1
|
Rodilla BL, Arché-Núñez A, Ruiz-Gómez S, Domínguez-Bajo A, Fernández-González C, Guillén-Colomer C, González-Mayorga A, Rodríguez-Díez N, Camarero J, Miranda R, López-Dolado E, Ocón P, Serrano MC, Pérez L, González MT. Flexible metallic core-shell nanostructured electrodes for neural interfacing. Sci Rep 2024; 14:3729. [PMID: 38355737 PMCID: PMC10866994 DOI: 10.1038/s41598-024-53719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step template assisted electrodeposition technique, to obtain flexible nanostructured electrodes coated with core-shell Ni-Au vertical nanowires. These nanowires benefit from biocompatibility of the Au shell exposed to the environment and the mechanical properties of Ni that allow for nanowires longer and more homogeneous in length than their only-Au counterparts. The nanostructured electrodes show impedance values, measured by electrochemical impedance spectroscopy (EIS), at least 9 times lower than those of flat reference electrodes. This ratio is in good accordance with the increased effective surface area determined both from SEM images and cyclic voltammetry measurements, evidencing that only Au is exposed to the medium. The observed EIS profile evolution of Ni-Au electrodes over 7 days were very close to those of Au electrodes and differently from Ni ones. Finally, the morphology, viability and neuronal differentiation of rat embryonic cortical cells cultured on Ni-Au NW electrodes were found to be similar to those on control (glass) substrates and Au NW electrodes, accompanied by a lower glial cell differentiation. This positive in-vitro neural cell behavior encourages further investigation to explore the tissue responses that the implantation of these nanostructured electrodes might elicit in healthy (damaged) neural tissues in vivo, with special emphasis on eventual tissue encapsulation.
Collapse
Affiliation(s)
- Beatriz L Rodilla
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
| | - Sandra Ruiz-Gómez
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
- Animal Molecular and Cellular Biology group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Place Croix du Sud 5, 1348 , Louvain la Neuve, Belgium
| | | | | | | | | | - Julio Camarero
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Department de Física de la Materia Condensada and Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rodolfo Miranda
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Department de Física de la Materia Condensada and Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda S/N, 45071, Toledo, Spain
- Design and development of Biomaterials for Neural Regeneration, HNP-SESCAM, Associated Unit With CSIC Through ICMM, Finca La Peraleda S/N, 45071, Toledo, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Lucas Pérez
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain
| | | |
Collapse
|
2
|
Richie J, Letner JG, Mclane-Svoboda A, Huan Y, Ghaffari DH, Valle ED, Patel PR, Chiel HJ, Pelled G, Weiland JD, Chestek CA. Fabrication and Validation of Sub-Cellular Carbon Fiber Electrodes. IEEE Trans Neural Syst Rehabil Eng 2024; 32:739-749. [PMID: 38294928 PMCID: PMC10919889 DOI: 10.1109/tnsre.2024.3360866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Multielectrode arrays for interfacing with neurons are of great interest for a wide range of medical applications. However, current electrodes cause damage over time. Ultra small carbon fibers help to address issues but controlling the electrode site geometry is difficult. Here we propose a methodology to create small, pointed fiber electrodes (SPFe). We compare the SPFe to previously made blowtorched fibers in characterization. The SPFe result in small site sizes [Formula: see text] with consistently sharp points (20.8 ± 7.64°). Additionally, these electrodes were able to record and/or stimulate neurons multiple animal models including rat cortex, mouse retina, Aplysia ganglia and octopus axial cord. In rat cortex, these electrodes recorded significantly higher peak amplitudes than the traditional blowtorched fibers. These SPFe may be applicable to a wide range of applications requiring a highly specific interface with individual neurons.
