usually leads to an unsatisfied overall performance for the high-strength operation of devices. Here, by setting liquid metal (LM) nanodroplets as the nanofillers in a poly(vinylidene difluoride) (PVDF) matrix, the as-formed liquid-solid/conductive-dielectric interfaces significantly promote the piezoelectric output and the reliability of this piezoelectric composite. A giant performance improvement featured is obtained with, nearly 1000% boosting on the output voltage (as high as 212 V), 270% increment on the piezoelectric coefficient (d33 ∼51.1 pC N-1 ) and long-term reliability on both structure and output (over 36 000 cycles). The design of a novel heterogenous interface with both mechanical matching and electric coupling can be the new orientation for developing high performance piezoelectric composite-based devices.
Collapse
Affiliation(s)
- Jingyan Liu
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Shi Zeng
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Mingrui Zhang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Juan Xiong
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Haoshuang Gu
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Zhao Wang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Yongming Hu
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Xianghui Zhang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Yi Du
- Center of Quantum and Matter Science and School of PhysicsBeihang UniversityBeijing100191P. R. China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingInternational School of Materials Science and EngineeringWuhan University of TechnologyWuhan430070P. R. China
| |
Collapse
|
2
|
Chen X, Wang F, Zhao Y, Wu P, Gao L, Ouyang C, Yang Y, Mu X. Surface Plasmon Effect Dominated High-Performance Triboelectric Nanogenerator for Traditional Chinese Medicine Acupuncture. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9765634. [PMID: 36299448 PMCID: PMC9575470 DOI: 10.34133/2022/9765634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
Available, effectively converting low-frequency vibration into available electricity, triboelectric nanogenerator (TENG) is always research hot nowadays. However, the enhancing effect of the existing methods for the output have all sorts of drawbacks, i.e., low efficiency and unstable, and its practical applications still need to be further explored. Here, leveraging core-shell nanoparticles Ag@SiO2 doping into tribo-materials generates the surface plasmon effect to boost the output performance of the TENG. On one hand, the shell alleviated the seepage effect from conventional nanoparticles; on the other hand, the surface plasmon effect enabled the core-shell nanoparticles to further boost the output performance of TENG. We circumvent the limitations and present a TENG whose output power density can be up to 4.375 mW/cm2. Points is that this article novelty investigate the high-performance TENG applicating for traditional Chinese medicine and develop a pratical self-powered acupuncture system. This technology enables rapid, routine regulation of human health at any age, which has potential applications in nearly any setting across healthcare platforms alike.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Fayang Wang
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
| | - Yanjun Zhao
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
| | - Lingxiao Gao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chun Ouyang
- Hospital of Chongqing University, Chongqing 400044, China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Li F, Shan B, Zhao X, Ji C, Li Z, Yu J, Xu S, Jiao Y, Zhang C, Man B. Plasmonic enhanced piezoelectric photoresponse with flexible PVDF@Ag-ZnO/Au composite nanofiber membranes. OPTICS EXPRESS 2022; 30:32509-32527. [PMID: 36242311 DOI: 10.1364/oe.469182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The coordination of piezoelectric and plasmonic effects to regulate the separation and migration of photo-generated carriers is still a significant method to improve the performance of visible-light photoresponse. Herein, we propose the PVDF@Ag-ZnO/Au composite nanofiber membranes utilizing the piezoelectric and plasmonic effects to promote the photocatalytic degradation of organic dyes. Here, ZnO nanorods can generate a built-in electric field under vibration to separate electron-hole pairs. The Schottky junction formed by noble metal/semiconductor can not only inhibit the recombination of photo-generated carriers and accelerate the migration of carriers, but also enhance the utilization of visible light. In addition, the structure has excellent flexibility and easy recycling characteristics. We demonstrate that the plasmonic effect of noble metal can enhance the light response of membranes and broaden light absorption from ultraviolet to visible light region. With the help of the surface-enhanced Raman scattering (SERS), modulation effects of the piezoelectric effect on light response is proved. For catalytic processes, rhodamine B (98.8%) can be almost completely degraded using PVDF@Ag-ZnO/Au within 120 minutes in the piezoelectric photocatalysis process, which is 2.2 and 2.8 times higher than photocatalysis and piezoelectric catalysis, respectively. This work provides a promising strategy for harnessing solar and mechanical energy.
