1
|
Zhu Y, Deng J, Lu H, Mei Z, Lu Z, Guo J, Chen A, Cao R, Ding X, Wang J, Forgham H, Qiao R, Wang Z. Reverse magnetic resonance tuning nanoplatform with heightened sensitivity for non-invasively multiscale visualizing ferroptosis-based tumor sensitization therapy. Biomaterials 2025; 315:122935. [PMID: 39489017 DOI: 10.1016/j.biomaterials.2024.122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ferroptosis-based therapy has garnered considerable attention for its ability to kill drug-resistant cancer cells. Consequently, it holds great significance to assess the therapeutic outcomes by monitoring ferroptosis-related biomarkers, which enables the provision of real-time pathological insights into disease progression. Nevertheless, conventional imaging technology suffers from limitations including reduced sensitivity and difficulty in achieving real-time precise monitoring. Here, we report a tumor acidic-microenvironment-responsive nanoplatform with "Reverse Magnetic Resonance Tuning (ReMRT)" property and effective combined chemodynamic therapy (CDT) through the loading of chemotherapeutic drugs. This reverse MR mapping change is correlated with iron ion, reactive oxygen species (ROS) generation and drug release, etc., contributing to the precise monitoring of chemo-CDT effectiveness. Furthermore, the ReMRT nanoplatform presents as a highly efficacious combined chemo-CDT agent, and when this nanoplatform is used in conjunction with the "Area Reconstruction" method, it can afford a significant sensitivity (95.1-fold) in multiscale visualization of therapeutic, compared with the conventional MR R1/R2 values. The high-sensitive biological quantitative imaging provides a novel strategy for MR-guided multiscale dynamic tumor-related ferroptosis therapy.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jiali Deng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongwei Lu
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziwei Lu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiajing Guo
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - An Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Rong Cao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinyi Ding
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jingyi Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhongling Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
2
|
Chen WH, Maheshwaran S, Park YK, Ong HC. Iron-based electrode material composites for electrochemical sensor application in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176128. [PMID: 39255942 DOI: 10.1016/j.scitotenv.2024.176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
This review explores the expanding role of electrochemical sensors across diverse domains such as environmental monitoring, medical diagnostics, and food quality assurance. In recent years, iron-based electrocatalysts have emerged as promising candidates for enhancing sensor performance. Notable for their non-toxicity, abundance, catalytic activity, and cost-effectiveness, these materials offer significant advantages. However, further investigation is needed to fully understand how iron-based materials' physical, chemical, and electrical properties influence their catalytic performance in sensor applications. It explores the overview of electrochemical sensor technology, examines the impact of iron-based materials and their characteristics on catalytic activity, and investigates various iron-based materials, their advantages, functionalization, and modification techniques. Additionally, the review investigates the application of iron-based electrode material composites in electrochemical sensors for real sample detections. Ultimately, continued research and development in this area promise to unlock new avenues for using iron-based electrode materials in sensor applications.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Selvarasu Maheshwaran
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan.
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Niu X, Zhang J, Yuan M, Liu Y, Wang Y, Li H, Wang K. Chiral nanoenzymes: synthesis and applications. Mikrochim Acta 2024; 191:723. [PMID: 39495306 DOI: 10.1007/s00604-024-06803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Chiral nanoenzymes are a new type of material that possesses both chiral nanostructures and enzymatic catalytic activity. These materials exhibit selectivity in their catalytic activity towards organisms due to the introduction of chiral features in nanomaterials and have inherent chiral discrimination in organisms. As synthetic enzymes, chiral nanoenzymes offer significant advantages over natural enzymes. Due to their unique chiral structure and distinctive physicochemical properties, chiral nanoenzymes play an important role in various fields, including biology, medicine, and environmental protection. Their strong stereospecificity and biocompatibility make them useful in disease therapy, biosensing, and chiral catalysis, setting them apart from conventional and natural enzymes. In recent years, the design of synthetic methods and biological applications of chiral nanoenzymes has received significant attention and extensive research among scientists. This paper provides a systematic review of the research progress in the discovery, development, and application of chiral nanoenzymes in the last decade. Additionally, it presents various applications of chiral nanoenzymes, such as disease therapy, biosensing, and chiral catalysis. Finally, the challenges and future prospects of chiral nanoenzymes are discussed.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| |
Collapse
|
4
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2024:e2402630. [PMID: 39388416 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
5
|
Sun S, Hu Y, Li Z. Fe-MOFs nanosheets for photo-Fenton degradation of carbamazepine. CHEMOSPHERE 2024; 364:143240. [PMID: 39222696 DOI: 10.1016/j.chemosphere.2024.143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Iron(II)-based metal organic framework (Fe(II)-MOF) nanosheets have emerged as promising candidates for photo-Fenton catalysis. However, efficiently synthesizing Fe(II)-MOF nanosheets remains a significant challenge. Here, a bottom-up synthesis strategy is proposed to prepare two-dimensional Fe-MOF nanosheets (TFMN) with micrometer lateral dimensions and nanometer thickness, featuring Fe(II) as the metal nodes. The application of TFMN in the photo-Fenton degradation of carbamazepine (CBZ) demonstrates remarkable CBZ degradation performance and excellent efficiency across a wide range of pH values. The electron density and density of states are further calculated by density functional theory. Mechanism analysis identifies h+, •OH and •O2- as the predominant active species contributing to the catalytic oxidation process in the Vis/TFMN/H2O2 system.
Collapse
Affiliation(s)
- Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Youyou Hu
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2024; 54:1273-1289. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.
Collapse
Affiliation(s)
- Huiru Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Longmei Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiyun Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Yan Z, Guo S, Li C, Tan Z, Wang L, Wang W, Li G, Liu Y, Zhang H, Tang M, Feng Z, Wang Y, Li B. Core-bishell NiFe@NC@MoS 2 for boosting electrocatalytic activity towards ultra-efficient oxygen evolution reaction. J Colloid Interface Sci 2024; 674:823-833. [PMID: 38955013 DOI: 10.1016/j.jcis.2024.06.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Designing and developing suitable oxygen evolution reaction (OER) catalysts with high activity and stability remain challenging in electrolytic water splitting. Hence, NiFe@NC@MoS2 core-bishell composites wrapped by molybdenum disulphide (MoS2) and nitrogen-doped graphene (NC) were prepared using hydrothermal synthesis in this research. NiFe@NC@MoS2 composite exhibits excellent performance with an overpotential of 288 mV and a Tafel slope of 53.2 mV·dec-1 at a current density of 10 mA·cm-2 in 1 M KOH solution, which is superior to commercial RuO2. NC and MoS2 bishells create profuse edge active sites that enhance the adsorption ability of OOH* while lowering the overall overpotential of the product and improving its oxygen precipitation performance. The density function theory(DFT) analysis confirms that the layered MoS2 in NiFe@NC@MoS2 provides additional edge active sites and enhances electron transfer, thus increasing the intrinsic catalytic activity. This research paves a novel way for developing OER electrocatalysts with excellent catalytic performance.
