1
|
Li S, Ye L, Cen W, Sun D. Electrocatalytic biomass upgrading coupled with hydrogen evolution and CO 2 reduction. NANOSCALE 2025. [PMID: 39937545 DOI: 10.1039/d4nr04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Clean energy production and CO2 utilization have attracted increasing interest. Electrocatalysis represents an effective way to produce green hydrogen from water and reduce CO2 to valuable compounds. However, for either the hydrogen evolution reaction (HER) or the CO2 reduction reaction (CO2RR), the reaction efficiency is significantly limited by the slow kinetics of the oxygen evolution reaction (OER) at the anode, which consumes most of the input energy. Therefore, great efforts have been made to replace the OER with organic oxidation reactions at the anode to decrease the reaction energy barrier. Biomass has an advantage of broad source, and when it is employed as an OER alternative in the anode oxidation reactions, not only can the reduction reaction efficiency at the cathode including the HER and CO2RR be enhanced but high-value chemicals can also be obtained, representing an attractive OER alternative. This review comprehensively summarizes the recent achievements in electrocatalytic biomass upgrading coupled with the HER and CO2RR, cataloged based on the type of biomass. The design of electrocatalysts for such coupled reaction systems is discussed. Finally, the challenges and perspectives in the field of this energy-saving and value-added coupling system are provided to inspire more efforts in pushing forward the development of this field.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Zhou Q, Hu H, Chen Z, Ren X, Ma D. Enhancing electrocatalytic hydrogen evolution via engineering unsaturated electronic structures in MoS 2. Chem Sci 2025; 16:1597-1616. [PMID: 39776652 PMCID: PMC11701923 DOI: 10.1039/d4sc07309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS2) as a leading candidate. This review synthesises recent advancements in the engineering of MoS2 to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER). It also considers how to optimize the electronic structures of unsaturated MoS2 for enhanced catalytic performance. This review commences with an examination of the fundamental crystal structure of MoS2; it elucidates the classical unsaturated electron configurations and the intrinsic factors that contribute to such electronic structures. Furthermore, it introduces popular strategies for constructing unsaturated electronic structures at the atomic level, such as nanostructure engineering, surface chemical modification and interlayer coupling engineering. It also discusses the challenges and future research directions in the study of MoS2 electronic structures, with the aim of broadening their application in sustainable hydrogen production.
Collapse
Affiliation(s)
- Qingqing Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Hao Hu
- College of Environment, Zhejiang University of Technology Hangzhou 310012 PR China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Xiao Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
3
|
Xiong H, Zhang X, Peng X, Liu D, Han Y, Xu F. Engineering heterostructured Mo 2C/MoS 2 catalyst with hydrophilicity/aerophobicity via carbothermal shock for efficient alkaline hydrogen evolution. Chem Commun (Camb) 2024; 60:11112-11115. [PMID: 39291698 DOI: 10.1039/d4cc03757j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The exploration of high-performance hydrogen evolution reaction (HER) catalysts is conducive to the development of clean hydrogen energy, yet still remains a challenge. Herein, we rapidly synthesize the Mo2C/MoS2 heterostructure on carbon paper (Mo2C/MoS2-CP) via carbothermal shock in only two seconds. The construction of the Mo2C/MoS2 heterostructure regulates the electronic structure of the Mo site and facilitates charge transfer during the HER process. Moreover, the catalyst exhibits enhanced hydrophilicity and aerophobicity, facilitating optimal electrolyte-catalyst interaction and efficient hydrogen bubble detachment for accelerated mass transfer. Consequently, Mo2C/MoS2-CP exhibits superior intrinsic alkaline HER activity, and excellent stability for 100 h. This finding provides a novel insight into the development of outstanding HER catalysts.
Collapse
Affiliation(s)
- Hao Xiong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Xinren Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Xu Peng
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Dengke Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yimeng Han
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
4
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Deng Z, Cao J, Zhao L, Zhang Z, Yuan J. Trimetallic FeCoNi Metal-Organic Framework with Enhanced Peroxidase-like Activity for the Construction of a Colorimetric Sensor for Rapid Detection of Thiophenol in Water Samples. Molecules 2024; 29:3739. [PMID: 39202819 PMCID: PMC11356859 DOI: 10.3390/molecules29163739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this work, we report a trimetallic metal-organic framework (MOF) based on Fe, Co and Ni, which was prepared by replacing partial original Fe nodes of the Fe-MOF with Co and Ni nodes. The obtained FeCoNi-MOF shows both oxidase-like activity and peroxidase-like activity. FeCoNi-MOF can not only oxidize the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) to its blue oxidation product oxTMB directly, but also catalyze the activation of H2O2 to oxidize the TMB. Compared with corresponding monometallic/bimetallic MOFs, the FeCoNi-MOF with equimolar metals hereby prepared exhibited higher peroxidase-like activity, faster colorimetric reaction speed (1.26-2.57 folds), shorter reaction time (20 min) and stronger affinity with TMB (2.50-5.89 folds) and H2O2 (1.73-3.94 folds), owing to the splendid synergistic electron transfer effect between Fe, Co and Ni. Considering its outstanding advantages, a promising FeCoNi-MOF-based sensing platform has been designated for the colorimetric detection of the biomarker H2O2 and environmental pollutant TP, and lower limits of detection (LODs) (1.75 μM for H2O2 and 0.045 μM for TP) and wider linear ranges (6-800 μM for H2O2 and 0.5-80 μM for TP) were obtained. In addition, the newly constructed colorimetric platform for TP has been applied successfully for the determination of TP in real water samples with average recoveries ranging from 94.6% to 112.1%. Finally, the colorimetric sensing platform based on FeCoNi-MOF is converted to a cost-effective paper strip sensor, which renders the detection of TP more rapid and convenient.