Collapse
|
3
|
Schöbel L, Boccaccini AR. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications. Acta Biomater 2023; 169:45-65. [PMID: 37532132 DOI: 10.1016/j.actbio.2023.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The application areas of electrically conductive polymers have been steadily growing since their discovery in the late 1970s. Recently, electrically conductive polymers have found their way into biomedicine, allowing the realization of many relevant applications ranging from bioelectronics to scaffolds for tissue engineering. Extracellular matrix components, such as glycosaminoglycans, build an important class of biomaterials that are heavily researched for biomedical applications due to their favorable properties. Due to their highly anionic character and the presence of sulfate groups in glycosaminoglycans, these biomolecules can be employed to functionalize conductive polymers, which enables the tailorability and improvement of cell-material interactions of conductive polymers. This review paper gives an overview of recent research on glycosaminoglycan-modified conductive polymers intended for biomedical applications and discusses the effect of different biological dopants on material characteristics, such as surface roughness, stiffness, and electrochemical properties. Moreover, the key findings of the biological characterization in vitro and in vivo are summarized, and remaining challenges in the field, particularly related to the modification of electrically conductive polymers with glycosaminoglycans to achieve improved functional and biological outcomes, are discussed. STATEMENT OF SIGNIFICANCE: The development of functional biomaterials based on electrically conductive polymers (CPs) for various biomedical applications, such as neural regeneration, drug delivery, or bioelectronics, has been increasingly investigated over the last decades. Recent literature has shown that changes in the synthesis procedure or the chosen dopant could adjust the resulting material characteristics. Hence, an interesting approach lies in using natural biomolecules as dopants for CPs to tailor the biological outcome. This review comprehensively summarizes the state of the art in the field of glycosaminoglycan-modified electrically conductive polymers for the first time, particularly highlighting the effect of the chosen dopant on material characteristics, such as surface morphology or stiffness, electrochemical properties, and consequently, cell-material interactions.
Collapse
Affiliation(s)
- Lisa Schöbel
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207436. [PMID: 36929323 PMCID: PMC10190591 DOI: 10.1002/advs.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Indexed: 05/18/2023]
Abstract
Temporal-spatial precision has attracted increasing attention for the clinical intervention of neurological disorders (NDs) to mitigate adverse effects of traditional treatments and achieve point-of-care medicine. Inspiring steps forward in this field have been witnessed in recent years, giving the credit to multi-discipline efforts from neurobiology, bioengineering, chemical materials, artificial intelligence, and so on, exhibiting valuable clinical translation potential. In this review, the latest progress in advanced temporally-spatially precise clinical intervention is highlighted, including localized parenchyma drug delivery, precise neuromodulation, as well as biological signal detection to trigger closed-loop control. Their clinical potential in both central and peripheral nervous systems is illustrated meticulously related to typical diseases. The challenges relative to biosafety and scaled production as well as their future perspectives are also discussed in detail. Notably, these intelligent temporally-spatially precision intervention systems could lead the frontier in the near future, demonstrating significant clinical value to support billions of patients plagued with NDs.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Yusheng Gong
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Wei Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| |
Collapse
|
5
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Zhou Y, Gu C, Liang J, Zhang B, Yang H, Zhou Z, Li M, Sun L, Tao TH, Wei X. A silk-based self-adaptive flexible opto-electro neural probe. MICROSYSTEMS & NANOENGINEERING 2022; 8:118. [PMID: 36389054 PMCID: PMC9643444 DOI: 10.1038/s41378-022-00461-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The combination of optogenetics and electrophysiological recording enables high-precision bidirectional interactions between neural interfaces and neural circuits, which provides a promising approach for the study of progressive neurophysiological phenomena. Opto-electrophysiological neural probes with sufficient flexibility and biocompatibility are desirable to match the low mechanical stiffness of brain tissue for chronic reliable performance. However, lack of rigidity poses challenges for the accurate implantation of flexible neural probes with less invasiveness. Herein, we report a hybrid probe (Silk-Optrode) consisting of a silk protein optical fiber and multiple flexible microelectrode arrays. The Silk-Optrode can be accurately inserted into the brain and perform synchronized optogenetic stimulation and multichannel recording in freely behaving animals. Silk plays an important role due to its high transparency, excellent biocompatibility, and mechanical controllability. Through the hydration of the silk optical fiber, the Silk-Optrode probe enables itself to actively