1
|
Zhou P, Cao Y, Liu H, Wang L, Yu S, Hegazy M, Wu S. Advances and challenges of artificial cells in life: A review. POLYMER 2025; 317:127940. [DOI: 10.1016/j.polymer.2024.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Fang B, Liu X, Peng J, Li Y, Gong Z, Lai W. Dramatic fluorescence enhancement of PCN-224 and its application in "turn off" immunoassay for sensitive detection of E. coli O157:H7 in milk. Food Chem 2024; 445:138749. [PMID: 38368699 DOI: 10.1016/j.foodchem.2024.138749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
In this study, a type of luminescent porous coordination network-224 (PCN-224) in alkaline conditions was synthesized with the dramatic fluorescence enhancement by 20.4 times, which was explained by the fact that the decrease of Zr4+ content in alkaline conditions resulted in the partial recovery of the electron cloud density of 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP). Given the large overlap between the excitation spectrum of PCN-224 and the absorption band of Ag nanoparticles (Ag NPs), the coating of the Ag layer on PCN-224 triggered the fluorescence quenching effect, which was applied to "turn off" fluorescence immunoassay for sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk. The proposed immunoassay reached a low limit of detection (LOD) of 3.3 × 102 CFU mL-1, 29.7 times more sensitive than the conventional ELISA. It will provide a novel alternative strategy for sensitively detecting pathogenic bacteria in the field of food safety.
Collapse
Affiliation(s)
- Bolong Fang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xin Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Gao B, Ding Y, Cai Z, Wu S, Wang J, Ling N, Ye Q, Chen M, Zhang Y, Wei X, Ye Y, Wu Q. Dual-recognition colorimetric platform based on porous Au@Pt nanozymes for highly sensitive washing-free detection of Staphylococcus aureus. Mikrochim Acta 2024; 191:438. [PMID: 38951285 DOI: 10.1007/s00604-024-06460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.
Collapse
Affiliation(s)
- Bao Gao
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhihe Cai
- Guangdong Huankai Biotechnology Co., LTD, Guangdong, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Na Ling
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Qingping Wu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China.
| |
Collapse
|
4
|
Qiao X, Wang X, Chen H, Huang Y, Li S, Li L, Sun Y, Liu X, Huang X. Cholesterol-Mediated Anchoring of Phospholipids onto Proteinosomes for Switching Membrane Permeability. Biomacromolecules 2023; 24:5749-5758. [PMID: 37934168 DOI: 10.1021/acs.biomac.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Modulated membrane functionalization is a necessary and overarching step for hollow microcompartments toward their application as nanoreactors or artificial cells. In this study, we show a way to generate phospholipid hybrid proteinosomes that could show superposed virtues of liposomes and proteinosomes. In comparison to pure proteinosomes, both the membrane fluidity and permeability are improved obviously after forming the phospholipid hybrid proteinosomes. Specifically, the integration of phospholipids also endows the hybrid proteinosomes demonstrating a stepwise release of the encapsulants of FITC-dextran (70 and 150 kDa) triggered sequentially by phospholipase and protease, and then a modulated cascaded enzymatic reaction between two different populations of proteinosomes are achieved. Therefore, it is anticipated that such constructed phospholipid hybrid proteinosomes could be employed as an improved microcompartmental model for further advanced artificial cell design toward achieving logic signal communication within the various artificial cellular populations as well as potential applications in the field of microreactors.