Collapse
Affiliation(s)
- Zhenwei Yan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Shuaihui Guo
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Chuanbin Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Zhaojun Tan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Lijun Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Wen Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Gang Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Yanyan Liu
- College of Science, Henan Agriculture University, Zhengzhou 450002, PR China.
| | - Huanhuan Zhang
- College of Science, Henan Agriculture University, Zhengzhou 450002, PR China; College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mingqi Tang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Zaiqiang Feng
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, PR China.
| | - Baojun Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China; College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Malhotra M, Kaur B, Soni V, Patial S, Sharma K, Kumar R, Singh P, Thakur S, Pham PV, Ahamad T, Le QV, Nguyen VH, Raizada P. Fe-based MOFs as promising adsorbents and photocatalysts for re-use water contained arsenic: Strategies and challenges. CHEMOSPHERE 2024; 357:141786. [PMID: 38537716 DOI: 10.1016/j.chemosphere.2024.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
Arsenic (As) contaminated water, especially groundwater reservoirs, is a major issue worldwide owing to its hazardous consequences on human health and the global environment issues. Also, irrigating agricultural fields with As-contaminated water not only produces an accumulation of As in the soil but also compromises food safety due to As entering into agricultural products. Hence, there is an urgent need to develop an efficient method for As removal in water. Fe-based MOFs have attained special attention due to their low toxicity, high water stability, better physical and chemical properties, and high abundance of iron. The arsenic species removal by Fe-MOF follows the adsorption and oxidation mechanism where As (III) converts into As (V). Moreover, the adsorption mechanism is facilitated by electrostatic interactions, H-bonding, acid-base interaction, hydrophobic interactions, van der Waals forces, π-π stacking interactions, and coordinative bindings responsible for Fe-O-As bond generation. This review thoroughly recapitulates and analyses recent advancements in the facile synthesis and potential application of Fe-based MOF adsorbents for the elimination of As ions. The most commonly employed hydro/solvothermal, ultrasonic, microwave-assisted, mechanochemical, and electrochemical synthesis for Fe-MOF has been discussed along with their adsorptive and oxidative mechanisms involved in arsenic removal. The effects of factors like pH and coexisting ions have also been discussed. Lastly, the article also proposed the prospects for developing the application of Fe-based MOF in treating As-contaminated water.
Collapse
Affiliation(s)
- Monika Malhotra
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Balvinder Kaur
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Kusum Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Phuong V Pham
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
9
|
Li S, Zhang T, Zheng H, Dong X, Leong YK, Chang JS. Advances and challenges in the removal of organic pollutants via sulfate radical-based advanced oxidation processes by Fe-based metal-organic frameworks: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171885. [PMID: 38527540 DOI: 10.1016/j.scitotenv.2024.171885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Tianqi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
10
|
Xue Y, Xu W, Zhao D, Du Z, Jiang H, Lv H, Zhang D, Yu Z, Cao Y, Han D. Biomimetic peroxidase MOF-Fe promotes bone defect repair by inhibiting TfR2 and activating the BMP2 pathway. Biol Direct 2024; 19:30. [PMID: 38654256 PMCID: PMC11036606 DOI: 10.1186/s13062-024-00473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Large bone defects pose a clinical treatment challenge; inhibiting transferrin receptor 2 (TfR2), which is involved in iron metabolism, can promote osteogenesis. Iron-based metal-organic frameworks (MOF-Fe) particles not only inhibit TfR2 but also serve as biomimetic catalysts to remove hydrogen peroxide in reactive oxygen species (ROS); excess ROS can disrupt the normal functions of osteoblasts, thereby hindering bone regeneration. This study explored the potential effects of MOF-Fe in increasing osteogenic activity and clearing ROS. METHODS In vitro experiments were performed to investigate the osteogenic effects of MOF-Fe particles and assess their impact on cellular ROS levels. To further validate the role of MOF-Fe in promoting bone defect repair, we injected MOF-Fe suspensions into the femoral defects of SD rats and implanted MOF-Fe-containing hydrogel scaffolds in rabbit cranial defect models and observed their effects on bone healing. RESULTS In vitro, the presence of MOF-Fe significantly increased the expression levels of osteogenesis-related genes and proteins compared to those in the control group. Additionally, compared to those in the untreated control group, the cells treated with MOF-Fe exhibited a significantly increased ability to remove hydrogen peroxide from ROS and generate oxygen and water within the physiological pH range. In vivo experiments further confirmed the positive effect of MOF-Fe in promoting bone defect repair. CONCLUSION This study supports the application of MOF-Fe as an agent for bone regeneration, particularly for mitigating ROS and activating the bone morphogenetic protein (BMP) pathway, demonstrating its potential value.
Collapse
Affiliation(s)
- Yaxin Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Hao Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Hao Lv
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Zhencheng Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China
| | - Yi Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China.
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, 639 Zhizaoju Road 200011, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Malmir M, Heravi MM, Shafiei Toran Poshti E. Facile Cu-MOF-derived Co 3O 4 mesoporous-structure as a cooperative catalyst for the reduction nitroarenes and dyes. Sci Rep 2024; 14:6846. [PMID: 38514684 PMCID: PMC10958026 DOI: 10.1038/s41598-024-52708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
The present study describes the environmentally friendly and cost-effective synthesis of magnetic, mesoporous structure-Co3O4 nanoparticles (m-Co3O4) utilizing almond peel as a biotemplate. This straightforward method yields a material with high surface area, as confirmed by various characterization techniques. Subsequently, the utilization of m-Co3O4, graphene oxide (GO), Cu(II)acetate (Cu), and asparagine enabled the successful synthesis of a novel magnetic MOF, namely GO-Cu-ASP-m-Co3O4 MOF. This catalyst revealed remarkable stability that could be easily recovered using a magnet for consecutive use without any significant decline in activity for eight cycles in nitro compound reduction and organic dye degradation reactions. Consequently, GO-Cu-ASP-m-Co3O4 MOF holds immense potential as a catalyst for reduction reactions, particularly in the production of valuable amines with high industrial value, as well as for the elimination of toxic-water pollutants such as organic dyes.