Collapse
|
4
|
Hu N, Mi L, Metwalli E, Bießmann L, Herold C, Cubitt R, Zhong Q, Müller-Buschbaum P. Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)- block-poly(poly(ethylene glycol) methyl ether methacrylate) Thin Films Probed by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8094-8103. [PMID: 35732057 DOI: 10.1021/acs.langmuir.2c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetic rehydration of thin di-block copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate) (PO2-b-PO300) films containing two thermoresponsive components is probed by in situ neutron reflectivity (NR) with different thermal stimuli in the D2O vapor atmosphere. The transition temperatures (TTs) of PO2 and PO300 blocks are 25 and 60 °C, respectively. After the one-step stimulus (rapid decrease in temperature from 60 to 20 °C), the film directly switches from a collapsed to a fully swollen state. The rehydration process is divided into four steps: (a) D2O condensation, (b) D2O absorption, (c) D2O evaporation, and (d) film reswelling. However, the film presents a different rehydration behavior when the thermal stimulus is separated into two smaller steps (first decrease from 60 to 40 °C and then to 20 °C). The film first switches from a collapsed to a semiswollen state caused by the rehydrated PO300 blocks after the first step of thermal stimulus (60 to 40 °C) and then to a swollen state induced by the rehydrated PO2 blocks after the second step (40 to 20 °C). Thus, the kinetic responses are distinct from that after the one-step thermal stimulus. Both the time and extent of condensation as well as evaporation processes are significantly reduced in these two smaller steps. However, the final states of the rehydrated PO2-b-PO300 films are basically identical irrespective of the applied thermal stimulus. Thus, the final state of thermoresponsive di-block copolymer films is not affected by the external thermal stimuli, which is beneficial for the design and preparation of sensors or switches based on thermoresponsive polymer films.
Collapse
Affiliation(s)
- Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ezzeldin Metwalli
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Lorenz Bießmann
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Christian Herold
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, Grenoble 38000, France
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, Garching 85748, Germany
| |
Collapse
|
5
|
Zheng Y, Li X, Ma R, Huang Z, Wang C, Zhu M, Du Y, Chen X, Pan C, Wang B, Wang Y, Peng D. Molten Salt Shielded Synthesis of Monodisperse Layered CaZnOS-Based Semiconductors for Piezophotonic and X-Ray Detection Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107437. [PMID: 35174965 DOI: 10.1002/smll.202107437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 06/14/2023]
Abstract
CaZnOS-based semiconductors are the only series of material system discovered that can simultaneously realize a large number of dopant elements to directly fulfill the highly efficient full-spectrum functionality from ultraviolet to near-infrared under the same force/pressure. Nevertheless, owing to the high agglomeration of the high temperature solid phase manufacturing process, which is unable to control the crystal morphology, the application progress is limited. Here, the authors report first that CaZnOS-based fine monodisperse semiconductor crystals with various doping ions are successfully synthesized by a molten salt shielded method in an air environment. This method does not require inert gas ventilation, and therefore can greatly reduce the synthesis cost and more importantly improve the fine control of the crystal morphology, along with the crystals' dispersibility and stability. These doped semiconductors can not only realize different colors of mechanical-to-optical energy conversion, but also can achieve multicolor luminescence under low-dose X-ray irradiation, moreover their intensities are comparable to the commercial NaI:Tl. They can pave the way to the new fields of advanced optoelectronic applications, such as piezophotonic systems, mechanical energy conversion and harvesting devices, intelligent sensors, and artificial skin as well as X-ray applications.
Collapse
Affiliation(s)
- Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ronghua Ma
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zefeng Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunfeng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mingju Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yangyang Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bohan Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Zhao X, Zhu A, Wang Y, Zhang Y, Zhang X. Sunflower-Like Nanostructure with Built-In Hotspots for Alpha-Fetoprotein Detection. Molecules 2021; 26:molecules26041197. [PMID: 33672380 PMCID: PMC7926938 DOI: 10.3390/molecules26041197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, a sunflower-like nanostructure array composed of a series of synaptic nanoparticles and nanospheres was manufactured through an efficient and low-cost colloidal lithography technique. The primary electromagnetic field contribution generated by the synaptic nanoparticles of the surface array structures was also determined by a finite-difference time-domain software to simulate the hotspots. This structure exhibited high repeatability and excellent sensitivity; hence, it was used as a surface-enhanced Raman spectroscopy (SERS) active substrate to achieve a rapid detection of ultra-low concentrations of Alpha-fetoprotein (AFP). This study demonstrates the design of a plasmonic structure with strong electromagnetic coupling, which can be used for the rapid detection of AFP concentration in clinical medicine.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (X.Z.); (Y.W.)
| | - Aonan Zhu
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yaxin Wang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (X.Z.); (Y.W.)
| | - Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (X.Z.); (Y.W.)