Collapse
Affiliation(s)
- Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
6
|
Shao Y, Zhou Y, Chen N, Xu W, Zhou H, Lai W, Huang X, Xiang X, Ye Q, Zhang J, Wang J, Parak WJ, Wu Q, Ding Y. Synthesizing Submicron Polyelectrolyte Capsules to Boost Enzyme Immobilization and Enhance Enzyme-Based Immunoassays. ACS OMEGA 2023; 8:12393-12403. [PMID: 37033870 PMCID: PMC10077544 DOI: 10.1021/acsomega.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Polyelectrolyte capsules (PCs) exhibit attractive superiorities in enzyme immobilization, including providing a capacious microenvironment for enzyme conformational freedom, highly effective mass transfer, and protecting enzymes from the external environment. Herein, we provide the first systemic evaluation of submicron PCs (SPCs, 500 nm) for enzyme immobilization. The catalytic kinetics results show that SPC encapsulation affected the affinities of enzymes and substrates but significantly enhanced their catalytic activity. The stability test indicates that SPC-encapsulated horseradish peroxidase (HRP) exhibits ultrahigh resistance to external harsh conditions and has a longer storage life than that of soluble HRP. The proposed encapsulation strategy enables 7.73-, 2.22-, and 11.66-fold relative activities when working at a pH as low as 3, at a NaCl concentration as high as 500 mM, and at a trypsin concentration as high as 10 mg/mL. We find that SPC encapsulation accelerates the cascade reaction efficiency of HRP and glucose oxidase. Owing to SPCs enhancing the catalytic activity of the loaded enzymes, we established an amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Escherichia coli O157:H7 using HRP-loaded SPCs. The detection sensitivity of SPC-improved ELISA was found to be 280 times greater than that of conventional HRP-based ELISA. Altogether, we provide an elaborate evaluation of 500 nm SPCs on enzyme immobilization and its application in the ultrasensitive detection of foodborne pathogens. This evaluation provides evidence to reveal the potential advantage of SPCs on enzyme immobilization for enzyme-based immunoassays. It has excellent biological activity and strong stability and broadens the application prospect in urine, soy sauce, sewage, and other special samples.
Collapse
Affiliation(s)
- Yanna Shao
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaofeng Zhou
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Nuo Chen
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenxing Xu
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huan Zhou
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weihua Lai
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xinran Xiang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College
of Food Science, South China Agricultural
University, Guangzhou 510432, China
| | - Wolfgang J. Parak
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Qingping Wu
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Zhang Y, Xu C, Zhang D, Chen X. Proteinosomes via Self-Assembly of Thermoresponsive Miktoarm Polymer Protein Bioconjugates. Biomacromolecules 2023; 24:1994-2002. [PMID: 37002865 DOI: 10.1021/acs.biomac.2c01368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
To fabricate nanoscale proteinosomes, thermoresponsive miktoarm polymer protein bioconjugates were prepared through highly efficient molecular recognition between the β-cyclodextrin modified BSA (CD-BSA) and the adamantyl group anchored at the junction point of the thermoresponsive block copolymer poly(ethylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate) (PEG-b-PDEGMA). PEG-b-PDEGMA was synthesized by the Passerini reaction of benzaldehyde-modified PEG, 2-bromo-2-methylpropionic acid, and 1-isocyanoadamantane, followed by the atom transfer radical polymerization of DEGMA. Two block copolymers with different chain lengths of PDEGMA were prepared, and both self-assembled into polymersomes at a temperature above their lower critical solution temperatures (LCST). The two copolymers can undergo molecular recognition with the CD-BSA and form miktoarm star-like bioconjugates. The bioconjugates self-assembled into ∼160 nm proteinosomes at a temperature above their LCSTs, and the miktoarm star-like structure has a great effect on the formation of the proteinosomes. Most of the secondary structure and esterase activity of BSA in the proteinosomes were maintained. The proteinosomes exhibited low toxicity to the 4T1 cells and could deliver model drug doxorubicin into the 4T1 cells.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Changlan Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Xiaoai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
8