Collapse
Affiliation(s)
- Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Elham Shafiei Toran Poshti
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran
| |
Collapse
|
12
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
13
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
14
|
Guo H, Liu Y, Li X, Wang H, Mao D, Wei L, Ye X, Qu D, Huo J, Chen Y. Magnetic Metal-Organic Framework-Based Nanoplatform with Platelet Membrane Coating as a Synergistic Programmed Cell Death Protein 1 Inhibitor against Hepatocellular Carcinoma. ACS NANO 2023; 17:23829-23849. [PMID: 37991391 PMCID: PMC10722610 DOI: 10.1021/acsnano.3c07885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Programmed cell death protein 1 (PD-1) inhibitors are the most common immune-checkpoint inhibitors and considered promising drugs for hepatocellular carcinoma (HCC). However, in clinical settings, they have a low objective response rate (15%-20%) for patients with HCC; this is because of the insufficient level and activity of tumor-infiltrating T lymphocytes (TILs). The combined administration of oxymatrine (Om) and astragaloside IV (As) can increase the levels of TILs by inhibiting the activation of cancer-associated fibroblasts (CAFs) and improve the activity of TILs by enhancing their mitochondrial function. In the present study, we constructed a magnetic metal-organic framework (MOF)-based nanoplatform with platelet membrane (Pm) coating (PmMN@Om&As) to simultaneously deliver Om and As into the HCC microenvironment. We observed that PmMN@Om&As exhibited a high total drug-loading capacity (33.77 wt %) and good immune escape. Furthermore, it can target HCC tissues in a magnetic field and exert long-lasting effects. The HCC microenvironment accelerated the disintegration of PmMN@Om&As and the release of Om&As, thereby increasing the level and activity of TILs by regulating CAFs and the mitochondrial function of TILs. In addition, the carrier could synergize with Om&As by enhancing the oxygen consumption rate and proton efflux rate of TILs, thereby upregulating the mitochondrial function of TILs. Combination therapy with PmMN@Om&As and α-PD-1 resulted in a tumor suppression rate of 84.15% and prolonged the survival time of mice. Our study provides a promising approach to improving the antitumor effect of immunotherapy in HCC.
Collapse
Affiliation(s)
- Hong Guo
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Jiangsu
Clinical Innovation Center of Digestive Cancer of Traditional Chinese
Medicine, Nanjing 210028, China
| | - Xia Li
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Wang
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Dengxuan Mao
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Liangyin Wei
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ding Qu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jiege Huo
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu
Clinical Innovation Center of Digestive Cancer of Traditional Chinese
Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu
Clinical Innovation Center of Digestive Cancer of Traditional Chinese
Medicine, Nanjing 210028, China
| |
Collapse
|
15
|
Zeng Z, Wang J, Zhao S, Zhang Y, Fan J, Wu H, Chen J, Zhang Z, Meng Z, Yang L, Wang R, Zhang B, Wang G, Li C, Zang G. A Bioinspired Flexible Sensor for Electrochemical Probing of Dynamic Redox Disequilibrium in Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304079. [PMID: 37943018 PMCID: PMC10754098 DOI: 10.1002/advs.202304079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Malignant tumors pose a serious risk to human health. Ascorbic acid (AA) has potential for tumor therapy; however, the mechanism underlying the ability of AA to selectively kill tumor cells remains unclear. AA can cause redox disequilibrium in tumor cells, resulting in the release of abundant reactive oxygen species, represented by hydrogen peroxide (H2 O2 ). Therefore, the detection of H2 O2 changes can provide insight into the selective killing mechanism of AA against tumor cells. In this work, inspired by the ion-exchange mechanism in coral formation, a flexible H2 O2 sensor (PtNFs/CoPi@CC) is constructed to monitor the dynamics of H2 O2 in the cell microenvironment, which exhibits excellent sensitivity and spatiotemporal resolution. Moreover, the findings suggest that dehydroascorbic acid (DHA), the oxidation product of AA, is highly possible the substance that actually acts on tumor cells in AA therapy. Additionally, the intracellular redox disequilibrium and H2 O2 release caused by DHA are positively correlated with the abundance and activity of glucose transporter 1 (GLUT1). In conclusion, this work has revealed the potential mechanism underlying the ability of AA to selectively kill tumor cells through the construction and use of PtNFs/CoPi@CC. The findings provide new insights into the clinical application of AA.
Collapse
Affiliation(s)
- Zhongyuan Zeng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jian Wang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Yuchan Zhang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jingchuan Fan
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Hui Wu
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jiajia Chen
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Zaikuan Zhang
- The M.O.E. Key Laboratory of Laboratory Medical DiagnosticsThe College of Laboratory MedicineChongqing Medical UniversityChongqing400016P. R. China
| | - Zexuan Meng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Lu Yang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Renzhi Wang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Bo Zhang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Chen‐Zhong Li
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guangchao Zang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
16
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
17
|
Cai J, Peng Y, Jiang Y, Li L, Wang H, Li K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023; 28:7121. [PMID: 37894600 PMCID: PMC10609057 DOI: 10.3390/molecules28207121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Photocatalytic technology has received increasing attention in recent years. A pivotal facet of photocatalytic technology lies in the development of photocatalysts. Porous metal-organic framework (MOF) materials, distinguished by their unique properties and structural characteristics, have emerged as a focal point of research in the field, finding widespread application in the photo-treatment and conversion of various substances. Fe-based MOFs have attained particular prominence. This review explores recent advances in the photocatalytic degradation of aqueous and gaseous substances. Furthermore, it delves into the interaction between the active sites of Fe-MOFs and pollutants, offering deeper insights into their mechanism of action. Fe-MOFs, as photocatalysts, predominantly facilitate pollutant removal through redox processes, interaction with acid sites, the formation of complexes with composite metal elements, binding to unsaturated metal ligands (CUSs), and hydrogen bonding to modulate their respiratory behavior. This review also highlights the focal points of future research, elucidating the challenges and opportunities that lie ahead in harnessing the characteristics and advantages of Fe-MOF composite catalysts. In essence, this review provides a comprehensive summary of research progress on Fe-MOF-based catalysts, aiming to serve as a guiding reference for other catalytic processes.