- Correspondence: or
| | - Xiaolong Zhang
- College of Physics, Jilin Normal University, Changchun 130103, China;
| |
Collapse
|
7
|
Irshad MS, Arshad N, Wang X. Nanoenabled Photothermal Materials for Clean Water Production. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000055. [PMID: 33437524 PMCID: PMC7788632 DOI: 10.1002/gch2.202000055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Indexed: 05/05/2023]
Abstract
Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production.
Collapse
Affiliation(s)
- Muhammad Sultan Irshad
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Naila Arshad
- Institute of Quantum Optics and Quantum InformationSchool of ScienceXi'an Jiaotong University (XJTU)Xi'an710049P. R. China
| | - Xianbao Wang
- Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| |
Collapse
|
8
|
Kim SH, Park SJ, Cho CY, Kang HS, Sohn EH, Park IJ, Ha JW, Lee SG. Preparation and electroactive phase adjustment of Ag-doped poly(vinylidene fluoride) (PVDF) films. RSC Adv 2019; 9:40286-40291. [PMID: 35542653 PMCID: PMC9076169 DOI: 10.1039/c9ra08763j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
The crystallinities of Ag-doped poly(vinylidene fluoride) (PVDF) films were modified by removing Ag+ using a novel washing process, which allowed control of the ratio of γ- and β-phases. The polarity of the composite film without Ag+ removal through the washing process reached 98%, and the β-phase content in the total electroactive phase was increased to 61%, according to Fourier-transform infrared spectroscopy. When Ag+ were removed through a process involving several cycles of washing, filtering, drying, and re-dissolving, the highest ratio of the γ-phase was increased to 67%, 28% higher than that before washing. This showed that Ag+ induced β-phase formation while Ag nanoparticles induced γ-phase formation, and that the ratio of γ- and β-phases in PVDF composite films can be controlled to suit specific applications by this washing process.
Collapse
Affiliation(s)
- Seung-Hyun Kim
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea .,School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - So-Jeong Park
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Chang-Yeol Cho
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Hong Suk Kang
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Eun-Ho Sohn
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - In Jun Park
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jong-Wook Ha
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Sang Goo Lee
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| |
Collapse
|
9
|
Cherumannil Karumuthil S, Prabha Rajeev S, Valiyaneerilakkal U, Athiyanathil S, Varghese S. Electrospun Poly(vinylidene fluoride-trifluoroethylene)-Based Polymer Nanocomposite Fibers for Piezoelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40180-40188. [PMID: 31596560 DOI: 10.1021/acsami.9b17788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present work deals with the preparation, characterization, and application of self-poled nanofibers using piezoelectric polymer poly(vinylidene fluoride-trifluoroethylene), zinc oxide, and exfoliated graphene oxide by electrospinning process. The characterization of nanofiber is carried by different techniques such as field emission scanning electron microscopy, Fourier transform Infrared spectroscopy, X-ray diffraction techniques, and dynamic contact mode electrostatic force microscopy. The nanofiber based piezoelectric nanoenergy generator devices are fabricated for analyzing the energy generating efficiency. Piezoelectric hybrid nanofibers are exhibiting better energy generating efficiency and identified as potential material for energy harvesting applications.