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Duan C, Chen Y, Hou Z, Li D, Jiao J, Sun W, Xiang Y. Heteromultivalent scaffolds fabricated by biomimetic co-assembly of DNA-RNA building blocks for the multi-analysis of miRNAs. J Mater Chem B 2023; 11:1478-1485. [PMID: 36723144 DOI: 10.1039/d2tb02663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heteromultivalent scaffolds with different repeated monomers have great potential in biomedicine, but convenient construction strategies for integrating various functional modules to achieve multiple biological functions are still lacking. Here, taking advantage of the heteromultivalent effect of dendritic nucleic acids and the specific biochemical properties of microRNAs (miRNAs), we assembled novel heteromultivalent nucleic acid scaffolds by biomimetic co-assembly of DNA-RNA building blocks. In our approach, two miRNAs were used to initiate and maintain dendritic structures in an interdependent manner; so, the heteromultivalent nanostructure can only form in the presence of both miRNAs. The proposed nanostructure can be used for one-step analysis of two miRNAs in an AND logic format. Taking miR-18b-5p and miR-342-3p which are associated with Alzheimer's disease as an example, a FRET sensing system was fabricated for the simultaneous analysis of two miRNAs within one hour at picomolar concentration. Further studies show that the designed device may have the potential to distinguish between AD patients and the healthy population by analysis of two miRNAs in CSF (cerebrospinal fluid) samples, suggesting its possible applicability in clinics.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Weihao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
10
|
Zhou L, Liu Y, Lu Y, Zhou P, Lu L, Lv H, Hai X. Recent Advances in the Immunoassays Based on Nanozymes. BIOSENSORS 2022; 12:1119. [PMID: 36551085 PMCID: PMC9776222 DOI: 10.3390/bios12121119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
As a rapid and simple method for the detection of multiple targets, immunoassay has attracted extensive attention due to the merits of high specificity and sensitivity. Notably, enzyme-linked immunosorbent assay (ELISA) is a widely used immunoassay, which can provide high detection sensitivity since the enzyme labels can promote the generation of catalytically amplified readouts. However, the natural enzyme labels usually suffer from low stability, high cost, and difficult storage. Inspired by the advantages of superior and tunable catalytic activities, easy preparation, low cost, and high stability, nanozymes have arisen to replace the natural enzymes in immunoassay; they also possess equivalent sensitivity and selectivity, as well as robustness. Up to now, various kinds of nanozymes, including mimic peroxidase, oxidase, and phosphatase, have been incorporated to construct immunosensors. Herein, the development of immunoassays based on nanozymes with various types of detection signals are highlighted and discussed in detail. Furthermore, the challenges and perspectives of the design of novel nanozymes for widespread applications are discussed.
Collapse
|
11
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Duan C, Cheng W, Yao Y, Li D, Wang Z, Xiang Y. Universal and Flexible Signal Transduction Module Based on Overload Triggering Probe Escape for Sensitive Detection of Tau Protein. Anal Chem 2022; 94:12919-12926. [PMID: 36069206 DOI: 10.1021/acs.analchem.2c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aptamer-based methods have attracted increasing interest due to flexible engineering, but their generality is limited by the heterogeneity of signal transduction mechanisms. Given the fact that nonlinear and large molecules are more likely to make the nanosurface overloaded, we investigated a novel signal transduction process to extend the application of aptasensors. In this work, an aptamer complementary element (ACE) is designed with a primer region to serve as the signal probe, which can fully hybridize with an aptamer and be separated by magnetic beads (MBs). Upon target binding, the formed aptamer/target complex is much larger than the linear aptamer/ACE-primer dimer, causing overload of MBs on account of steric hindrance. An extra aptamer/ACE-primer can escape from the surface to the supernatant, which can be amplified by a catalytic hairpin assembly (CHA) circle. The size-dependent signal transduction and the modular design endow the method with high generality and flexibility for protein analysis. The proposed aptasensor was successfully applied to the detection of tau proteins ranging from 0.5 to 1000 ng mL-1 with a limit of detection (LOD) as low as 0.254 ng mL-1. The recovery tests in both human serum and cerebra spinal fluid confirmed the high accuracy and stability. Furthermore, a successful distinction was made between AD patients and healthy controls by the method, suggesting the possible applicability for practical analysis of tau proteins.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