Collapse
Affiliation(s)
- Zehui Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China;
- Shandong Institute of Metrology, Jinan 250014, China
| | - Jiaqing Cao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Lei Zhao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Zhao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Jianwei Yuan
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing 211816, China
| |
Collapse
|
6
|
Szkoda M, Roda D, Skorupska M, Glazer R, Ilnicka A. Molybdenum sulfide modified with nickel or platinum nanoparticles as an effective catalyst for hydrogen evolution reaction. Sci Rep 2024; 14:17255. [PMID: 39060418 PMCID: PMC11282300 DOI: 10.1038/s41598-024-67252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we investigate the catalytic performance of molybdenum sulfide (MoS2) modified with either nickel (Ni) or platinum (Pt) nanoparticles as catalysts for the hydrogen evolution reaction (HER). The MoS2 was prepared on the TiO2 nanotube substrates via a facile hydrothermal method, followed by the deposition by magnetron sputtering of Ni or Pt nanoparticles on the MoS2 surface. Structural and morphological characterization confirmed the successful incorporation of Ni or Pt nanoparticles onto the MoS2 support. Electrochemical measurements revealed that Ni- and Pt-modified MoS2 catalysts exhibited enhanced HER activity compared to pristine MoS2. Obtained catalysts demonstrated a low onset potential, reduced overpotential, and increased current density, indicating efficient electrocatalytic performance. Furthermore, the Ni or Pt-modified MoS2 catalyst exhibited remarkable stability during prolonged HER operation. The improved catalytic activity can be attributed to the synergistic effect between metal nanoparticles and MoS2, facilitating charge transfer kinetics and promoting hydrogen adsorption and desorption. Incorporating Ni and Pt nanoparticles also provided additional active sites on the MoS2 surface, enhancing the catalytic activity.
Collapse
Affiliation(s)
- Mariusz Szkoda
- Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Daria Roda
- Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Malgorzata Skorupska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Rafał Glazer
- Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| |
Collapse
|
7
|
Liao X, Huang Z, Zhang W, Meng Y, Yang L, Gao Q. Cr-doping promoted surface reconstruction of Ni 3N electrocatalysts toward efficient overall water splitting. J Colloid Interface Sci 2024; 674:1048-1057. [PMID: 39003820 DOI: 10.1016/j.jcis.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Understanding and utilizing the dynamic changes of electrocatalysts under working conditions are important for advancing the sustainable hydrogen production. Here, we for the first time report that Cr-doping can promote the in situ reconstruction of a self-supported Ni3N electrocatalyst (Cr-Ni3N/NF) during oxygen and hydrogen evolution reactions (OER and HER), and therefore improve the electrocatalytic water splitting performance. As identified by in situ measurements and theoretical calculations, Cr-doping enhances OH- adsorption during OER at anode and thereby boosts the transformation of Ni3N pre-catalysts to defect-rich nickel oxyhydroxide (NiOOH) active species. Meanwhile, it facilitates the generation of Ni3N/Ni(OH)2 at cathodes due to effective H2O activation, leading to the fast HER kinetics on the Ni3N/Ni(OH)2 interfaces. Notably, the optimal Cr-Ni3N/NF displays good OER and HER performance in 1.0 M KOH electrolytes, with low overpotentials of 316 and 188 mV to achieve the current density of ± 100 mA cm-2, respectively. Benefiting from its bi-functionality and self-supporting property, an alkaline electrolyzer equipped with Cr-Ni3N/NF as both anode and cathode affords a small voltage of 1.72 V at 100 mA cm-2, along with 100 h operation stability. Elucidating that Cr-doping can boost in situ reconfiguration and consequently the electrocatalytic activity, this work would shed new light on the rational design and synthesis of electrocatalysts via directional reconstructions.
Collapse
Affiliation(s)
- Xianping Liao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Zinan Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yuying Meng
- College of Chemistry and Materials Science, and Institution Advance Wear & Corrosion Resistance & Functional Material, Jinan University, Guangzhou 510632, China.
| | - Lichun Yang
- School of Materials Science and Engineering, and Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Wang Z, Liu R, Sun T, Li M, Ran N, Wang D, Wang Z. Revealing Hydrogen Spillover on 1T/2H MoS 2 Heterostructures for an Enhanced Hydrogen Evolution Reaction by Scanning Electrochemical Microscopy. Anal Chem 2024; 96:7618-7625. [PMID: 38687982 DOI: 10.1021/acs.analchem.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The in situ characterization of the heterostructure active sites during the hydrogen evolution reaction (HER) process and the direct elucidation of the corresponding catalytic structure-activity relationships are essential for understanding the catalytic mechanism and designing catalysts with optimized activity. Hence, exploring the underlying reasons behind the exceptional catalytic performance necessitates a detailed analysis. Herein, we employed scanning electrochemical microscopy (SECM) to in situ image the topography and local electrocatalytic activity of 1T/2H MoS2 heterostructures on mixed-phase molybdenum disulfide (MoS2) with 20 nm spatial resolution. Our measurements provide direct data about HER activity, enabling us to differentiate the superior catalytic performance of 1T/2H MoS2 heterostructures compared to other active sites on the MoS2 surface. Combining this spatially resolved electrochemical information with density functional theory calculations and numerical simulations enables us to reveal the existence of hydrogen spillover from the 1T MoS2 surface to 1T/2H MoS2 heterostructures. Furthermore, it has been verified that hydrogen spillover can significantly enhance the electrocatalytic activity of the heterostructures, in addition to its strong electronic interaction. This study not only contributes to the future investigation of electrochemical processes at nanoscale active sites on structurally complex electrocatalysts but also provides new design strategies for improving the catalytic activity of 2D electrocatalysts.
Collapse
Affiliation(s)
- Zhenyu Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China
| | - Mengrui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China
| | - Nian Ran
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
9
|
Kumar N, Wagh L, Mehmood S, Das AK, Ghorai TK. Design and Development of Sustainable Cu 2 (II)- and Mn 2 (III)-Embedded Bifunctional Electrocatalysts: Enhanced Hydrogen and Oxygen Generation. Inorg Chem 2024; 63:8567-8579. [PMID: 38668850 DOI: 10.1021/acs.inorgchem.3c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Nowadays, environmentally friendly, low-cost-effective, and sustainable electrocatalysts used widely for hydrogen and oxygen evolution reactions have come into the limelight as a new research topic for scientists. This study highlights the preparation of two unique and symmetrical dinuclear Cu (II) and Mn (III) bifunctional catalysts by a facile simple slow evaporation and diffusion route. [C32H24Cu2F4N4O4] (1) and [C32H24Mn2F4N4O4] (2) both have monoclinic (C2/c (15)) crystal systems, with oxidation states +2 and +3, respectively. Prominent SPR peaks at 372 and 412 nm indicate an M-L charge transfer transition in both complexes. The synthesized electrocatalysts display exceptional catalytic activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Complex 1 exhibits enhanced hydrogen generation in 0.5 M H2SO4 with a small overpotential of 216 mV at -10 mA cm-2 along with a significantly lower Tafel value of 97 mV/dec compared to Complex 2. Moreover, Complex 1 is highly active for the OER in 1 M KOH with a small Tafel slope of 103 mV/dec and a low overpotential of 340 mV to acquire 10 mA cm-2 current density, compared to Complex 2. Complex 1 and Complex 2 remain stable up to 20 h in acidic electrolyte and up to 36 h and 20 h in the basic electrolyte, respectively.
