1
|
Lu C, Wang X, Liu XY. Flexible Meso Electronics and Photonics Based on Cocoon Silk and Applications. ACS Biomater Sci Eng 2024; 10:2784-2804. [PMID: 38597279 DOI: 10.1021/acsbiomaterials.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.
Collapse
Affiliation(s)
- Changsheng Lu
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Wang
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiang Yang Liu
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
2
|
Jain S, Vedavyas V, Prajwal RV, Shaji M, Nath VG, Angappane S, Achutharao G. Silk and its composites for humidity and gas sensing applications. Front Chem 2023; 11:1141259. [PMID: 37021147 PMCID: PMC10067913 DOI: 10.3389/fchem.2023.1141259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry with applications in bio-medicine, catalysis as well as in sensing materials. SF is a fiber material which is bio-compatible, biodegradable, and possesses high tensile strength. The incorporation of nanosized particles into SF allows the development of a variety of composites with tailored properties and functions. Silk and its composites are being explored for a wide range of sensing applications like strain, proximity, humidity, glucose, pH and hazardous/toxic gases. Most studies aim at improving the mechanical strength of SF by preparing hybrids with metal-based nanoparticles, polymers and 2D materials. Studies have been conducted by introducing semiconducting metal oxides into SF to tailor its properties like conductivity for use as a gas sensing material, where SF acts as a conductive path as well as a substrate for the incorporated nanoparticles. We have reviewed gas and humidity sensing properties of silk, silk with 0D (i.e., metal oxide), 2D (e.g., graphene, MXenes) composites. The nanostructured metal oxides are generally used in sensing applications, which use its semiconducting properties to show variation in the measured properties (e.g., resistivity, impedance) due to analyte gas adsorption on its surface. For example, vanadium oxides (i.e., V2O5) have been shown as candidates for sensing nitrogen containing gases and doped vanadium oxides for sensing CO gas. In this review article we provide latest and important results in the gas and humidity sensing of SF and its composites.
Collapse
Affiliation(s)
- Shubhanth Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - V. Vedavyas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - R. V. Prajwal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Malavika Shaji
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - Vishnu G Nath
- Centre for Nano and Soft Matter Sciences, Bengaluru, India
| | - S. Angappane
- Centre for Nano and Soft Matter Sciences, Bengaluru, India
| | - Govindaraj Achutharao
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
- *Correspondence: Govindaraj Achutharao,
| |
Collapse
|
3
|
Zhao X, Zhang L, Lv X, Liu J, Liu X, Zhang Y, Zhang D, Li S, Wang Q. Large-area fluorescence enhancement of R6G based on a uniform PVA-Au plasmonic substrate. OPTICS EXPRESS 2022; 30:43281-43292. [PMID: 36523029 DOI: 10.1364/oe.472908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
With the development of surface enhanced fluorescence (SEF) spectroscopy technology, uniform and low-cost SEF substrate is urgently needed. In this paper, the nanocomposite films of poly (vinyl alcohol) (PVA) embedded with in-situ Au particles, their localized surface plasmon resonance (LSPR) bands locate at different wavelengths from 525 nm to 569 nm, were used as substrates to enhance the fluorescence of rhodamine 6 G (R6G). The results shows that the uniform light emission in large area can be measured, and the maximum enhancement factor (EF) is about 13 folds. With increasing concentration of R6G films, the EF first increases and then slowly decreases. It is demonstrated that the EF greatly depends on the matching degree of the emission/excitation of R6G and the LSPR band of PVA-Au substrate. All the results further suggests that the PVA-Au substrate not only realize the fluorescence enhancement but also attenuates the fluorescence quenching at higher concentration. In addition, the local electric distribution of the substrate is simulated by using three-dimensional finite different time-domain (FDTD) to further demonstrate the mechanism of the SEF. This substrate has good development prospects in the fields of fluorescent probes and fluorescence imaging, which can be beneficial to the development of uniform and low-cost SEF substrate.
Collapse
|
4
|
Shi C, Hu F, Wu R, Xu Z, Shao G, Yu R, Liu XY. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005910. [PMID: 33852764 DOI: 10.1002/adma.202005910] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Two of the key questions to be addressed are whether and how one can turn cocoon silk into fascinating materials with different electronic and optical functions so as to fabricate the flexible devices. In this review, a comprehensive overview of the unique strategy of mesoscopic functionalization starting from silk fibroin (SF) materials to the fabrication of various meso flexible SF devices is presented. Notably, SF materials with novel and enhanced properties can be achieved by mesoscopically reconstructing the hierarchical structures of SF materials. This is based on rerouting the refolding process of SF molecules by meso-nucleation templating. As-acquired functionalized SF materials can be applied to fabricate bio-compatible/degradable flexible/implantable meso-optical/electronic devices of various types. Consequently, functionalized SF can be fabricated into optical elements, that is, nonlinear photonic and fluorescent components, and make it possible to construct silk meso-electronics with high-performance. These advances enable the applications of SF-material based devices in the areas of physical and biochemical sensing, meso-memristors, transistors, brain electrodes, and energy generation/storage, applicable to on-skin long-term monitoring of human physiological conditions, and in-body sensing, information processing, and storage.