13
|
Su D, Li H, Zhou R, Zhao L, Li A, Liu X, Wang C, Jia X, Liu F, Sun P, Yan X, Zhu C, Lu G. Embedding Proteins within Spatially Controlled Hierarchical Nanoarchitectures for Ultrasensitive Immunoassay. Anal Chem 2022; 94:6271-6280. [PMID: 35417142 DOI: 10.1021/acs.analchem.2c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modulating the precise self-assembly of functional biomacromolecules is a critical challenge in biotechnology. Herein, functional biomacromolecule-assembled hierarchical hybrid nanoarchitectures in a spatially controlled fashion are synthesized, achieving the biorecognition behavior and signal amplification in the immunoassay simultaneously. Biomacromolecules with sequential assembly on the scaffold through the biomineralization process show significantly enhanced stability, bioactivity, and utilization efficiency, allowing tuning of their functions by modifying their size and composition. The hierarchically hybrid nanoarchitectures show great potential in construction of ultrasensitive immunoassay platforms, achieving a three order-of-magnitude increase in sensitivity. Notably, the well-designed HRP@Ab2 nanoarchitectures allow for optical immunoassays with a detection range from picogram mL-1 to microgram mL-1 on demand, providing great promise for quantitative analysis of both low-abundance and high-residue targets for biomedical applications.
Collapse
Affiliation(s)
- Dandan Su
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lianjing Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Aixin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
14
|
Self-assembled multiprotein nanostructures with enhanced stability and signal amplification capability for sensitive fluorogenic immunoassays. Biosens Bioelectron 2022; 206:114132. [PMID: 35245869 DOI: 10.1016/j.bios.2022.114132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Fundamentally improving the sensing sensitivity of immunoassay remains a huge challenge, which limited further critical applications. Herein we designed a new immunoprobe by integrating biometric unit (antibody) and signal amplification element (enzyme) to form urease-antibody-CaHPO4 hybrid nanoflower (UAhNF) via the biomineralization process. The dual-functional UAhNF enhances the stability of urease in NaCl (10 mmol L-1) and high temperature (60 °C), and also maintains the ability of antibody recognition, fitting greatly well with the need for immunosensor. Using imidacloprid as a model target, the fixed coating antigens are competed with imidacloprid to capture primary antibodies, and the secondary antibody of UAhNF was linked to construct the competitive-type fluorogenic immunoassays. An in-situ etching process of copper nanoparticles initiated by urease is integrated with UAhNF-based immune response for further improving the detection sensitivity. The proposed immunosensor possessed a 50% inhibition concentration value of 0.72 ng mL-1, which is 30-fold lower than conventional enzyme-linked immunosorbent assay. This presented approach provided a versatile sensing tool by varying building blocks, making it practically functional for a variety of bioassay applications.
Collapse
|
15
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
16
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Li Y, Liu L, Zhao H. Enzyme-catalyzed cascade reactions on multienzyme proteinosomes. J Colloid Interface Sci 2021; 608:2593-2601. [PMID: 34763887 DOI: 10.1016/j.jcis.2021.10.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
In this research, to mimic the structures and the functionalities of the organelles in living cells multienzyme proteinosomes with β-galactosidase (β-gal), glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surfaces are fabricated by hydrophobic-interaction induced self-assembly approach. To investigate the mechanism of the formation of proteinosomes, poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) and bovine serum albumin are employed in a model system and the study demonstrates that the hydrophobic interaction between the dehydrated polymer chains and the hydrophobic patches on the proteins plays a key role in the fabrication of the proteinosomes. Based on the model system, multienzyme proteinosomes with β-gal, GOx and HRP on the surfaces are fabricated through hydrophobic interaction between PDEGMA and enzyme molecules. Enzyme-catalyzed cascade reactions are performed on the surfaces of the proteinosomes, and the immobilized enzymes show higher bioactivities than the "free" enzymes, due to the direct transfer of the product as a substrate from one enzyme molecule to another. This research provides a unique method for the synthesis of multienzyme proteinosomes with improved bioactivities, and the biofunctional structures will find promising applications in medical and biological science.
