1
|
Wakabayashi R. High-throughput centrifugal evaporation for mesoporous alumina powder synthesis via evaporation-induced self-assembly (EISA). Dalton Trans 2024. [PMID: 39494670 DOI: 10.1039/d4dt02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The evaporation-induced self-assembly (EISA) process is commonly employed to synthesise mesoporous materials, such as mesoporous alumina. Typically, recovering mesoporous alumina in powder form takes several days due to the need for controlled solvent evaporation conditions. The mesostructure obtained from the EISA process is highly sensitive to these conditions, which can sometimes hinder reproducibility. This paper presents an improved EISA method using a centrifugal evaporator, which enables the rapid recovery of mesoporous alumina powder (approximately 2 h) from multiple precursor solutions under controlled evaporation conditions. The advantages of using a centrifugal evaporator over traditional vacuum evaporation methods include: (1) the reduction of bumping and foaming due to centrifugal force; (2) resistance to evaporated gaseous HCl; and (3) the ability to evaporate multiple samples simultaneously. This enhanced EISA process is expected to accelerate the research progress of powdery mesoporous materials.
Collapse
Affiliation(s)
- Ryutaro Wakabayashi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| |
Collapse
|
2
|
Wu J, Ye T, Wang Y, Yang P, Wang Q, Kuang W, Chen X, Duan G, Yu L, Jin Z, Qin J, Lei Y. Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li-S Batteries. ACS NANO 2022; 16:15734-15759. [PMID: 36223201 DOI: 10.1021/acsnano.2c08581] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Because of their high energy density, low cost, and environmental friendliness, lithium-sulfur (Li-S) batteries are one of the potential candidates for the next-generation energy-storage devices. However, they have been troubled by sluggish reaction kinetics for the insoluble Li2S product and capacity degradation because of the severe shuttle effect of polysulfides. These problems have been overcome by introducing transition metal compounds (TMCs) as catalysts into the interlayer of modified separator or sulfur host. This review first introduces the mechanism of sulfur redox reactions. The methods for studying TMC catalysts in Li-S batteries are provided. Then, the recent advances of TMCs (such as metal oxides, metal sulfides, metal selenides, metal nitrides, metal phosphides, metal carbides, metal borides, and heterostructures) as catalysts and some helpful design and modulation strategies in Li-S batteries are highlighted and summarized. At last, future opportunities toward TMC catalysts in Li-S batteries are presented.
Collapse
Affiliation(s)
- Jiao Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tong Ye
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Peiyao Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Qichen Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Wenyu Kuang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Xiaoli Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Gaohan Duan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Lingmin Yu
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Zhaoqing Jin
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Park J, Lee J, Kim S, Hwang J. Graphene-Based Two-Dimensional Mesoporous Materials: Synthesis and Electrochemical Energy Storage Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2597. [PMID: 34065776 PMCID: PMC8156551 DOI: 10.3390/ma14102597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Graphene (G)-based two dimensional (2D) mesoporous materials combine the advantages of G, ultrathin 2D morphology, and mesoporous structures, greatly contributing to the improvement of power and energy densities of energy storage devices. Despite considerable research progress made in the past decade, a complete overview of G-based 2D mesoporous materials has not yet been provided. In this review, we summarize the synthesis strategies for G-based 2D mesoporous materials and their applications in supercapacitors (SCs) and lithium-ion batteries (LIBs). The general aspect of synthesis procedures and underlying mechanisms are discussed in detail. The structural and compositional advantages of G-based 2D mesoporous materials as electrodes for SCs and LIBs are highlighted. We provide our perspective on the opportunities and challenges for development of G-based 2D mesoporous materials. Therefore, we believe that this review will offer fruitful guidance for fabricating G-based 2D mesoporous materials as well as the other types of 2D heterostructures for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Jongyoon Park
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro Yeongtong-gu, Suwon 16499, Korea; (J.P.); (J.L.)
| | - Jiyun Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro Yeongtong-gu, Suwon 16499, Korea; (J.P.); (J.L.)
| | - Seongseop Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Korea;
| | - Jongkook Hwang
- Department of Chemical Engineering, Ajou University, Worldcupro 206, Suwon 16499, Korea
| |
Collapse
|
4
|
Yin Z, Xu Y, Wu J, Huang J. Effect of pomelo seed-derived carbon on the performance of supercapacitors. NANOSCALE ADVANCES 2021; 3:2007-2016. [PMID: 36133096 PMCID: PMC9419826 DOI: 10.1039/d0na00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/12/2021] [Indexed: 06/16/2023]
Abstract
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life, which could contribute to next-generation applications. Herein, we utilize pomelo seeds, a bio-waste from pomelo, in high-energy and high-power supercapacitors by a facile low-cost pyrolysis and activation method. The as-synthesized hierarchically porous carbon is surface-engineered with a large quantity of nitrogen and sulfur heteroatoms to give a high specific capacitance of ∼845 F g-1 at 1 A g-1. An ultra-high stability of ∼93.8% even after 10 000 cycles (10 A g-1) is achieved at room temperature. Moreover, a maximum energy density of ∼85 W h kg-1 at a power density of 1.2 kW kg-1 could be achieved in 1.2 V aqueous symmetrical supercapacitors. The results provide new insights that will be of use in the development of high-performance, green supercapacitors for advanced energy storage systems.
Collapse
Affiliation(s)
- Zhenyao Yin
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University Chongqing 400715 PR China
| | - Yaping Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University Chongqing 400715 PR China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China
| | - Jing Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University Chongqing 400715 PR China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
6
|
Lim E, Chun J, Jo C, Hwang J. Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0693-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Wang Y, Chou S, Zhang Z. Nanomaterials Innovation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902246. [PMID: 31397544 DOI: 10.1002/smll.201902246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Yongfei Wang
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2519, Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| |
Collapse
|