Collapse
Affiliation(s)
- Jun Cai
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| | - Yang Peng
- Kunming Electric Power Design Institute Limited Liability Company, Kunming 650034, China
| | - Yanxin Jiang
- Yunnan Hubai Environmental Protection Technology Co., Ltd., Kunming 650034, China
| | - Li Li
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Hua Wang
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|
18
|
Ma Q, Li Y, Tan Y, Xu B, Cai J, Zhang Y, Wang Q, Wu Q, Yang B, Huang J. Recent Advances in Metal-Organic Framework (MOF)-Based Photocatalysts: Design Strategies and Applications in Heavy Metal Control. Molecules 2023; 28:6681. [PMID: 37764456 PMCID: PMC10535165 DOI: 10.3390/molecules28186681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The heavy metal contamination of water systems has become a major environmental concern worldwide. Photocatalysis using metal-organic frameworks (MOFs) has emerged as a promising approach for heavy metal remediation, owing to the ability of MOFs to fully degrade contaminants through redox reactions that are driven by photogenerated charge carriers. This review provides a comprehensive analysis of recent developments in MOF-based photocatalysts for removing and decontaminating heavy metals from water. The tunable nature of MOFs allows the rational design of composition and features to enhance light harvesting, charge separation, pollutant absorptivity, and photocatalytic activities. Key strategies employed include metal coordination tuning, organic ligand functionalization, heteroatom doping, plasmonic nanoparticle incorporation, defect engineering, and morphology control. The mechanisms involved in the interactions between MOF photocatalysts and heavy metal contaminants are discussed, including light absorption, charge carrier separation, metal ion adsorption, and photocatalytic redox reactions. The review highlights diverse applications of MOF photocatalysts in treating heavy metals such as lead, mercury, chromium, cadmium, silver, arsenic, nickel, etc. in water remediation. Kinetic modeling provides vital insights into the complex interplay between coupled processes such as adsorption and photocatalytic degradation that influence treatment efficiency. Life cycle assessment (LCA) is also crucial for evaluating the sustainability of MOF-based technologies. By elucidating the latest advances, current challenges, and future opportunities, this review provides insights into the potential of MOF-based photocatalysts as a sustainable technology for addressing the critical issue of heavy metal pollution in water systems. Ongoing efforts are needed to address the issues of stability, recyclability, scalable synthesis, and practical reactor engineering.
Collapse
Affiliation(s)
- Qiang Ma
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunling Li
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
| | - Yawen Tan
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
| | - Bowen Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Jun Cai
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| | - Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China;
| | - Qingyuan Wang
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
| | - Qihong Wu
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
| | - Bowen Yang
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
| | - Jin Huang
- Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China; (Q.M.); (Y.L.); (Y.T.); (Q.W.); (Q.W.)
| |
Collapse
|
19
|
Kang M, Yu SH, Baek KY, Sung MM, Cho S. MIL-101-NH 2(Fe)-Coated Nylon Microfibers for Immobilized Photocatalysts in RhB and Cr(VI) Removal. ACS OMEGA 2023; 8:15298-15305. [PMID: 37151491 PMCID: PMC10157658 DOI: 10.1021/acsomega.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
MIL-101-NH2(Fe) is one of the effective photocatalytic metal-organic frameworks (MOFs) working under visible light. However, its powder-type form inhibits reusability in practical applications. In this study, we immobilized MIL-101-NH2(Fe) on a polymeric microfiber mesh to improve reusability while minimizing the loss of catalytic performance. To overcome the lack of surface functionality of the nylon fibers, an atomic layer deposition Al2O3 layer and NH2-BDC linker were introduced to facilitate uniform coating of the MOF on the fiber surface. The reactions of the metal precursor to the nylon substrate and NH2-BDC ligand of the MOF allow chemical bonding from the core to the shell of the entire hybrid catalytic materials. The resulting fiber-immobilized MOFs (Nylon@Al2O3@MOF) demonstrated high photocatalytic performance in the removal of RhB and Cr(VI) as representatives of organic dyes and heavy metals, respectively, while retaining over 85% of its efficiency after five cycles.
Collapse
Affiliation(s)
- Munchan Kang
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Department
of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Ho Yu
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Department
of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Youl Baek
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Myung Mo Sung
- Department
of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangho Cho
- Materials
Architecturing Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
20
|
Mahmoud LA, dos Reis RA, Chen X, Ting VP, Nayak S. Metal-Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS OMEGA 2022; 7:45910-45934. [PMID: 36570238 PMCID: PMC9773949 DOI: 10.1021/acsomega.2c05978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Pesticide contamination is a global issue, affecting nearly 44% of the global farming population, and disproportionately affecting farmers and agricultural workers in developing countries. Despite this, global pesticide usage is on the rise, with the growing demand of global food production with increasing population. Different types of porous materials, such as carbon and zeolites, have been explored for the remediation of pesticides from the environment. However, there are some limitations with these materials, especially due to lack of functional groups and relatively modest surface areas. In this regard, metal-organic frameworks (MOFs) provide us with a better alternative to conventionally used porous materials due to their versatile and highly porous structure. Recently, a number of MOFs have been studied for the extraction of pesticides from the environment as well as for targeted and controlled release of agrochemicals. Different types of pesticides and conditions have been investigated, and MOFs have proved their potential in agricultural applications. In this review, the latest studies on delivery and extraction of pesticides using MOFs are systematically reviewed, along with some recent studies on greener ways of pest control through the slow release of chemical compounds from MOF composites. Finally, we present our insights into the key issues concerning the development and translational applications of using MOFs for targeted delivery and pesticide control.
Collapse
Affiliation(s)
- Lila A.