Collapse
Affiliation(s)
- Chenyang Shi
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Fan Hu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Ronghui Wu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Zijie Xu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Guangwei Shao
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
- College of Textiles, Engineering Research Center of Technical Textile of Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Yu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xiang Yang Liu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
5
|
Hu F, Li W, Zou M, Li Y, Chen F, Lin N, Guo W, Liu XY. Subcutaneous Energy/Signal Transmission Based on Silk Fibroin Up-Conversion Photonic Amplification. ACS NANO 2021; 15:9559-9567. [PMID: 33382583 DOI: 10.1021/acsnano.0c09575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transmission of energy and signals through human skin is critically important for implantable devices. Because near-infrared (NIR) light can easily penetrate through human skin/tissue, in this study we report on silk fibroin (SF) up-conversion photonic amplifiers (SFUCPAs) integrated into optoelectronic devices, which provide a practical approach for subcutaneous charging and communication via NIR lasers. SFUCPAs achieve a 4 times higher fluorescence than the control, which gives rise to a 47.3 time increase in subcutaneous NIR energy conversion efficiency of a single fibrous dye-sensitized solar cell compared with the control. Moreover, the hybrid printed electrodes exhibited reversible switching to NIR exposure with a response time of ∼1.06/1.63 s for a 3 s ON/OFF switch. Owing to the flexible, biocompatible, and cost-efficient design NIR-driven optoelectronic performance, the SFUCPAs are promising for use in applications of subcutaneous medical electronics for charging, storing information, and controlling implanted devices.
Collapse
Affiliation(s)
- Fan Hu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Weifeng Li
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Mingye Zou
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Yanran Li
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Fan Chen
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Wenxi Guo
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Xiang Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| |
Collapse
|
6
|
Wen DL, Sun DH, Huang P, Huang W, Su M, Wang Y, Han MD, Kim B, Brugger J, Zhang HX, Zhang XS. Recent progress in silk fibroin-based flexible electronics. MICROSYSTEMS & NANOENGINEERING 2021; 7:35. [PMID: 34567749 PMCID: PMC8433308 DOI: 10.1038/s41378-021-00261-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 05/04/2023]
Abstract
With the rapid development of the Internet of Things (IoT) and the emergence of 5G, traditional silicon-based electronics no longer fully meet market demands such as nonplanar application scenarios due to mechanical mismatch. This provides unprecedented opportunities for flexible electronics that bypass the physical rigidity through the introduction of flexible materials. In recent decades, biological materials with outstanding biocompatibility and biodegradability, which are considered some of the most promising candidates for next-generation flexible electronics, have received increasing attention, e.g., silk fibroin, cellulose, pectin, chitosan, and melanin. Among them, silk fibroin presents greater superiorities in biocompatibility and biodegradability, and moreover, it also possesses a variety of attractive properties, such as adjustable water solubility, remarkable optical transmittance, high mechanical robustness, light weight, and ease of processing, which are partially or even completely lacking in other biological materials. Therefore, silk fibroin has been widely used as fundamental components for the construction of biocompatible flexible electronics, particularly for wearable and implantable devices. Furthermore, in recent years, more attention has been paid to the investigation of the functional characteristics of silk fibroin, such as the dielectric properties, piezoelectric properties, strong ability to lose electrons, and sensitivity to environmental variables. Here, this paper not only reviews the preparation technologies for various forms of silk fibroin and the recent progress in the use of silk fibroin as a fundamental material but also focuses on the recent advanced works in which silk fibroin serves as functional components. Additionally, the challenges and future development of silk fibroin-based flexible electronics are summarized. (1) This review focuses on silk fibroin serving as active functional components to construct flexible electronics. (2) Recent representative reports on flexible electronic devices that applied silk fibroin as fundamental supporting components are summarized. (3) This review summarizes the current typical silk fibroin-based materials and the corresponding advanced preparation technologies. (4) The current challenges and future development of silk fibroin-based flexible electronic devices are analyzed.