Collapse
Affiliation(s)
- Yuwei Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| |
Collapse
|
18
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi‐microcompartments with Exocytosis‐Inspired Behavior toward Fast Temperature‐Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
19
|
Nana L, Ruiyi L, Qinsheng W, Yongqiang Y, Xiulan S, Guangli W, Zaijun L. Colorimetric detection of chlorpyrifos in peach based on cobalt-graphene nanohybrid with excellent oxidase-like activity and reusability. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125752. [PMID: 34088207 DOI: 10.1016/j.jhazmat.2021.125752] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Cobalt nanocrystal has been widely used as nano-enzyme for sensing and catalysis due to its high stability and low cost, but poor catalytic activity limits its applications in bioanalysis. The study reports one strategy for synthesis of cobalt-graphene nanohybrid. Histidine-functionalized graphene quantum dot (His-GQD) was bound to graphene sheet via π-π stacking and then combined with cobalt ions in the presence of cetyltrimethylammonium chloride to form stable complex and finally reduced under nitrogen to obtain Co-His-GQD-G. The as-synthesized nanohybrid offers well-defined three-dimensional structure and quasi-superparamagnetism. The cobalt nanoparticles were well dispersed on graphene sheets. The unique structure improves oxidase-like activity of Co-His-GQD-G. Further, Co-His-GQD-G was used as the nanozyme for colorimetric detection of chlorpyrifos. Co-His-GQD-G catalyzes oxidization of 3,3',5,5'-tetramethylbenzidine into blue product. Thiocholine produced by hydrolysis of acetylthiocholine under catalysis of acetylcholinesterase inhibits catalytic activity of Co-His-GQD-G and leads to a reduced oxidization rate. Chlorpyrifos inhibits activity of acetylcholinesterase and brings an enhanced absorbance of blue product. The absorbance at 652 nm linearly increases with increasing chlorpyrifos concentration in the range of 2-20 ng mL-1 with detection limit of 0.57 ng mL-1 (S/N = 3). The method was successfully applied in determination of chlorpyrifos in peach by preparing Co-His-GQD-G magnetic gel sheet.
Collapse
Affiliation(s)
- Li Nana
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Ruiyi
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wang Qinsheng
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi, Wuxi 214174, China
| | - Yang Yongqiang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi, Wuxi 214174, China
| | - Sun Xiulan
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wang Guangli
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Zaijun
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast Temperature-Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021; 60:20795-20802. [PMID: 33908155 DOI: 10.1002/anie.202102846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Indexed: 11/10/2022]
Abstract
Inspired by the unique characteristics of living cells, the creation of life-inspired functional ensembles is a rapidly expanding research topic, enabling transformative applications in various disciplines. Herein, we report a facile method for the fabrication of phospholipid and block copolymer hybrid bi-microcompartments via spontaneous asymmetric assembly at the water/tributyrin interface, whereby the temperature-mediated dewetting of the inner microcompartments allowed for exocytosis to occur in the constructed system. The exocytosis location and commencement time could be controlled by the buoyancy of the inner microcompartment and temperature, respectively. Furthermore, the constructed bi-microcompartments showed excellent biocompatibility and a universal loading capacity toward cargoes of widely ranging sizes; thus, the proliferation and temperature-programmed transportation of living organisms was achieved. Our results highlight opportunities for the development of complex mesoscale dynamic ensembles with life-inspired behaviors and provide a novel platform for on-demand transport of various living organisms.