M. Mahmoud
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, United Kingdom
- School
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Roberta A. dos Reis
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, United Kingdom
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André, SP 09210, Brazil
| | - Xianfeng Chen
- School
of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Valeska P. Ting
- Bristol
Composites Institute, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| | - Sanjit Nayak
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, United Kingdom
| |
Collapse
|
21
|
Xia L, Zhao Y, Zhang X, Qiu Y, Shao J, Dewil R, der Bruggen BV, Yang X. Ionic Control of Functional Zeolitic Imidazolate Framework-Based Membrane for Tailoring Selectivity toward Target Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11038-11049. [PMID: 35170949 DOI: 10.1021/acsami.1c24876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion exchange membranes with strong ionic separation performance have strategic importance for resource recovery and water purification, but the current state-of-the-art membranes suffer from inadequate ion selective transport for the target ions. This work proposes a new class of zeolitic imidazolate framework (ZIF)-based anion exchange membranes (named as S@ZIF-AMX) with suppressed multivalent anion mobility and enhanced target ion transport via an ionic control strategy under alternating current driven assembly. In electrodialysis with an initial concentration of 50 mM of NaBr, NaCl, Na2SO4, and Na3PO4 (mixed feed) and a current density of 10 mA cm-2, the S@ZIF-AMX membrane demonstrated an excellent transport of the target ion (Cl-) based on the synergy between the Cl- regulated ZIF cavity and the electrostatic interaction with sulfonic groups. The separation efficiency and permselectivity of PO43-/Cl- through S@ZIF-AMX largely increased to 83% and 32, respectively, compared to 42% and 4.0 of the pristine AMX membrane (a commercial anion exchange membrane), respectively. Furthermore, the separation between SO42- and Cl- was also enhanced, the separation efficiency and permselectivity of SO42-/Cl- increased from 11% and 1.4 to 45% and 4.3, respectively. In addition, the combined strategy developed in the S@ZIF-AMX membrane was proven effective in promoting Cl- transport by shifting the separation equilibrium of the ion pair Br-/Cl-, which is known to be extremely challenging. This work provides a new design strategy toward pushing the limits of current ion exchange membranes for target ion separation in water, resource, and energy applications.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xi Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
Zhang J, Lei Q, Luan L, Zeng H, Zou G, Lin Z. N-Methylimidazolium containing metal phosphate–oxalates: solvent-free synthesis, crystal structure, and proton conduction. CrystEngComm 2022. [DOI: 10.1039/d1ce01659h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new metal phosphate–oxalates were prepared under solvent-free conditions using N-methylimidazole as a proton carrier, and display interesting proton-conducting behaviours.
Collapse
Affiliation(s)
- Junfeng Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing Lei
- Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, China
| | - Lindong Luan
- Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Du S, Cui M, He Z. Approach toward Iron(II) Coordination Polymers Based on Chain Motifs with Thiolate or Mixed Thiolate/Carboxylate Bridges: Structures and Magnetic Properties. Inorg Chem 2021; 60:19053-19061. [PMID: 34889601 DOI: 10.1021/acs.inorgchem.1c02905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search for iron-sulfur-based coordination polymers (CPs) has become an attractive field in recent years. Here we demonstrate how it is possible to synthesize new iron-sulfur-based CPs by solvothermal reactions of [CpFe(CO)2]2 (Cp = cyclopentadienyl) with two positional isomeric ligands 6-mercaptonicotinic acid (6-H2mna) and 2-mercaptoisonicotinic acid (2-H2mina) in different mixed-solvent systems. The reactions afforded, in moderate yields, a variety of desired CPs, namely, [Fe(6-Hmna)2] (1), [Fe3(6-Hmna)2(6-mna)2] (2), [Fe2(6-mna)2]·H2O (3), and [Fe(2 mina)(H2O)] (4 and 5). The structures of these compounds have been characterized by single-crystal X-ray diffraction, which reveals that they all contain 1D chain motifs of iron held together in different ways by thiolate or mixed thiolate/carboxylate bridges. These chains are further connected through the ligand backbones to form 3D networks of 1-3 and 5 and a 2D sheet of 4. Moreover, magnetic investigations indicate that both 1 and 4 display canted antiferromagnetic behavior with weak ferromagnetism, while 2 and 5 possess short-range antiferromagnetic order at ∼20 K. CP 3 exhibits paramagnetic behavior down to 2 K with strong spin frustration.
Collapse
Affiliation(s)
- Shaowu Du
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, P. R. China
| | - Meiyan Cui
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhangzhen He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
24
|
Li S, Wang W, Lei S, Cui J. Boosting Catalytic Efficiency of Metal‐Organic Frameworks with Electron‐Withdrawing Effect for Lewis‐Acid Catalysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202101471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siyu Li
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| | - Wenyang Wang
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| | - Shengbin Lei
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| | - Jian‐zhong Cui
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
25
|
State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochim Acta 2021; 188:168. [PMID: 33884514 DOI: 10.1007/s00604-021-04827-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed. Graphical abstract.
Collapse
|
26
|
Liu X, Liang T, Zhang R, Ding Q, Wu S, Li C, Lin Y, Ye Y, Zhong Z, Zhou M. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9643-9655. [PMID: 33606494 DOI: 10.1021/acsami.0c21486] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline materials comprising metal centers and organic linkers that feature structural rigidity and functional flexibility. These attractive materials offer large surface areas, high porosity, and good chemical stability; they have shown promise in chemistry (H2 separation and catalysis), magnetism, and optics. They have also shown potential for drug delivery following the demonstration in 2006 that chromium-based MOFs can be loaded with ibuprofen. Since then, iron-based MOFs (Fe-MOFs) have been shown to offer high drug loading and excellent biocompatibility. The present review focuses on the synthesis and surface modifications of Fe-MOFs as well as their applications in drug delivery and biomedicine.