Collapse
Affiliation(s)
- Niteesh Kumar
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Anuppur, Madhya Pradesh 484887, India
| | - Lalita Wagh
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sajid Mehmood
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Anuppur, Madhya Pradesh 484887, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Anuppur, Madhya Pradesh 484887, India
| |
Collapse
|
10
|
Liu Y, Li P, Wang Z, Gao L. Shape-Preserved CoFeNi-MOF/NF Exhibiting Superior Performance for Overall Water Splitting across Alkaline and Neutral Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2195. [PMID: 38793262 PMCID: PMC11123414 DOI: 10.3390/ma17102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
This study reported a multi-functional Co0.45Fe0.45Ni0.9-MOF/NF catalyst for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting, which was synthesized via a novel shape-preserving two-step hydrothermal method. The resulting bowknot flake structure on NF enhanced the exposure of active sites, fostering a superior electrocatalytic surface, and the synergistic effect between Co, Fe, and Ni enhanced the catalytic activity of the active site. In an alkaline environment, the catalyst exhibited impressive overpotentials of 244 mV and 287 mV at current densities of 50 mA cm-2 and 100 mA cm-2, respectively. Transitioning to a neutral environment, an overpotential of 505 mV at a current density of 10 mA cm-2 was achieved with the same catalyst, showing a superior property compared to similar catalysts. Furthermore, it was demonstrated that Co0.45Fe0.45Ni0.9-MOF/NF shows versatility as a bifunctional catalyst, excelling in both OER and HER, as well as overall water splitting. The innovative shape-preserving synthesis method presented in this study offers a facile method to develop an efficient electrocatalyst for OER under both alkaline and neutral conditions, which makes it a promising catalyst for hydrogen production by water splitting.
Collapse
Affiliation(s)
| | | | | | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.L.); (P.L.); (Z.W.)
| |
Collapse
|
11
|
Cheng M, Cao N, Wang Z, Wang K, Pu T, Li Y, Sun T, Yue X, Ni W, Dai W, He Y, Shi Y, Zhang P, Zhu Y, Xie P. Strain-Induced Self-Assembly at Interface of Two-Dimensional Heterostructures Boosts CO 2 Reduction to Methanol by H 2O. ACS NANO 2024; 18:10582-10595. [PMID: 38564712 DOI: 10.1021/acsnano.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CO2 conversion with pure H2O into CH3OH and O2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and first-principle calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h-1 and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.
Collapse
Affiliation(s)
- Ming Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Cao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Tiancheng Pu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yukun Li
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yao Shi
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pengfei Xie
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| |
Collapse
|
12
|
Qiao M, Li B, Fei T, Xue M, Yao T, Tang Q, Zhu D. Design Strategies towards Advanced Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities. Chemistry 2024; 30:e202303826. [PMID: 38221628 DOI: 10.1002/chem.202303826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/16/2024]
Abstract
Hydrogen (H2), produced by water electrolysis with the electricity from renewable sources, is an ideal energy carrier for achieving a carbon-neutral and sustainable society. Hydrogen evolution reaction (HER) is the cathodic half-reaction of water electrolysis, which requires active and robust electrocatalysts to reduce the energy consumption for H2 generation. Despite numerous electrocatalysts have been reported by the academia for HER, most of them were only tested under relatively small current densities for a short period, which cannot meet the requirements for industrial water electrolysis. To bridge the gap between academia and industry, it is crucial to develop highly active HER electrocatalysts which can operate at large current densities for a long time. In this review, the mechanisms of HER in acidic and alkaline electrolytes are firstly introduced. Then, design strategies towards high-performance large-current-density HER electrocatalysts from five aspects including number of active sites, intrinsic activity of each site, charge transfer, mass transfer, and stability are discussed via featured examples. Finally, our own insights about the challenges and future opportunities in this emerging field are presented.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bo Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Teng Fei
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mingren Xue
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Tianxin Yao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qin Tang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Anhui Key Laboratory of low temperature Co-fired Materials, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
13
|
Moradi-Bieranvand M, Farhadi S, Zabardasti A, Mahmoudi F. Construction of magnetic MoS 2/NiFe 2O 4/MIL-101(Fe) hybrid nanostructures for separation of dyes and antibiotics from aqueous media. RSC Adv 2024; 14:11037-11056. [PMID: 38586447 PMCID: PMC10995676 DOI: 10.1039/d4ra00505h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, MoS2/NiFe2O4/MIL-101(Fe) nanocomposite was synthesized by hydrothermal method and used as an adsorbent for the elimination of organic dyes and some antibiotic drugs in aqueous solutions. The synthesized nanocomposite underwent characterization through different techniques, including scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), zeta potential analysis, vibrating sample magnetometry (VSM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). These results demonstrated the successful insertion of MoS2within the cavities of MIL-101(Fe). The as-prepared magnetic nanocomposite was used as a new magnetic adsorbent for removing methylene blue (MB) and rhodamine B (RhB) organic dyes and tetracycline (TC) and ciprofloxacin (CIP) antibiotic drugs. For achieving the optimized conditions, the effects of initial pH, initial dye and drug concentration, temperature, and adsorbent dose on MB, TC, and CIP elimination were investigated. The results revealed that at a temperature of 25 °C, the highest adsorption capacities of MoS2/NiFe2O4/MIL-101(Fe) for MB, TC, and CIP were determined to be 999.1, 2991.3, and 1994.2 mg g-1, respectively. The pseudo-second-order model and Freundlich model are considered suitable for explaining the adsorption behavior of the MoS2/NiFe2O4/MIL-101(Fe) nanocomposite. The magnetic nanocomposite was very stable and had good recycling capability without any change in its structure.