Collapse
Affiliation(s)
- Subash Cherumannil Karumuthil
- Nanomaterials and Devices Research Laboratory, School of Materials Science and Engineering , National Institute of Technology Calicut , Calicut , Kerala 673601 , India
| | - Sreenidhi Prabha Rajeev
- Nanomaterials and Devices Research Laboratory, School of Materials Science and Engineering , National Institute of Technology Calicut , Calicut , Kerala 673601 , India
| | - Uvais Valiyaneerilakkal
- Nanomaterials and Devices Research Laboratory, School of Materials Science and Engineering , National Institute of Technology Calicut , Calicut , Kerala 673601 , India
- Department of Physics , Manipal University Jaipur , Jaipur-Ajmer Express Highway, Dehmi Kalan , Jaipur , Rajasthan 303007 , India
| | - Sujith Athiyanathil
- Materials Research Laboratory, Department of Chemistry , National Institute of Technology Calicut , Calicut , Kerala 673601 , India
| | - Soney Varghese
- Nanomaterials and Devices Research Laboratory, School of Materials Science and Engineering , National Institute of Technology Calicut , Calicut , Kerala 673601 , India
| |
Collapse
|
10
|
Liow CH, Lu X, Zeng K, Li S, Ho GW. Optically Governed Dynamic Surface Charge Redistribution of Hybrid Plasmo-Pyroelectric Nanosystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903042. [PMID: 31338955 DOI: 10.1002/smll.201903042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Though plasmonic effect is making some headway in the energy harvesting realm, its fundamental charge transfer mechanism to a large extent is attributed to the hot-carrier generation at the contact interface. Herein this work attempts to elucidate the physical origin of light induced plasmo-pyroelectric enhancement based on charge density manipulation on surface state in the vicinity of the metal-ferroelectric contact interface. More importantly, by tuning the band bending, it is shown that the charge density on the surface state of a hybrid plasmo-pyroelectric (BaTiO3 -Ag) nanosystem can be manipulated and largely increased under the resonant blue light illumination (363 nm). It is also demonstrated that owing to this effect, the spatial pyroelectric activity of a hybrid plasmo-pyroelectric nanosystem governs 46% enhancement in pyroelectric coefficient. This research highlights the optically regulated charge density in plasmo-pyroelectric nanosystems, which could pave a new avenue for energy harvesting/conversion devices with distinguished advantages in wireless, photonic-controlled, localized, and dynamic stimulation.
Collapse
Affiliation(s)
- Chi Hao Liow
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xin Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Engineering Science Programme, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602, Singapore
| |
Collapse
|
11
|
PVDF/TBAPF6 hierarchical nanofiber gel membrane for lithium ion capacitor with ultrahigh ion conductivity and excellent interfacial compatibility. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Duan J, Tang Q. A revolution of photovoltaics: persistent electricity generation beyond solar irradiation. Dalton Trans 2019; 48:799-805. [DOI: 10.1039/c8dt03784a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The integration utilization of solar energy and waste energies by photovoltaics is regarded as a promising solution to resolve energy crisis and environmental pollution problems.
Collapse
Affiliation(s)
- Jialong Duan
- Institute of New Energy Technology
- College of Information Science and Technology
- Jinan University
- Guangzhou 510632
- PR China
| | - Qunwei Tang
- Institute of New Energy Technology
- College of Information Science and Technology
- Jinan University
- Guangzhou 510632
- PR China
| |
Collapse
|
13
|
Wang XQ, Tan CF, Chan KH, Lu X, Zhu L, Kim SW, Ho GW. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nat Commun 2018; 9:3438. [PMID: 30143624 PMCID: PMC6109106 DOI: 10.1038/s41467-018-06011-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Utilization of ubiquitous low-grade waste heat constitutes a possible avenue towards soft matter actuation and energy recovery opportunities. While most soft materials are not all that smart relying on power input of some kind for continuous response, we conceptualize a self-locked thermo-mechano feedback for autonomous motility and energy generation functions. Here, the low-grade heat usually dismissed as 'not useful' is used to fuel a soft thermo-mechano-electrical system to perform perpetual and untethered multimodal locomotions. The innately resilient locomotion synchronizes self-governed and auto-sustained temperature fluctuations and mechanical mobility without external stimulus change, enabling simultaneous harvesting of thermo-mechanical energy at the pyro/piezoelectric mechanistic intersection. The untethered soft material showcases deterministic motions (translational oscillation, directional rolling, and clockwise/anticlockwise rotation), rapid transitions and dynamic responses without needing power input, on the contrary extracting power from ambient. This work may open opportunities for thermo-mechano-electrical transduction, multigait soft energy robotics and waste heat harvesting technologies.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Chuan Fu Tan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xin Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Liangliang Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602, Singapore.
| |
Collapse
|