Collapse
Affiliation(s)
- Xianbin Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tiantian Liang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rongtao Zhang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Ding
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
27
|
Lin B, Chen Z, Shui L, Zhou G, Wang X. Novel 2D/2D BiOBr/UMOFNs direct Z-scheme photocatalyst for efficient phenol degradation. NANOTECHNOLOGY 2021; 32:045711. [PMID: 33053516 DOI: 10.1088/1361-6528/abc113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel 2D/2D BiOBr/ultrathin metal-organic framework nanosheets (UMOFNs) direct Z-scheme photocatalyst was successfully synthesized by using a simple deposition-precipitation method. The photocatalytic performance was evaluated under light irradiation, which revealed that the 2D/2D BiOBr/UMOFNs Z-scheme photocatalyst exhibits higher photocatalytic degradation of phenol compared to pristine BiOBr and UMOFNs. A BiOBr/UMOFNs-40% (mass ratio for BiOBr and UMOFNs of 1:0.4) photocatalyst was found to show the best photocatalytic degradation efficiency and stability, reaching 99% phenol degradation under light irradiation of 270 min and maintaining 97% degradation after 5 recycling runs. Results obtained from a trapping experiment and electron paramagnetic resonance suggest that reactive ·OH and O2 ·- play a major role in phenol degradation. Photoluminescence and photocurrent results reveal that the excellent photocatalytic activity of the 2D/2D BiOBr/UMOFNs photocatalyst can be ascribed to the efficient separation of photogenerated electron-hole pairs through a direct Z-scheme system. This article provides a possible reference for designing Z-scheme photocatalysts by using MOFs and semiconductors for practical organic pollutant treatment.
Collapse
Affiliation(s)
- Biyun Lin
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510631, People's Republic of China
| | - Zhihong Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, People's Republic of China
| | - Lingling Shui
- School of Information and Optoelectronic Science and Engineering & South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510631, People's Republic of China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510631, People's Republic of China
| |
Collapse
|
28
|
Huang L, Xu H, Zhao Y, Huang L, Bi J, Zeng H, Zou G, Gao D, Lin Z. Isonicotinic acid-templated metal phosphate–oxalates: solvent-free synthesis, luminescence, and proton conduction. CrystEngComm 2021. [DOI: 10.1039/d1ce00873k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new layered metal phosphate–oxalates were prepared under solvent-free conditions using isonicotinic acid as a structure-directing agent, which show interesting photoluminescence and proton-conducting properties.
Collapse
Affiliation(s)
- Lijuan Huang
- College of Chemistry, Sichuan University, Chengdu 610064, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Haiping Xu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Ohtani R, Matsunari H, Yamamoto T, Kimoto K, Isobe M, Fujii K, Yashima M, Fujii S, Kuwabara A, Hijikata Y, Noro S, Ohba M, Kageyama H, Hayami S. Responsive Four‐Coordinate Iron(II) Nodes in FePd(CN)
4. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hiromu Matsunari
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Takafumi Yamamoto
- Laboratory for Materials and Structures Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama 226-8503 Japan
| | - Koji Kimoto
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Masaaki Isobe
- Research Center for Functional Materials National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kotaro Fujii
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1-W4-17, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Masatomo Yashima
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1-W4-17, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Susumu Fujii
- Nanostructures Research Laboratory Japan Fine Ceramics Center 2-4-1 Mutsuno, Atsuta Nagoya 456-8587 Japan
- Center for Materials Research by Information Integration National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory Japan Fine Ceramics Center 2-4-1 Mutsuno, Atsuta Nagoya 456-8587 Japan
- Center for Materials Research by Information Integration National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| | - Shin‐ichiro Noro
- Faculty of Environmental Earth Science Hokkaido University Sapporo 060-0810 Japan
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroshi Kageyama
- Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
30
|
Ohtani R, Matsunari H, Yamamoto T, Kimoto K, Isobe M, Fujii K, Yashima M, Fujii S, Kuwabara A, Hijikata Y, Noro SI, Ohba M, Kageyama H, Hayami S. Responsive Four-Coordinate Iron(II) Nodes in FePd(CN) 4. Angew Chem Int Ed Engl 2020; 59:19254-19259. [PMID: 32662185 DOI: 10.1002/anie.202008187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Metal node design is crucial for obtaining structurally diverse coordination polymers (CPs) and metal-organic frameworks with desirable properties; however, FeII ions are exclusively six-coordinated. Herein, we present a cyanide-bridged three-dimensional (3D) CP, FePd(CN)4 , bearing four-coordinate FeII ions, which is synthesized by thermal treatment of a two-dimensional (2D) six-coordinate FeII CP, Fe(H2 O)2 Pd(CN)4 ⋅4 H2 O, to remove water molecules. Atomic-resolution transmission electron microscopy and powder X-ray and neutron diffraction measurements revealed that the FePd(CN)4 structure is composed of a two-fold interpenetrated PtS topology network, where the FeII center demonstrates an intermediate geometry between tetrahedral and square-planar coordination. This four-coordinate FeII center with the distorted geometry can act as a thermo-responsive flexible node in the PtS network.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiromu Matsunari
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takafumi Yamamoto
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
| | - Koji Kimoto
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Masaaki Isobe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Susumu Fujii
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, 456-8587, Japan.,Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, 456-8587, Japan.,Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
31
|
Shan Y, Xu C, Zhang H, Chen H, Bilal M, Niu S, Cao L, Huang Q. Polydopamine-Modified Metal-Organic Frameworks, NH 2-Fe-MIL-101, as pH-Sensitive Nanocarriers for Controlled Pesticide Release. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2000. [PMID: 33050439 PMCID: PMC7601635 DOI: 10.3390/nano10102000] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 01/24/2023]
Abstract
Recently, metal-organic frameworks (MOFs) have become a dazzling star among porous materials used in many fields. Considering their intriguing features, MOFs have great prospects for application in the field of sustainable agriculture, especially as versatile pesticide-delivery vehicles. However, the study of MOF-based platforms for controlled pesticide release has just begun. Controlled pesticide release responsive to environmental stimuli is highly desirable for decreased agrochemical input, improved control efficacy and diminished adverse effects. In this work, simple, octahedral, iron-based MOFs (NH2-Fe-MIL-101) were synthesized through a microwave-assisted solvothermal method using Fe3+ as the node and 2-aminoterephthalic acid as the organic ligand. Diniconazole (Dini), as a model fungicide, was loaded into NH2-Fe-MIL-101 to afford Dini@NH2-Fe-MIL-101 with a satisfactory loading content of 28.1%. The subsequent polydopamine (PDA) modification could endow Dini with pH-sensitive release patterns. The release of Dini from PDA@Dini@NH2-Fe-MIL-101 was much faster in an acidic medium compared to that in neutral and basic media. Moreover, Dini@NH2-Fe-MIL-101 and PDA@Dini@NH2-Fe-MIL-101 displayed good bioactivities against the pathogenic fungus causing wheat head scab (Fusarium graminearum). This research sought to reveal the feasibility of versatile MOFs as a pesticide-delivery platform in sustainable crop protection.