adapt to the environment after implantation and reduce its own mechanical stiffness to implant into the brain with high fidelity while maintaining mechanical compliance with the surrounding tissue. The probes with 128 recording channels can detect high-yield well-isolated single units while performing intracranial light stimulation with low optical losses, surpassing previous work of a similar type. Two months of post-surgery results suggested that as-reported Silk-Optrode probes exhibit better implant-neural interfaces with less immunoreactive glial responses and tissue lesions. A silk optical fiber-based Silk-Optrode probe consisting of a natural silk optical fiber and a flexible micro/nano electrode array is reported. The multifunctional soft probe can modify its own Young's modulus through hydration to achieve accurate implantation into the brain. The low optical loss and single-unit recording abilities allow simultaneous optogenetic stimulation and multichannel readout, which expands the applications in the operation and parsing of neural circuits in behavioral animals.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chi Gu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jizhi Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bohan Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 200031 Shanghai, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Meng Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, 200031 Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- Neuroxess Co., Ltd. (Jiangxi), 330029 Nanchang, Jiangxi China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, 519031 Zhuhai, Guangdong China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
7
|
Bello-Álvarez C, Etxeberria A, Polo Y, Sarasua JR, Zuza E, Larrañaga A. Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes. Polymers (Basel) 2022; 14:4656. [PMID: 36365648 PMCID: PMC9658163 DOI: 10.3390/polym14214656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2023] Open
Abstract
Polylactide (PLA) is among the most commonly used polymers for biomedical applications thanks to its biodegradability and cytocompatibility. However, its inherent stiffness and brittleness are clearly inappropriate for the regeneration of soft tissues (e.g., neural tissue), which demands biomaterials with soft and elastomeric behavior capable of resembling the mechanical properties of the native tissue. In this work, both L- and D,L-lactide were copolymerized with ethylene brassylate, a macrolactone that represents a promising alternative to previously studied comonomers (e.g., caprolactone) due to its natural origin. The resulting copolymers showed an elastomeric behavior characterized by relatively low Young's modulus, high elongation at break and high strain recovery capacity. The thermoplastic nature of the resulting copolymers allows the incorporation of nanofillers (i.e., carbon nanotubes) that further enable the modulation of their mechanical properties. Additionally, nanostructured scaffolds were easily fabricated through a thermo-pressing process with the aid of a commercially available silicon stamp, providing geometrical cues for the adhesion and elongation of cells representative of the nervous system (i.e., astrocytes). Accordingly, the lactide and ethylene brassylate-based copolymers synthesized herein represent an interesting formulation for the development of polymeric scaffolds intended to be used in the regeneration of soft tissues, thanks to their adjustable mechanical properties, thermoplastic nature and observed cytocompatibility.
Collapse
Affiliation(s)
- Carlos Bello-Álvarez
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Agustin Etxeberria
- Advanced Polymers and Materials: Physics, Chemistry and Technology Department, POLYMAT, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Yurena Polo
- Polimerbio SL, 20014 Donostia-San Sebastian, Spain
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Ester Zuza
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Tsui CT, Lal P, Fox KVR, Churchward MA, Todd KG. The effects of electrical stimulation on glial cell behaviour. BMC Biomed Eng 2022; 4:7. [PMID: 36057631 PMCID: PMC9441051 DOI: 10.1186/s42490-022-00064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
Neural interface devices interact with the central nervous system (CNS) to substitute for some sort of functional deficit and improve quality of life for persons with disabilities. Design of safe, biocompatible neural interface devices is a fast-emerging field of neuroscience research. Development of invasive implant materials designed to directly interface with brain or spinal cord tissue has focussed on mitigation of glial scar reactivity toward the implant itself, but little exists in the literature that directly documents the effects of electrical stimulation on glial cells. In this review, a survey of studies documenting such effects has been compiled and categorized based on the various types of stimulation paradigms used and their observed effects on glia. A hybrid neuroscience cell biology-engineering perspective is offered to highlight considerations that must be made in both disciplines in the development of a safe implant. To advance knowledge on how electrical stimulation affects glia, we also suggest experiments elucidating electrochemical reactions that may occur as a result of electrical stimulation and how such reactions may affect glia. Designing a biocompatible stimulation paradigm should be a forefront consideration in the development of a device with improved safety and longevity.