Collapse
Affiliation(s)
- Mehri Moradi-Bieranvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Abedin Zabardasti
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Farzaneh Mahmoudi
- Department of Chemistry, University of Miami Coral Gables Florida 33146 USA
| |
Collapse
|
14
|
Xie Y, Wu X, Shi Y, Peng Y, Zhou H, Wu X, Ma J, Jin J, Pi Y, Pang H. Recent Progress in 2D Metal-Organic Framework-Related Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305548. [PMID: 37643389 DOI: 10.1002/smll.202305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
2D metal-organic frameworks-based (2D MOF-related) materials benefit from variable topological structures, plentiful open active sites, and high specific surface areas, demonstrating promising applications in gas storage, adsorption and separation, energy conversion, and other domains. In recent years, researchers have innovatively designed multiple strategies to avoid the adverse effects of conventional methods on the synthesis of high-quality 2D MOFs. This review focuses on the latest advances in creative synthesis techniques for 2D MOF-related materials from both the top-down and bottom-up perspectives. Subsequently, the strategies are categorized and summarized for synthesizing 2D MOF-related composites and their derivatives. Finally, the current challenges are highlighted faced by 2D MOF-related materials and some targeted recommendations are put forward to inspire researchers to investigate more effective synthesis methods.
Collapse
Affiliation(s)
- Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiangchen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
15
|
Wu Y, Hu Q, Chen Q, Jiao X, Xie Y. Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO 2 Photoreduction toward C 2 Products. Acc Chem Res 2023; 56:2500-2513. [PMID: 37658473 DOI: 10.1021/acs.accounts.3c00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
ConspectusGlobal warming and climatic deterioration are partly caused by carbon dioxide (CO2) emission. Given this, CO2 reduction into valuable carbonaceous fuels is a win-win route to simultaneously alleviate the greenhouse effect and the energy crisis, where CO2 reduction into hydrocarbon fuels by solar energy may be a potential strategy. Up to now, most of the current photocatalysts photoconvert CO2 to C1 products. It is extremely difficult to achieve production of C2 products, which have higher economic value and energy density, due to the kinetic challenge of C-C coupling of the C1 intermediates. Therefore, to realize CO2 photoreduction to C2 fuels, design of high-activity photocatalysts to expedite the C-C coupling is significant. Besides, the current mechanism for CO2 photoreduction toward C2 fuels is usually uncertain, which is possibly attributed to the following two reasons: (1) It is arduous to determine the actual catalytic sites for the C-C coupling step. (2) It is hard to monitor the low-concentration active intermediates during the multielectron transfer step.Most traditional metal-based photocatalysts usually possess charge balanced active sites that have the same charge density. In this aspect, the neighboring C1 intermediates may also show the same charge distribution, which would lead to dipole-dipole repulsion, thus preventing C-C coupling for producing C2 fuels. By contrast, photocatalysts with charge polarized active sites possess obviously different charge distributions in the adjacent C1 intermediates, which can effectively suppress the electrostatic repulsion to steer the C-C coupling. Based on this analysis, higher asymmetric charge density on the active sites would be more beneficial to anchoring between the adjacent intermediates and active atoms in catalysts, which can boost C-C coupling.In this Account, we summarize various strategies, including vacancy engineering, doping engineering, loading engineering, and heterojunction engineering, for tailoring charge polarized active sites to boost the C-C coupling for the first time. Also, we overview diverse in situ characterization technologies, such as in situ X-ray photoelectron spectroscopy, in situ Raman spectroscopy, and in situ Fourier transform infrared spectroscopy, for determining charge polarized active sites and monitoring reaction intermediates, helping to reveal the internal catalytic mechanism of CO2 photoreduction toward C2 products. We hope this Account may help readers to understand the crucial function of charge polarized active sites during CO2 photoreduction toward C2 products and provide guidance for designing and preparing highly active catalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Molybdenum Disulfide/Nickel-Metal Organic Framework Hybrid Nanosheets Based Disposable Electrochemical Sensor for Determination of 4-Aminophenol in Presence of Acetaminophen. BIOSENSORS 2023; 13:bios13050524. [PMID: 37232885 DOI: 10.3390/bios13050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
The toxicity of commonly used drugs, such as acetaminophen (ACAP) and its degradation-derived metabolite of 4-aminophenol (4-AP), underscores the need to achieve an effective approach in their simultaneous electrochemical determination. Hence, the present study attempts to introduce an ultra-sensitive disposable electrochemical 4-AP and ACAP sensor based on surface modification of a screen-printed graphite electrode (SPGE) with a combination of MoS2 nanosheets and a nickel-based metal organic framework (MoS2/Ni-MOF/SPGE sensor). A simple hydrothermal protocol was implemented to fabricate MoS2/Ni-MOF hybrid nanosheets, which was subsequently tested for properties using valid techniques including X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), and N2 adsorption-desorption isotherm. The 4-AP detection behavior on MoS2/Ni-MOF/SPGE sensor was followed by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). Our experimental findings on the generated sensor confirmed a broad linear dynamic range (LDR) for 4-AP from 0.1 to 600 μM with a high sensitivity of 0.0666 μA/μM and a low limit of detection (LOD) of 0.04 μM. In addition, an analysis of real specimens such as tap water sample as well as a commercial sample (acetaminophen tablets) illuminated the successful applicability of as-developed sensor in determining ACAP and 4-AP, with an impressive recovery rate.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Shahab Maghsoudi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
17
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
18
|
Huang S, Cao Y, Yao F, Zhang D, Yang J, Ye S, Yao D, Liu Y, Li J, Lei D, Wang X, Huang H, Wu M. Interface Density Engineering on Heterogeneous Molybdenum Dichalcogenides Enabling Highly Efficient Hydrogen Evolution Catalysis and Sodium Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207919. [PMID: 36938911 DOI: 10.1002/smll.202207919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Constructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO2 /MoS2 heterogeneous nanorods are encapsulated in nitrogen and sulfur co-doped carbon matrix (MoO2 /MoS2 @NSC) by controllable sulfidation. MoO2 and MoS2 are coupled intimately at atomic level, forming the MoO2 /MoS2 heterointerfaces with different distribution density. Strong electronic interactions are triggered at these MoO2 /MoS2 heterointerfaces for enhancing electron transfer. In alkaline media, the optimal material exhibits outstanding hydrogen evolution reaction (HER) performances that significantly surpass carbon-covered MoS2 nanorods counterpart (η10 : 156 mV vs 232 mV) and most of the MoS2 -based heterostructures reported recently. First-principles calculation deciphers that MoO2 /MoS2 heterointerfaces greatly promote water dissociation and hydrogen atom adsorption via the O-Mo-S electronic bridges during HER process. Moreover, benefited from the high pseudocapacitance contribution, abundant "ion reservoir"-like channels, and low Na+ diffusion barrier appended by high-density MoO2 /MoS2 heterointerfaces, the material delivers high specific capacity of 888 mAh g-1 , remarkable rate capability and cycling stability of 390 cycles at 0.1 A g-1 as the anode of sodium ion battery. This work will undoubtedly light the way of interface density engineering for high-performance electrochemical energy conversion and storage systems.