Collapse
Affiliation(s)
- Yongpan Shan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.S.); (C.X.); (H.C.); (M.B.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang 455000, China
| | - Chunli Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.S.); (C.X.); (H.C.); (M.B.)
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Huiping Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.S.); (C.X.); (H.C.); (M.B.)
| | - Muhammad Bilal
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.S.); (C.X.); (H.C.); (M.B.)
| | - Shujun Niu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan New Village, An’ning District, Lanzhou 730070, China;
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.S.); (C.X.); (H.C.); (M.B.)
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.S.); (C.X.); (H.C.); (M.B.)
| |
Collapse
|
32
|
Phase-Selective Microwave Assisted Synthesis of Iron(III) Aminoterephthalate MOFs. MATERIALS 2020; 13:ma13061469. [PMID: 32210216 PMCID: PMC7142456 DOI: 10.3390/ma13061469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 01/08/2023]
Abstract
Iron(III) aminoterephthalate Metal-Organic Frameworks (Fe-BDC-NH2 MOFs) have been demonstrated to show potential for relevant industrial and societal applications (i.e., catalysis, drug delivery, gas sorption). Nevertheless, further analysis is required in order to achieve their commercial production. In this work, a systematic synthetic strategy has been followed, carrying out microwave (MW) assisted hydro/solvothermal reactions to rapidly evaluate the influence of different reaction parameters (e.g., time, temperature, concentration, reaction media) on the formation of the benchmarked MIL-101-NH2, MIL-88B-NH2, MIL-53-NH2 and MIL-68-NH2 solids. Characterization of the obtained solids by powder X-ray diffraction, dynamic light scattering and transmission electron microscopy allowed us to identify trends to the contribution of the evaluated parameters, such as the relevance of the concentration of precursors and the impact of the reaction medium on phase crystallization. Furthermore, we presented here for the first time the MW assisted synthesis of MIL-53-NH2 in water. In addition, pure MIL-101-NH2 was also produced in water while MIL-88-NH2 was the predominant phase obtained in ethanol. Pure phases were produced with high space-time yields, unveiling the potential of MW synthesis for MOF industrialization.
Collapse
|
33
|
Li T, Mao Y, Qi Y, Zeng H, Zou G, Lin Z. Ionothermal synthesis of crystalline metal phosphites using multifunctional protic ionic liquids. CrystEngComm 2020. [DOI: 10.1039/d0ce01182g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mixed-valence iron phosphite was prepared under ionothermal conditions using a protic ionic liquid as a solvent, a structure-directing agent, a phosphorus source, and a reducing agent.
Collapse
Affiliation(s)
- Ting Li
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yumei Mao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yue Qi
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hongmei Zeng
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Guohong Zou
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhien Lin
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
34
|
Karimi‐Nazarabad M, Goharshadi EK, Aziznezhad M. Solar Mineralization of Hard‐Degradable Amphetamine Using TiO
2
/RGO Nanocomposite. ChemistrySelect 2019. [DOI: 10.1002/slct.201903943] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mahdi Karimi‐Nazarabad
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Elaheh K. Goharshadi
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
- Nano Research CenterFerdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Mohammad Aziznezhad
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| |
Collapse
|
35
|
Wei Q, Wang C, Li P, Wu T, Yang N, Wang X, Wang Y, Li C. ZnS/C/MoS 2 Nanocomposite Derived from Metal-Organic Framework for High-Performance Photo-Electrochemical Immunosensing of Carcinoembryonic Antigen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902086. [PMID: 31361083 DOI: 10.1002/smll.201902086] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
A hexafluorophosphate ionic liquid is used as a functional monomer to prepare a metal-organic framework (Zn-MOF). Zn-MOF is used as a template for MoS2 nanosheets synthesis and further carbonized to yield light-responsive ZnS/C/MoS2 nanocomposites. Zn-MOF, carbonized-Zn-MOF, and ZnS/C/MoS2 nanocomposites are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction pattern, scanning electron microscopy (SEM), element mapping, Raman spectroscopy, X-ray photoelectron spectroscopy, fluorescence, and nitrogen-adsorption analysis. Carcinoembryonic antigen (CEA) is selected as a model to construct an immunosensing platform to evaluate the photo-electrochemical (PEC) performances of ZnS/C/MoS2 nanocomposites. A sandwich-type PEC immunosensor is fabricated by immobilizing CEA antibody (Ab1 ) onto the ZnS/C/MoS2 /GCE surface, subsequently binding CEA and the alkaline phosphatase-gold nanoparticle labeled CEA antibody (ALP-Au-Ab2 ). The catalytic conversion of vitamin C magnesium phosphate produces ascorbic acid (AA). Upon being illuminated, AA can react with photogenerated holes from ZnS/C/MoS2 nanocomposites to generate a photocurrent for quantitative assay. Under optimized experimental conditions, the PEC immunosensor exhibits excellent analytical characteristics with a linear range from 2.0 pg mL-1 to 10.0 ng mL-1 and a detection limit of 1.30 pg mL-1 (S/N = 3). The outstanding practicability of this PEC immunosensor is demonstrated by accurate assaying of CEA in clinical serum samples.
Collapse
Affiliation(s)
- Qiuxi Wei
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Chen Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ping Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tsunghsueh Wu
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI, 53818-3099, USA
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| | - Xing Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
36
|
Luo S, Zeng Z, Zeng G, Liu Z, Xiao R, Chen M, Tang L, Tang W, Lai C, Cheng M, Shao B, Liang Q, Wang H, Jiang D. Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32579-32598. [PMID: 31429261 DOI: 10.1021/acsami.9b11990] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal organic frameworks (MOFs) are one set of the most excellent supports for Pd nanoparticles (NPs). MOFs as the host mainly have the following advantages: (i) they provide size limits for highly dispersed Pd NPs; (ii) fixing Pd NPs is beneficial for separation and reuse, avoiding the loss of expensive metals; (iii) the MOFs skeleton is diversified and functionalized, which is beneficial to enhancing the interaction with Pd NPs and prolonging the service life of the catalyst. This review discusses the synthesis strategy of Pd@MOF, which provides guidance for the synthesis of similar materials. After that, the research advance of Pd@MOF in heterogeneous catalysis is comprehensively summarized, including C-C coupling reaction, benzyl alcohol oxidation reaction, simple olefin hydrogenation reaction, nitroaromatic compound reduction, tandem reaction, and the photocatalysis, with the emphasis in providing a comparison with the performance of other alternative Pd-containing catalysts. In the final section, this review presents the current challenges and which are the next goals in this field.