Collapse
Affiliation(s)
- Christopher T Tsui
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Preet Lal
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Katelyn V R Fox
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, T5B 4E4, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada.
| |
Collapse
|
9
|
Krukiewicz K, Kazek-Kęsik A, Brzychczy-Włoch M, Łos MJ, Ateba CN, Mehrbod P, Ghavami S, Shyntum DY. Recent Advances in the Control of Clinically Important Biofilms. Int J Mol Sci 2022; 23:9526. [PMID: 36076921 PMCID: PMC9455909 DOI: 10.3390/ijms23179526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Krakow, Poland
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, North West University, Private Bag X2046, Mahikeng 2735, South Africa
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Divine Yufetar Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| |
Collapse
|
10
|
Self-doped conducting polymers in biomedical engineering: Synthesis, characterization, current applications and perspectives. Bioelectrochemistry 2022; 146:108127. [PMID: 35397436 DOI: 10.1016/j.bioelechem.2022.108127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Recent studies willingly agree that conducting polymers (CPs) are attractive materials for biomedical engineering purposes, mainly because of their unique physicochemical characteristics combining electrical conductivity and high biocompatibility. Nevertheless, the applicability of CPs is restricted by their limited stability under physiological conditions, associated with a decrease in electrical conductivity upon dedoping. Accordingly, modifying chemical structure of CPs to exhibit a self-doping effect seems to be an appealing approach aimed to enhance their functionality. The aim of this review is to provide a current state-of-the-art in the research concerning self-doped CPs, particularly those with potential biomedical applications. After presenting a library of available structure modifications, we describe their physicochemical characteristics, focusing on achievable conductivities, electrochemical, optical and mechanical behaviour, as well as biological properties. To highlight high applicability of self-doped CPs in biomedical engineering, we elaborate on biomedical areas benefiting most from using this type of conducting materials.
Collapse
|
11
|
Understanding the Mechanobiology of Gliosis May Be the Key to Unlocking Sustained Chronic Performance of Bioelectronic Neural Interfaces. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
13
|
Vallejo-Giraldo C, Genta M, Cauvi O, Goding J, Green R. Hydrogels for 3D Neural Tissue Models: Understanding Cell-Material Interactions at a Molecular Level. Front Bioeng Biotechnol 2020; 8:601704. [PMID: 33240868 PMCID: PMC7677185 DOI: 10.3389/fbioe.2020.601704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
The development of 3D neural tissue analogs is of great interest to a range of biomedical engineering applications including tissue engineering of neural interfaces, treatment of neurodegenerative diseases and in vitro assessment of cell-material interactions. Despite continued efforts to develop synthetic or biosynthetic hydrogels which promote the development of complex neural networks in 3D, successful long-term 3D approaches have been restricted to the use of biologically derived constructs. In this study a poly (vinyl alcohol) biosynthetic hydrogel functionalized with gelatin and sericin (PVA-SG), was used to understand the interplay between cell-cell communication and cell-material interaction. This was used to probe critical short-term interactions that determine the success or failure of neural network growth and ultimately the development of a useful model. Complex primary ventral mesencephalic (VM) neural cells were encapsulated in PVA-SG hydrogels and critical molecular cues that demonstrate mechanosensory interaction were examined. Neuronal presence was constant over the 10 day culture, but the astrocyte population decreased in number. The lack of astrocytic support led to a reduction in neural process outgrowth from 24.0 ± 1.3 μm on Day 7 to 7.0 ± 0.1 μm on Day 10. Subsequently, purified astrocytes were studied in isolation to understand the reasons behind PVA-SG hydrogel inability to support neural network development. It was proposed that the spatially restrictive nature (or tight mesh size) of PVA-SG hydrogels limited the astrocytic actin polymerization together with a cytoplasmic-nuclear translocation of YAP over time, causing an alteration in their cell cycle. This was confirmed by the evaluation of p27/Kip1 gene that was found to be upregulated by a twofold increase in expression at both Days 7 and 10 compared to Day 3, indicating the quiescent stage of the astrocytes in PVA-SG hydrogel. Cell migration was further studied by the quantification of MMP-2 production that was negligible compared to 2D controls, ranging from 2.7 ± 2.3% on Day 3 to 5.3 ± 2.9% on Day 10. This study demonstrates the importance of understanding astrocyte-material interactions at the molecular level, with the need to address spatial constraints in the 3D hydrogel environment. These findings will inform the design of future hydrogel constructs with greater capacity for remodeling by the cell population to create space for cell migration and neural process extension.