Collapse
Affiliation(s)
- Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - De-Heng Sun
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Peng Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Wen Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Meng Su
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505 Japan
| | - Ya Wang
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Meng-Di Han
- Institute of Microelectronics, Peking University, 100087 Beijing, China
| | - Beomjoon Kim
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505 Japan
| | - Juergen Brugger
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hai-Xia Zhang
- Institute of Microelectronics, Peking University, 100087 Beijing, China
| | - Xiao-Sheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
7
|
Chen Z, Hu F, Lin Z, Hu J, Shen R, Lin Y, Liu XY. Silk Nanococoons: Bio‐Nanoreactors for Enzymatic Catalytic Reactions and Applications to Alcohol Intoxication. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhengwei Chen
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
- Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117542 Singapore
| | - Fan Hu
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Zaifu Lin
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
| | - Jin Hu
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
| | - Runqing Shen
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
| | - Youhui Lin
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
| | - Xiang Yang Liu
- College of Ocean and Earth Sciences Research Institution for Biomimetics and Soft Matter Fujian Key Provincial Laboratory for Soft Functional Materials Research Xiamen University 422 Siming South Road Xiamen 361005 China
- Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117542 Singapore
| |
Collapse
|
8
|
Fagiolari L, Bonomo M, Cognetti A, Meligrana G, Gerbaldi C, Barolo C, Bella F. Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO 2 Paste. CHEMSUSCHEM 2020; 13:6562-6573. [PMID: 33031645 DOI: 10.1002/cssc.202001898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Whereas the commercialization of dye-sensitized solar cells (DSSCs) is finally proceeding taking advantage of their low cost and tunable optical features, such as colour and transparency for both indoor and building-integrated applications, the corresponding aqueous counterpart is still at its infancy. As the TiO2 electrode is a fundamental component for hybrid solar cells, this work investigates the effect of different molecular (α-terpineol, propylene carbonate) and polymeric (polyethylene oxide, polyethylene glycol, carboxymethyl cellulose and xanthan gum) additives that can be introduced into a commercial TiO2 paste for for screen-printing (or doctor blade). Among all, the addition of polyethylene glycol leads to the best cell performances, with markedly increased short-circuit current density (+18 %) and power conversion efficiency (+48 %) with respect to the pristine (commercial) counterpart. When further explored at different concentration levels, electrodes fabricated from polyethylene glycol-based pastes show different morphologies, thicknesses and performances, which are investigated through (photo)electrochemical, structural, physical-chemical and microscopic techniques.
Collapse
Affiliation(s)
- Lucia Fagiolari
- GAME Lab, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Matteo Bonomo
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Alessio Cognetti
- GAME Lab, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Giuseppina Meligrana
- GAME Lab, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Claudio Gerbaldi
- GAME Lab, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Claudia Barolo
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Federico Bella
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
9
|
Li M, Lyu Q, Sun L, Peng B, Zhang L, Zhu J. Fluorescent Metallosupramolecular Elastomers for Fast and Ultrasensitive Humidity Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39665-39673. [PMID: 32805880 DOI: 10.1021/acsami.0c11278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent supramolecular polymers that can respond to subtle external stimuli to generate luminescence signals are promising in a wide range of applications, including probes, anti-counterfeiting materials, and sensors. However, complicated preparative procedures, limited responsive speed, and relatively low sensitivity still limit their practical sensing applications. Herein, we report europium-containing metallosupramolecular (PU-Eu) elastomers for fast and ultrasensitive humidity sensing by employing hygroscopic polyurethane (PU), whose urethane groups can coordinate with europium ions (Eu3+), emitting a strong luminescent signal by ligand-to-metal energy transfer. The variant of the coordination bond strength triggered by external humidity imparts the PU-Eu elastomer with a fast (∼1.1 s) and ultrasensitive response to the humid condition, where the external humidity increases by ∼1% and the corresponding fluorescence intensity will drop by ∼421.98 a.u. By a dip-coating process, PU-Eu elastomers can be conveniently coated on a hydrophilic and porous cellulose acetate nanofiber membrane, and the resulting composite membrane can achieve real-time and reversible monitoring of environmental humidity and human respiration. Given the versatility of PU-Eu elastomers, this study provides a low-cost and facile route of obtaining fluorescent metallosupramolecular polymers for fast and ultrasensitive humidity sensing.
Collapse
Affiliation(s)
- Miaomiao Li
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Quanqian Lyu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lvetao Sun
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bolun Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
10
|
Hu F, Lin N, Liu XY. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020; 23:101035. [PMID: 32311584 PMCID: PMC7168770 DOI: 10.1016/j.isci.2020.101035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022] Open
Abstract
Silkworm silk has been considered to be a luxurious textile for more than five thousand years. Native silk fibroin (SF) films have excellent (ca. 90%) optical transparency and exhibit fluorescence under UV light. The silk dyeing process is very important and difficult, and methods such as pigmentary coloration and structural coloration have been tested for coloring silk fabrics. To functionalize silk that exhibits fluorescence, the in vivo and in vitro assembly of functional compounds with SF and the resulting amplification of fluorescence emission are examined. Finally, we discuss the applications of SF materials in basic optical elements, light energy conversion devices, photochemical reactions, sensing, and imaging. This review is expected to provide insight into the interaction between light and silk and to inspire researchers to develop silk materials with a consideration of history, material properties, and future prospects.
Collapse
Affiliation(s)
- Fan Hu
- Institute of Advanced Materials, East China Jiaotong University, No. 808 Shuanggang East Street, Nanchang 330013, China; Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China.
| | - X Y Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore.
| |
Collapse
|