Collapse
Affiliation(s)
- Songhao Luo
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital , Central South University , Changsha 410011 , People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Zhifeng Liu
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital , Central South University , Changsha 410011 , People's Republic of China
| | - Ming Chen
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Lin Tang
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Wangwang Tang
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Cui Lai
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Min Cheng
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Binbin Shao
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Qinghua Liang
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Han Wang
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| | - Danni Jiang
- College of Environmental Science and Engineering , Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082 , People's Republic of China
| |
Collapse
|
37
|
Zhang Y, Jia C, Wang Q, Kong Q, Chen G, Guan H, Dong C. MOFs-Derived Porous NiFe 2O 4 Nano-Octahedrons with Hollow Interiors for an Excellent Toluene Gas Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1059. [PMID: 31344833 PMCID: PMC6723223 DOI: 10.3390/nano9081059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
Abstract
Toluene is extensively used in many industrial products, which needs to be effectively detected by sensitive gas sensors even at low-ppm-level concentrations. Here, NiFe2O4 nano-octahedrons were calcinated from NiFe-bimetallic metal-organic framework (MOFs) octahedrons synthesized by a facile refluxing method. The co-existence of p-Phthalic acid (PTA) and 3,3-diaminobenzidine (DAB) promotes the formation of smooth NiFe-bimetallic MOFs octahedrons. After subsequent thermal treatment, a big weight loss (about 85%) transformed NiFe2O4 nanoparticles (30 nm) into NiFe2O4 porous nano-octahedrons with hollow interiors. The NiFe2O4 nano-octahedron based sensor exhibited excellent gas sensing properties for toluene with a nice stability, fast response, and recovery time (25 s/40 s to 100 ppm toluene), and a lower detection limitation (1 ppm) at 260 °C. The excellent toluene-sensing properties can not only be derived from the hollow interiors combined with porous nano-octahedrons to favor the diffusion of gas molecules, but also from the efficient catalytic activity of NiFe2O4 nanoparticles.
Collapse
Affiliation(s)
- Yanlin Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Chaowei Jia
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Qiuyue Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Quan Kong
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Gang Chen
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, Kunming 650091, China
| | - Hongtao Guan
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, Kunming 650091, China.
| | - Chengjun Dong
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
38
|
Iqbal B, Saleem M, Arshad SN, Rashid J, Hussain N, Zaheer M. One‐Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis. Chemistry 2019; 25:10490-10498. [DOI: 10.1002/chem.201901939] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/03/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Bushra Iqbal
- Department of Chemistry and Chemical EngineeringLahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| | - Murtaza Saleem
- Department of PhysicsLahore University of, Management Sciences (LUMS) Lahore 54792 Pakistan
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical EngineeringLahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| | - Jamshaid Rashid
- Department of Environmental ScienceFaculty of Biological SciencesQuaid-i-Azam University Islamabad 45320 Pakistan
| | - Naveed Hussain
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Material Science and EngineeringTsinghua University Beijing P.R. China
| | - Muhammad Zaheer
- Department of Chemistry and Chemical EngineeringLahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| |
Collapse
|
39
|
Zhang Y, Jia C, Wang Q, Kong Q, Chen G, Guan H, Dong C. Highly Sensitive and Selective Toluene Sensor of Bimetallic Ni/Fe-MOFs Derived Porous NiFe2O4 Nanorods. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01497] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanlin Zhang
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
| | - Chaowei Jia
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
| | - Qiuyue Wang
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
| | - Quan Kong
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
| | - Gang Chen
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People’s Republic of China
| | - Hongtao Guan
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People’s Republic of China
| | - Chengjun Dong
- School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People’s Republic of China
| |
Collapse
|
40
|
Growth and Property Investigations of Two Organic–Inorganic Hybrid Molecular Crystals with High Thermal Stability: 4-Iodoanilinium perchlorate 18-crown-6 and 4-Iodoanilinium Borofluorate 18-crown-6. CRYSTALS 2019. [DOI: 10.3390/cryst9040207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two new organic–inorganic hybrid molecular single crystals, 4-Iodoanilinium perchlorate 18-crown-6 (1) and 4-Iodoanilinium borofluorate 18-crown-6 (2), with large sizes and high thermal stability were successfully synthesized by solution method. Their structures, phase purities, thermal stability, dielectric, absorption and fluorescence spectra were systematically investigated for potential applications. Compounds 1 and 2 crystallize in orthorhombic crystal system, in same space group, namely Pnma. The thermal measurements shown 1 and 2 maintain high thermal stability up to 150 °C. The temperature dependency of dielectric constant was studied, and no distinct anomaly was observed. The band gap were calculated to be 3.38 eV and 3.57 eV for 1 and 2, respectively, slightly smaller than those of layer perovskite (benzylammonium)2PbCl4 semiconducting materials, which have potential applications in optoelectronic detection field. The investigations throw light on the semiconductor properties of organic–inorganic hybrid crown type material and provide two types of crown compounds with high thermal stability.
Collapse
|
41
|
Zhao N, Li Y, Gu JZ, Kirillova MV, Kirillov AM. Hydrothermal generation, structural versatility and properties of metal(ii)-organic architectures driven by a pyridine-tricarboxylic acid. Dalton Trans 2019; 48:8361-8374. [DOI: 10.1039/c9dt01253b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new series of metal(ii) coordination compounds driven by a pyridine-tricarboxylate block was generated, their structural features, magnetic, luminescent or photocatalytic properties were explored.
Collapse
Affiliation(s)
- Na Zhao
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology
- Guangdong Industry Polytechnic
- Guangzhou
- People's Republic of China
| | - Yu Li
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology
- Guangdong Industry Polytechnic
- Guangzhou
- People's Republic of China
| | - Jin-Zhong Gu
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Marina V. Kirillova
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Alexander M. Kirillov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| |
Collapse
|