Collapse
Affiliation(s)
- Senchuan Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Yangfei Cao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Fen Yao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Daliang Zhang
- Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jing Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Siyang Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yan Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Jiade Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Danni Lei
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xuxu Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Haitao Huang
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China
| | - Mingmei Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
19
|
Zhao T, Zhong D, Tian L, Hao G, Liu G, Li J, Zhao Q. Constructing abundant phase interfaces of the sulfides/metal-organic frameworks p-p heterojunction array for efficient overall water splitting and urea electrolysis. J Colloid Interface Sci 2023; 634:630-641. [PMID: 36549211 DOI: 10.1016/j.jcis.2022.11.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Designing efficient electrocatalysts to improve the overall water splitting and urea electrolysis efficiency for hydrogen generation can greatly solve the dilemma of energy shortage and environmental pollution. In this work, Co8FeS8@CoFe-MOF/NF heterojunction arrays were fabricated by embedding sulfides into the surface of metal-organic frameworks (MOFs) nanosheets as multifunctional electrocatalyst. The introduction of sulfide on CoFe-MOF/NF can not only adjust the electronic structure (electron-rich state) and change the surface properties (more hydrophilic), but also increase the active area to enhance the catalytic activity. The in situ Raman shows Co8FeS8@CoFe-MOF/NF is more easily to generate active species at low potentials and generates a higher content of active β-MOOH phase than CoFe-MOF/NF. Therefore, the Co8FeS8@CoFe-MOF/NF exhibits excellent oxygen evolution reaction (OER) performance with an overpotential of 213 mV at 10 mA cm-2. Furthermore, when used as a urea oxidation reaction (UOR), only an ultralow potential of 1.311 V at 10 mA cm-2. More importantly, the assembled two-electrode drives overall water splitting and urea electrolysis with cell voltages of 1.62 V and 1.55 V at 10 mA cm-2, respectively. This work provides insights into the preparation of electrocatalysts with multifunctional heterostructure arrays for hydrogen production.
Collapse
Affiliation(s)
- Tao Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Dazhong Zhong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Lu Tian
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Genyan Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Guang Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Jinping Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Qiang Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
20
|
Zhang X, Zhao K, Li H, Li Y, Yang W, Liu J, Li D. Plasma-assisted synthesis of hierarchical defect N-doped iron–cobalt sulfide@Co foam as an efficient bifunctional electrocatalyst for overall water splitting. NEW J CHEM 2023. [DOI: 10.1039/d3nj00675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
N-doped CoFeS was synthesized via an ion exchange method to prepare a precursor, followed by sulphidation and plasma-assisted engraving in nitrogen gas.
Collapse
|
21
|
Trimetallic CoFeCr-LDH@MoS2 as a highly efficient bifunctional electrocatalyst for overall water splitting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
25
|
Nugmanova AG, Kalinina MA. Supramolecular Self-Assembly of Hybrid Colloidal Systems. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Approaching well-dispersed MoS2 assisted with cellulose nanofiber for highly durable hydrogen evolution reaction. Carbohydr Polym 2022; 294:119754. [DOI: 10.1016/j.carbpol.2022.119754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
27
|
Xiao L, Wu H, Zhang Y, Sun H, Zhang W, Lyu F, Deng Z, Peng Y. Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Baker EAD, Pitfield J, Price CJ, Hepplestone SP. Computational analysis of the enhancement of photoelectrolysis using transition metal dichalcogenide heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:375001. [PMID: 35767988 DOI: 10.1088/1361-648x/ac7d2c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Finding a material with all the desired properties for a photocatalytic water splitter is a challenge yet to be overcome, requiring both a surface with ideal energetics for all steps in the hydrogen and oxygen evolution reactions (HER and OER) and a bulk band gap large enough to mediate said steps. We have instead examined separating these challenges by investigating the energetic properties of two-dimensional transition metal dichalcogenides (TMDCs) that could be used as a surface coating to a material with a large enough bulk band gap. First we investigated the energetics of monolayer MoS2and PdSe2using density functional theory and then investigated how these energetics changed when they were combined into a heterostructure. Our results show that the surface properties were practically (<0.2 eV) unchanged when combined and the MoS2layer aligns well with the OER and HER. This work highlights the potential of TMDC monolayers as surface coatings for bulk materials that have sufficient band gaps for photocatalytic applications.
Collapse
Affiliation(s)
- Edward A D Baker
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Joe Pitfield
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Conor J Price
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Steven P Hepplestone
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
29
|
Wang H, Zhu W, Xu T, Zhang Y, Tian Y, Liu X, Wang J, Ma M. An integrated nanoflower-like MoS 2@CuCo 2O 4 heterostructure for boosting electrochemical glucose sensing in beverage. Food Chem 2022; 396:133630. [PMID: 35841678 DOI: 10.1016/j.foodchem.2022.133630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Excessive glucose in food poses a non-negligible threat to its inherent quality and human health, which makes it imperative to develop a highly sensitive sensor for real-time glucose detection. In this work, an integrated electrochemical glucose sensor based on a nanoflower-like MoS2@CuCo2O4 heterostructure was carefully constructed. Under optimal conditions, the as-fabricated sensor exhibited a high sensitivity of 1,303 μA mM-1 cm-2 over a wide range of 0.5-393.0 μmol/L, accompanied by a low determination limit (0.5 μmol/L) and short response time (2.1 s). The favorable sensing performance of the MoS2@CuCo2O4 nanocomposite-modified electrode in electrochemical analyses was attributed to the introduction of unique nanoflower-like heterostructure and the synergistic effects between MoS2 and CuCo2O4. Furthermore, the satisfactory applicability of this sensor in beverages was confirmed. These results demonstrate that the MoS2@CuCo2O4/GCE may be a promising platform for sensitive monitoring of glucose content in food samples.