Collapse
Affiliation(s)
| | | | | | | | - Rylie Green
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Domínguez-Bajo A, Rodilla BL, Calaresu I, Arché-Núñez A, González-Mayorga A, Scaini D, Pérez L, Camarero J, Miranda R, López-Dolado E, González MT, Ballerini L, Serrano MC. Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features. ACTA ACUST UNITED AC 2020; 4:e2000117. [PMID: 32761896 DOI: 10.1002/adbi.202000117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Understanding neural physiopathology requires advances in nanotechnology-based interfaces, engineered to monitor the functional state of mammalian nervous cells. Such interfaces typically contain nanometer-size features for stimulation and recording as in cell-non-invasive extracellular microelectrode arrays. In such devices, it turns crucial to understand specific interactions of neural cells with physicochemical features of electrodes, which could be designed to optimize performance. Herein, versatile flexible nanostructured electrodes covered by arrays of metallic nanowires are fabricated and used to investigate the role of chemical composition and nanotopography on rat brain cells in vitro. By using Au and Ni as exemplary materials, nanostructure and chemical composition are demonstrated to play major roles in the interaction of neural cells with electrodes. Nanostructured devices are interfaced to rat embryonic cortical cells and postnatal hippocampal neurons forming synaptic circuits. It is shown that Au-based electrodes behave similarly to controls. Contrarily, Ni-based nanostructured electrodes increase cell survival, boost neuronal differentiation, and reduce glial cells with respect to flat counterparts. Nonetheless, Au-based electrodes perform superiorly compared to Ni-based ones. Under electrical stimulation, Au-based nanostructured substrates evoke intracellular calcium dynamics compatible with neural networks activation. These studies highlight the opportunity for these electrodes to excite a silent neural network by direct neuronal membranes depolarization.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Beatriz Loreto Rodilla
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste, 34136, Italy
| | - Ivo Calaresu
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Ana Arché-Núñez
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain
| | - Ankor González-Mayorga
- Instituto "Nicolas Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Denis Scaini
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Lucas Pérez
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste, 34136, Italy
| | - Julio Camarero
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, Madrid, 28040, Spain
| | - Rodolfo Miranda
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, Madrid, 28040, Spain
| | - Elisa López-Dolado
- Instituto "Nicolas Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain.,Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Toledo, 45071, Spain
| | | | - Laura Ballerini
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| |
Collapse
|
15
|
Taccola G, Barber S, Horner PJ, Bazo HAC, Sayenko D. Complications of epidural spinal stimulation: lessons from the past and alternatives for the future. Spinal Cord 2020; 58:1049-1059. [DOI: 10.1038/s41393-020-0505-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
|
16
|
Saracino E, Maiolo L, Polese D, Semprini M, Borrachero-Conejo AI, Gasparetto J, Murtagh S, Sola M, Tomasi L, Valle F, Pazzini L, Formaggio F, Chiappalone M, Hussain S, Caprini M, Muccini M, Ambrosio L, Fortunato G, Zamboni R, Convertino A, Benfenati V. A Glial-Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. ACTA ACUST UNITED AC 2020; 4:e1900264. [PMID: 32293156 DOI: 10.1002/adbi.201900264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Indexed: 01/02/2023]
Abstract
The correct human brain function is dependent on the activity of non-neuronal cells called astrocytes. The bioelectrical properties of astrocytes in vitro do not closely resemble those displayed in vivo and the former are incapable of generating action potential; thus, reliable approaches in vitro for noninvasive electrophysiological recording of astrocytes remain challenging for biomedical engineering. Here it is found that primary astrocytes grown on a device formed by a forest of randomly oriented gold coated-silicon nanowires, resembling the complex structural and functional phenotype expressed by astrocytes in vivo. The device enables noninvasive extracellular recording of the slow-frequency oscillations generated by differentiated astrocytes, while flat electrodes failed on recording signals from undifferentiated cells. Pathophysiological concentrations of extracellular potassium, occurring during epilepsy and spreading depression, modulate the power of slow oscillations generated by astrocytes. A reliable approach to study the role of astrocytes function in brain physiology and pathologies is presented.
Collapse
Affiliation(s)
- Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Luca Maiolo
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Davide Polese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - M Semprini
- Fondazione Istituto Italiano di Tecnologia (IIT), Rehab Technologies IIT-INAIL Lab, Via Morego 30, 16163, Genova, Italy
| | - Ana Isabel Borrachero-Conejo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Jacopo Gasparetto
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Stefano Murtagh
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Margherita Sola
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Lorenzo Tomasi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Luca Pazzini
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Francesco Formaggio
- Università di Bologna, Dipartimento di Farmacia e Biotecnologie FaBit, University of Bologna, via San Donato 19/2, 40127, Bologna, Italy
| | - Michela Chiappalone
- Fondazione Istituto Italiano di Tecnologia (IIT), Rehab Technologies IIT-INAIL Lab, Via Morego 30, 16163, Genova, Italy
| | - Saber Hussain
- US Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Marco Caprini
- Università di Bologna, Dipartimento di Farmacia e Biotecnologie FaBit, University of Bologna, via San Donato 19/2, 40127, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Luigi Ambrosio
- Istituto per i Polimeri Composti e i Biomateriali, Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20, 80125, Napoli, Italy
| | - Guglielmo Fortunato
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
17
|
Kelly A, Farid N, Krukiewicz K, Belisle N, Groarke J, Waters EM, Trotier A, Laffir F, Kilcoyne M, O'Connor GM, Biggs MJ. Laser-Induced Periodic Surface Structure Enhances Neuroelectrode Charge Transfer Capabilities and Modulates Astrocyte Function. ACS Biomater Sci Eng 2020; 6:1449-1461. [PMID: 33455378 DOI: 10.1021/acsbiomaterials.9b01321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The brain machine interface (BMI) describes a group of technologies capable of communicating with excitable nervous tissue within the central nervous system (CNS). BMIs have seen major advances in recent years, but these advances have been impeded because of a temporal deterioration in the signal to noise ratio of recording electrodes following insertion into the CNS. This deterioration has been attributed to an intrinsic host tissue response, namely, reactive gliosis, which involves a complex series of immune mediators, resulting in implant encapsulation via the synthesis of pro-inflammatory signaling molecules and the recruitment of glial cells. There is a clinical need to reduce tissue encapsulation in situ and improve long-term neuroelectrode functionality. Physical modification of the electrode surface at the nanoscale could satisfy these requirements by integrating electrochemical and topographical signals to modulate neural cell behavior. In this study, commercially available platinum iridium (Pt/Ir) microelectrode probes were nanotopographically functionalized using femto/picosecond laser processing to generate laser-induced periodic surface structures (LIPSS). Three different topographies and their physical properties were assessed by scanning electron microscopy and atomic force microscopy. The electrochemical properties of these interfaces were investigated using electrochemical impedance spectroscopy and cyclic voltammetry. The in vitro response of mixed cortical cultures (embryonic rat E14/E17) was subsequently assessed by confocal microscopy, ELISA, and multiplex protein array analysis. Overall LIPSS features improved the electrochemical properties of the electrodes, promoted cell alignment, and modulated the expression of multiple ion channels involved in key neuronal functions.
Collapse
Affiliation(s)
- Adriona Kelly
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland
| | - Nazar Farid
- National Centre for Laser Applications, School of Physics, National University of Ireland, Galway H91 TK33, Ireland
| | - Katarzyna Krukiewicz
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland.,Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice 44-100, Poland
| | - Nicole Belisle
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland
| | - John Groarke
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland
| | - Elaine M Waters
- Glycosciences School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Alexandre Trotier
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland
| | - Fathima Laffir
- Bernal Institute, Materials and Surface Science Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michelle Kilcoyne
- Glycosciences School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Gerard M O'Connor
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland.,National Centre for Laser Applications, School of Physics, National University of Ireland, Galway H91 TK33, Ireland
| | - Manus J Biggs
- Centre for Research in Medical Devices, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
18
|