Collapse
Affiliation(s)
- Huiting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ting Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanxin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yujie Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Sirati MM, Hussain D, Mahmood K, Chughtai AH, Yousaf-Ur-Rehman M, Malik WMA, Alomairy S, Ahmed SB, Al-Buriahi MS, Ashiq MN. Single-step hydrothermal synthesis of amine functionalized Ce-MOF for electrochemical water splitting. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2079310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Pakistan, Karachi, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | | | | | | - Sultan Alomairy
- Department of Physics, College of Science, Taif University, Taif, Saudi Arabia
| | - Samia ben Ahmed
- Departement of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
31
|
Liu YL, Liu XY, Feng L, Shao LX, Li SJ, Tang J, Cheng H, Chen Z, Huang R, Xu HC, Zhuang JL. Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. CHEMSUSCHEM 2022; 15:e202102603. [PMID: 35092355 DOI: 10.1002/cssc.202102603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional metal-organic nanosheets (2D MONs) are an emerging class of ultrathin, porous, and crystalline materials. The organic/inorganic hybrid nature offers MONs distinct advantages over other inorganic nanosheets in terms of diversity of organic ligands and metal notes. Compared to bulk three-dimensional metal-organic frameworks, 2D MONs possess merits of high density and readily accessible catalytic sites, reduced diffusion pathways for reactants/products, and fast electron transport. These features endow MONs with enhanced physical/chemical properties and are ideal for heterogeneous catalysis. In this Review, state-of-the-art synthetic methods for the fabrication of 2D MONs were summarized. The advances of 2D MONs-based materials for electrocatalysis and photocatalysis, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2 RR), and electro-/photocatalytic organic transformations were systematically discussed. Finally, the challenges and perspectives regarding future design and synthesis of 2D MONs for high-performance electrocatalysis and photocatalysis were provided.
Collapse
Affiliation(s)
- Ya-Long Liu
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Xiang-Yue Liu
- College of Chemistry, Key Laboratory for Analytical Science of Food Safety, and Biology, Ministry of Education, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Li Feng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Lan-Xing Shao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Si-Jun Li
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Jing Tang
- College of Chemistry, Key Laboratory for Analytical Science of Food Safety, and Biology, Ministry of Education, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Hu Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Rui Huang
- Stake Key Laboratory of Physical Chemistry of Solid Surface, iChem, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hai-Chao Xu
- Stake Key Laboratory of Physical Chemistry of Solid Surface, iChem, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| |
Collapse
|
32
|
Zhang Z, Wang Y, Niu B, Liu B, Li J, Duan W. Ultra-stable two-dimensional metal-organic frameworks for photocatalytic H 2 production. NANOSCALE 2022; 14:7146-7150. [PMID: 35538894 DOI: 10.1039/d2nr01827f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) are some of the most promising photocatalysts owing to their high numbers of exposed active sites and excellent charge mobility. However, the synthesis of highly stable 2D MOF photocatalysts involves challenges, and examples have been rarely reported. Herein, a new kind of material, 2D indium-based porphyrin MOF cubic nanosheets (2D In-TCPP NS) with an average thickness of ∼3.97 nm, is synthesized via a surfactant-assisted approach, and it shows good chemical stability in the pH range of 2-11 in aqueous solution. In photocatalytic H2-generation experiments, 2D In-TCPP NS exhibits activity that is enhanced by over one order of magnitude compared with the 3D bulk In-TCPP MOF, arising from its highly enhanced electron-hole separation abilities. Moreover, after 40 h of continuous photocatalysis testing, 2D In-TCPP NS shows nearly no activity decrease, which suggests its great potential for practical commercial use.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Yang Wang
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China.
| | - Ben Niu
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China.
| | - Bo Liu
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Jianfeng Li
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China.
| | - Wubiao Duan
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| |
Collapse
|
33
|
Zhang R, Lu L, Chen Z, Zhang X, Wu B, Shi W, Cheng P. Bimetallic Cage‐Based Metal–Organic Frameworks for Electrochemical Hydrogen Evolution Reaction with Enhanced Activity. Chemistry 2022; 28:e202200401. [DOI: 10.1002/chem.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Rui‐Zhe Zhang
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Le‐Le Lu
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zhong‐Hang Chen
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xiaoping Zhang
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Bo‐Yuan Wu
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Wei Shi
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
- Department of Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Peng Cheng
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
- Department of Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
34
|
Ding YM, Li NW, Yuan S, Yu L. Surface engineering strategies for MoS2 towards electrochemical hydrogen evolution. Chem Asian J 2022; 17:e202200178. [PMID: 35438831 DOI: 10.1002/asia.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Water splitting driven by renewable energy sources is an environmentally friendly and sustainable way to produce hydrogen as an ideal energy source in the future. Electrocatalysts can promote the water splitting performance at the both ends. Therefore, the development of cost-effective, high-performance electrocatalysis is a key factor in promoting water decomposition and renewable energy conversion. Among candidates, layered molybdenum disulfide (MoS 2 ) is considered as a most promising electrocatalyst to replace Pt for hydrogen evolution reaction (HER). Surface atomic engineering and interface engineering can induce new physicochemical properties for MoS 2 to greatly enhance HER activity. In this report, we summarize the latest improvement strategies and research progress to improve the catalytic activity of MoS 2 -based material catalysts through the surface and interface atomic and molecular engineering, thus effectively improving HER process. In addition, some unsolved problems in the large-scale application of modified MoS 2 catalyst are also discussed.
Collapse
Affiliation(s)
- Yi Ming Ding
- Beijing University of Chemical Technology, State Key Lab of Organic-Inorganic Composites, CHINA
| | - Nian Wu Li
- Beijing University of Chemical Technology, State Key Lab of Organic-Inorganic Composites, CHINA
| | - Shuai Yuan
- Shanghai University, Research Center of Nanoscience and Nanotechnology, CHINA
| | - Le Yu
- Beijing University of Chemical Technology, College of Chemical Engineering, No. 15 North Third Ring Road East Road, 100029, Beijing, CHINA
| |
Collapse
|
35
|
Sun R, Zhao Z, Su Z, Li T, Zhao J, Shang Y. Multi-interface MoS 2/Ni 3S 4/Mo 2S 3 composite as an efficient electrocatalyst for hydrogen evolution reaction over a wide pH range. Dalton Trans 2022; 51:6825-6831. [PMID: 35438099 DOI: 10.1039/d2dt00231k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The exploitation of cost-efficiently electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range remains a challenge. Herein, we prepared a novel multi-interface MoS2/Ni3S4/Mo2S3 composite on carbon cloth (CC) that acts as an efficient electrocatalyst over a wide pH range through a facile one-pot strategy, where (NH4)4[NiH6Mo6O24]·5H2O (abbreviated to NiMo6) as a bimetallic precursor and Ni(NO3)2·6H2O as one of the raw materials and salt are used together with thiourea (TU) for converting them into the MoS2/Ni3S4/Mo2S3 load on CC (abbreviated as MoS2/Ni3S4/Mo2S3/CC). MoS2/Ni3S4/Mo2S3/CC-24 h shows a distinguished electrocatalytic performance towards HER with long-term stability in acid and alkaline media. It presents low overpotentials of 38 mV and 51 mV in 0.5 M H2SO4 and 1.0 M KOH at 10 mA cm-2, respectively. This work can deliver a new idea to fabricate cost-efficient and long-term durability HER electrocatalysts over a broad pH range.