Krukiewicz K, Kobus D, Turczyn R, Erfurt K, Chrobok A, Biggs MJ. Low resistance, highly corrugated structures based on poly(3,4-ethylenedioxythiophene) doped with a d-glucopyranoside-derived ionic liquid. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Krukiewicz K, Fernandez J, Skorupa M, Więcławska D, Poudel A, Sarasua JR, Quinlan LR, Biggs MJP. Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial. BMC Biomed Eng 2019; 1:9. [PMID: 32903306 PMCID: PMC7422568 DOI: 10.1186/s42490-019-0010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Advancement in polymer technologies, facilitated predominantly through chemical engineering approaches or through the identification and utilization of novel renewable resources, has been a steady focus of biomaterials research for the past 50 years. Aliphatic polyesters have been exploited in numerous biomedical applications including the formulation of soft-tissue sutures, bone fixation devices, cardiovascular stents etc. Biomimetic ‘soft’ polymer formulations are of interest in the design of biological interfaces and specifically, in the development of implantable neuroelectrode systems intended to interface with neural tissues. Critically, soft polymer formulations have been shown to address the challenges associated with the disregulation of mechanotransductive processes and micro-motion induced inflammation at the electrode/tissue interface. In this study, a polyester-based poly(ε-decalactone)/silver nanowire (EDL:Ag) composite was investigated as a novel electrically active biomaterial with neural applications. Neural interfaces were formulated through spin coating of a polymer/nanowire formulation onto the surface of a Pt electrode to form a biocompatible EDL matrix supported by a percolated network of silver nanowires. As-formed EDL:Ag composites were characterized by means of infrared spectroscopy, scanning electron microscopy and electrochemical methods, with their cytocompatibility assessed using primary cultures of a mixed neural population obtained from the ventral mesencephalon of Sprague-Dawley rat embryos. Results Electrochemical characterization of various EDL:Ag composites indicated EDL:Ag 10:1 as the most favourable formulation, exhibiting high charge storage capacity (8.7 ± 1.0 mC/cm2), charge injection capacity (84.3 ± 1.4 μC/cm2) and low impedance at 1 kHz (194 ± 28 Ω), outperforming both pristine EDL and bare Pt electrodes. The in vitro biological evaluation showed that EDL:Ag supported significant neuron viability in culture and to promote neurite outgrowth, which had the average length of 2300 ± 6 μm following 14 days in culture, 60% longer than pristine EDL and 120% longer than bare Pt control substrates. Conclusions EDL:Ag nanocomposites are shown to serve as robust neural interface materials, possessing favourable electrochemical characteristics together with high neural cytocompatibility.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Centre for Research in Medical Devices (CURAM), Galway Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, Ireland.,Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Jorge Fernandez
- Polimerbio, S.L, Paseo Mikeletegi 83, 20009 Donostia-San Sebastian, Spain
| | - Małgorzata Skorupa
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Daria Więcławska
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Anup Poudel
- Centre for Research in Medical Devices (CURAM), Galway Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, Ireland
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), School of Engineering, Alameda de Urquijo s/n, 48013 Bilbao, Spain
| | - Leo R Quinlan
- Department of Physiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Manus J P Biggs
- Centre for Research in Medical Devices (CURAM), Galway Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, Ireland
| |
Collapse
|
20
|
Krukiewicz K, Kowalik A, Czerwinska-Glowka D, Biggs MJ. Electrodeposited poly(3,4-ethylenedioxypyrrole) films as neural interfaces: Cytocompatibility and electrochemical studies. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Krukiewicz K, Janas D, Vallejo-Giraldo C, Biggs MJ. Self-supporting carbon nanotube films as flexible neural interfaces. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Cuttaz E, Goding J, Vallejo-Giraldo C, Aregueta-Robles U, Lovell N, Ghezzi D, Green RA. Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomater Sci 2019; 7:1372-1385. [DOI: 10.1039/c8bm01235k] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Soft, flexible and stretchable conductive elastomers made of polyurethane and PEDOT:PSS blends were fabricated into fully polymeric implantable bioelectrode arrays.
Collapse
Affiliation(s)
- Estelle Cuttaz
- Department of Bioengineering
- Imperial College London
- London
- UK
- Medtronic Chair in Neuroengineering
| | - Josef Goding
- Department of Bioengineering
- Imperial College London
- London
- UK
| | | | | | - Nigel Lovell
- Graduate School of Biomedical Engineering
- UNSW
- Sydney 2052
- Australia
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering
- Center for Neuroprosthetics and Institute of Bioengineering
- School of Engineering
- École Polytechnique Fédérale de Lausanne
- Switzerland
| | - Rylie A. Green
- Department of Bioengineering
- Imperial College London
- London
- UK
| |
Collapse
|
23
|
Evaluation of drug loading capacity and release characteristics of PEDOT/naproxen system: Effect of doping ions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|