Collapse
Affiliation(s)
- Rui Sun
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Tiansheng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yongchen Shang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
36
|
Pod-like 2D/3D-CoS2@CC Composite for Enhancing Electrocatalytic Hydrogen Evolution. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-021-00701-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Li R, Liang J, Li T, Yue L, Liu Q, Luo Y, Hamdy MS, Sun Y, Sun X. Recent advances in MoS2-based materials for electrocatalysis. Chem Commun (Camb) 2022; 58:2259-2278. [DOI: 10.1039/d1cc04004a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing energy demand and related environmental issues have drawn great attention of the world, thus necessitating the development of sustainable technologies to preserve the ecosystems for future generations. Electrocatalysts...
Collapse
|
38
|
NiPd mediated by conductive metal organic frameworks with facilitated electron transfer for assaying of H2O2 released from living cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Li Y, Ma W, Yang H, Tian Q, Xu Q, Han B. CO2-assisted synthesis of crystalline/amorphous NiFe-MOF heterostructure for high-efficiency electrocatalytic water oxidation. Chem Commun (Camb) 2022; 58:6833-6836. [DOI: 10.1039/d2cc01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the crystalline phase and structure of metal organic frameworks (MOFs) for superior electrocatalytic oxygen evolution reaction (OER) performance is a significant but challenging topic. Herein, a facile CO2-assisted strategy...
Collapse
|
40
|
Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically Porous Metal–Organic Framework/MoS
2
Interface for Selective Photocatalytic Conversion of CO
2
with H
2
O into CH
3
COOH. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fengyang Yu
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xu Jing
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Yao Wang
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Mingyang Sun
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
41
|
Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically Porous Metal-Organic Framework/MoS 2 Interface for Selective Photocatalytic Conversion of CO 2 with H 2 O into CH 3 COOH. Angew Chem Int Ed Engl 2021; 60:24849-24853. [PMID: 34435428 DOI: 10.1002/anie.202108892] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) provide a platform to design new heterogeneous catalysts for catalytic CO2 reduction, but selective formation of C2 valuable liquid fuel products remains a challenge. Herein, we propose a strategy to synthesize composites by integrating MoS2 nanosheets into hierarchically porous defective UiO-66 (d-UiO-66) to form Mo-O-Zr bimetallic sites on the interfaces between UiO-66 and MoS2 . The active interfaces are favorable for the efficient transfer of photo-generated charge carriers and for promoting the activity, whereas, the synergy of the components at the interfaces achieves selectivity for C2 production. The d-UiO-66/MoS2 composite facilitates the photo-catalytic conversion of gas phase CO2 and H2 O to CH3 COOH under visible light irradiation without any other adducts. The evolution rate and selectivity of CH3 COOH reached 39.0 μmol g-1 h-1 and 94 %, respectively, without any C1 products, suggesting a new approach for the design of highly efficient photocatalysts of CO2 for C2 production. Theoretical calculations demonstrate the charge-polarized Zr-O-Mo aided the C-C coupling process with the largely reduced energy barrier.
Collapse
Affiliation(s)
- Fengyang Yu
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yao Wang
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Mingyang Sun
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
42
|
Tan J, Li R, Raheem SA, Pan L, Shen H, Liu J, Gao M, Yang M. Facile Construction of Carbon Encapsulated of Earth‐Abundant Metal Sulfides for Oxygen Electrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202101098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junbin Tan
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Rongrong Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Saheed Abiola Raheem
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Longhai Pan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Hangjia Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| |
Collapse
|
43
|
Chen W, Wei W, Wang K, Cui J, Zhu X, Ostrikov KK. Partial sulfur vacancies created by carbon-nitrogen deposition of MoS 2 for high-performance overall electrocatalytic water splitting. NANOSCALE 2021; 13:14506-14517. [PMID: 34473169 DOI: 10.1039/d1nr02966e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is a promising energy-efficient solution to obtain clean hydrogen energy. Bifunctional electrocatalysts made up of cheap and abundant elements and suitable for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are critically needed, yet their performance deserves substantial improvement. The catalytic activity could be improved by creating unsaturated defects, which so far has rarely been demonstrated. Here, we combine the effects of unsaturated sulfur vacancies and bi-elemental C and N doping in MoS2 nanosheets to achieve high-performance bifunctional electrocatalysts. The new method to obtain C and N doped MoS2 at high temperature is presented. The obtained C-N-MoS2/CC-T catalysts with S unsaturated defect sites and Mo-N links exhibit high activity and improved electrical conductivity for both the HER and OER in alkaline media. Systematic experiments and density functional theory (DFT) analysis confirm that CN-doping exposes catalytically active sites and enhances water adsorption. The optimized C-N-MoS2/CC-700 catalyst exhibits low overpotentials of 90 and 230 mV at 10 mA cm-2 for the HER and OER, respectively. Importantly, the porous C-N-MoS2/CC-700 nanosheets deliver low voltages of 1.58 V for the overall water splitting at 10 mA cm-2 and robust operation for 30 h without any reduced activity. Such impressive performances are attributed to their unique structure with large specific surface area, abundant S unsaturated sites, Mo-N links, and shortened electron transfer paths. This partial defect filling by the bi-dopant incorporation approach is generic and is promising for a broad range of advanced energy materials.
Collapse
Affiliation(s)
- Wenxia Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Kefeng Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Jinhai Cui
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Xingwang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
44
|
Wu X, Zhang H, Zhang J, Lou XWD. Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008376. [PMID: 34405909 DOI: 10.1002/adma.202008376] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/11/2021] [Indexed: 06/13/2023]
Abstract
Transition metal dichalcogenides (TMDCs) hold great promise for electrochemical energy conversion technologies in view of their unique structural features associated with the layered structure and ultrathin thickness. Because the inert basal plane accounts for the majority of a TMDC's bulk, activation of the basal plane sites is necessary to fully exploit the intrinsic potential of TMDCs. Here, recent advances on TMDCs-based hybrids/composites with greatly enhanced electrochemical activity are reviewed. After a summary of the synthesis of TMDCs with different sizes and morphologies, comprehensive in-plane activation strategies are described in detail, mainly including in-plane-modification-induced phase transformation, surface-layer modulation, and interlayer modification/coupling. Simultaneously, the underlying mechanisms for improved electrochemical activities are highlighted. Finally, the strategic evaluation on further research directions of TMDCs in-plane activation is featured. This work would shed some light on future design trends of TMDCs-based functional materials for electrochemical energy-related applications.
Collapse
Affiliation(s)
- Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
45
|
Liang W, Dong P, Le Z, Lin X, Gong X, Xie F, Zhang H, Chen J, Wang N, Jin Y, Meng H. Electron Density Modulation of MoO 2/Ni to Produce Superior Hydrogen Evolution and Oxidation Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39470-39479. [PMID: 34433246 DOI: 10.1021/acsami.1c11025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) have aroused great interest, but the high price of platinum group metals (PGMs) limits their development. The electronic reconstruction at the interface of a heterostructure is a promising strategy to enhance their catalytic performance. Here, MoO2/Ni heterostructure was synthesized to provide effective HER in an alkaline electrolyte and exhibit excellent HOR performance. Theoretical and experimental analyses prove that the electron density around the Ni atom is reduced. The electron density modulation optimizes the hydrogen adsorption and hydroxide adsorption free energy, which can effectively improve the activity of both HER and HOR. Accordingly, the prepared MoO2/Ni@NF catalyst reveals robust HER activity (η10 = 50.48 mV) and HOR activity (j0 = ∼1.21 mA cm-2). This work demonstrates an effective method to design heterostructure interfaces and tailor the surface electronic structure to improve HER/HOR performance.
Collapse
Affiliation(s)
- Wanli Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Pengyu Dong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Zhichen Le
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xinyi Lin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xiyu Gong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Hao Zhang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| |
Collapse
|
46
|
Li CF, Zhao JW, Xie LJ, Wu JQ, Ren Q, Wang Y, Li GR. Surface-Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal-Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:18129-18137. [PMID: 33982379 DOI: 10.1002/anie.202104148] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Metal-organic frameworks (MOFs) with carboxylate ligands as co-catalysts are very efficient for the oxygen evolution reaction (OER). However, the role of local adsorbed carboxylate ligands around the in-situ-transformed metal (oxy)hydroxides during OER is often overlooked. We reveal the extraordinary role and mechanism of surface-adsorbed carboxylate ligands on bi/trimetallic layered double hydroxides (LDHs)/MOFs for OER electrocatalytic activity enhancement. The results of X-ray photoelectron spectroscopy (XPS), synchrotron X-ray absorption spectroscopy, and density functional theory (DFT) calculations show that the carboxylic groups around metal (oxy)hydroxides can efficiently induce interfacial electron redistribution, facilitate an abundant high-valence state of nickel species with a partially distorted octahedral structure, and optimize the d-band center together with the beneficial Gibbs free energy of the intermediate. Furthermore, the results of in situ Raman and FTIR spectra reveal that the surface-adsorbed carboxylate ligands as Lewis base can promote sluggish OER kinetics by accelerating proton transfer and facilitating adsorption, activation, and dissociation of hydroxyl ions (OH- ).
Collapse
Affiliation(s)
- Cheng-Fei Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Wei Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jie Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jin-Qi Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Ren
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gao-Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
47
|
Cao Y. Roadmap and Direction toward High-Performance MoS 2 Hydrogen Evolution Catalysts. ACS NANO 2021; 15:11014-11039. [PMID: 34251805 DOI: 10.1021/acsnano.1c01879] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
Collapse
Affiliation(s)
- Yang Cao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871 P. R. China
| |
Collapse
|
48
|
Govarthanan M, Mythili R, Kim W, Alfarraj S, Alharbi SA. Facile fabrication of (2D/2D) MoS 2@MIL-88(Fe) interface-driven catalyst for efficient degradation of organic pollutants under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125522. [PMID: 33684820 DOI: 10.1016/j.jhazmat.2021.125522] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The present investigation describes the photocatalytic degradation of methylene blue (MB) and rhodamine-B (RhB) using molybdenum disulfide (MoS2) anchored metal-organic frameworks (MOFs) under visible light irradiation. Herein, MIL-88(Fe) was successfully modified with MoS2 to yield a novel heterogeneous MoS2@MIL-88(Fe) hybrid composite. The prepared catalyst enhances the superior photocatalytic activity than the pristine form of MoS2 and MIL-88(Fe) framework. The physico-chemical properties of the prepared catalyst were analytically investigated and the results exhibit greater photocatalytic efficiency towards the chosen dyes, with an optical band gap of 2.75 eV. The MoS2 and MIL-88(Fe) framework could act as efficient oxidation and reduction sites in the as-synthesized MoS2@MIL-88(Fe) composite, and generated the non-toxic by-products such as hydroxyl (•OH), and superoxide species (•O2-) for the mineralization of MB and RhB dyes. The degradation kinetics showed that the dye system followed a pseudo-first-order model which is well supported by the Langmuir-Hinshelwood mechanism. Moreover, the reusability studies showed excellent photocatalytic activity after five cycles. Finally, the photocatalytic degradation mechanism of MB and RhB dyes was suggested.
Collapse
Affiliation(s)
- M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - R Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
49
|
Li C, Zhao J, Xie L, Wu J, Ren Q, Wang Y, Li G. Surface‐Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal–Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cheng‐Fei Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jia‐Wei Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Ling‐Jie Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jin‐Qi Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Qian Ren
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gao‐Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
50
|
Wang P, Dai Y, Wang X, Ren X, Luo C. Boosting Hydrogen Evolution on MoS
2
/CNT Modified by Poly(sodium‐p–styrene sulfonate)
via
Proton Concentration in Acid Solution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengfei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| |
Collapse
|