Collapse
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
21
|
Zhang L, Zhang D, Yang Y, Zhang Y. Stimuli-Responsive Proteinosomes Based on Biohybrid Shell Cross-Linked Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3950-3959. [PMID: 33751892 DOI: 10.1021/acs.langmuir.1c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new method of stimuli-responsive proteinosome fabrication with the shell cross-linked micelle as a template is reported in this research. A thermoresponsive diblock copolymer poly[di(ethylene glycol) methyl ether methacrylate]-b-poly[poly(ethylene glycol) methyl ether methacrylate-co-pyridyl disulfide methacrylamide] [PDEGMA-b-P(PEGMA-co-PDSMA)] was synthesized and self-assembled into micelles with PDEGMA cores and P(PEGMA-co-PDSMA) shells at the temperature above its lower critical solution temperature (LCST). Reduced bovine serum albumin (BSA) molecules with six thiol groups were used to cross-link the shells of the micelles by reacting with the pendant pyridyl disulfide groups on the P(PEGMA-co-PDSMA) block. At a temperature below the LCST of the polymer, the PDEGMA cores were dissolved in water, affording proteinosomes with a size of about 50 nm and capsule-like structures. The proteinosome was also thermoresponsive with a phase transition temperature at 35 °C. The fabrication of the proteinosome had no obvious influence on the structure and activity of BSA, and BSA retained most of its secondary structure and esterase-like activity. Because the BSA molecules were connected to the polymer chains through disulfide bonds, they could be released upon addition of dithiothreitol. The in vitro cell viability evaluation and the cellular uptake assay demonstrated that the proteinosome showed low toxicity to NIH 3T3 and 4T1 cells and could be internalized into the 4T1 cells.
Collapse
Affiliation(s)
- Lixin Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yongfang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
22
|
Wen P, Wang X, Moreno S, Boye S, Voigt D, Voit B, Huang X, Appelhans D. Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005749. [PMID: 33373089 DOI: 10.1002/smll.202005749] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
Collapse
Affiliation(s)
- Ping Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xueyi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Dagmar Voigt
- Institute for Botany, Faculty of Biology, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| |
Collapse
|
23
|
Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116126] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Wang X, Liu X, Huang X. Bioinspired Protein-Based Assembling: Toward Advanced Life-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001436. [PMID: 32374501 DOI: 10.1002/adma.202001436] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The ability of living organisms to perform structure, energy, and information-related processes for molecular self-assembly through compartmentalization and chemical transformation can possibly be mimicked via artificial cell models. Recent progress in the development of various types of functional microcompartmentalized ensembles that can imitate rudimentary aspects of living cells has refocused attention on the important question of how inanimate systems can transition into living matter. Hence, herein, the most recent advances in the construction of protein-bounded microcompartments (proteinosomes), which have been exploited as a versatile synthetic chassis for integrating a wide range of functional components and biochemical machineries, are critically summarized. The techniques developed for fabricating various types of proteinosomes are discussed, focusing on the significance of how chemical information, substance transportation, enzymatic-reaction-based metabolism, and self-organization can be integrated and recursively exploited in constructed ensembles. Therefore, proteinosomes capable of exhibiting gene-directed protein synthesis, modulated membrane permeability, spatially confined membrane-gated catalytic reaction, internalized cytoskeletal-like matrix assembly, on-demand compartmentalization, and predatory-like chemical communication in artificial cell communities are specially highlighted. These developments are expected to bridge the gap between materials science and life science, and offer a theoretical foundation for developing life-inspired assembled materials toward various applications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
26
|
Zhang C, Zhong Y, He Q, Shen D, Ye M, Lu M, Cui X, Zhao S. Positively Charged Nanogold Combined with Expanded Mesoporous Silica-Based Immunoassay for the Detection of Avermectin. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01732-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Li H, Su D, Gao H, Yan X, Kong D, Jin R, Liu X, Wang C, Lu G. Design of Red Emissive Carbon Dots: Robust Performance for Analytical Applications in Pesticide Monitoring. Anal Chem 2020; 92:3198-3205. [DOI: 10.1021/acs.analchem.9b04917] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, People’s Republic of China
| | - Dandan Su
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Hao Gao
- College of Software, Jilin University, Changchun 130012, People’s Republic of China
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Deshuai Kong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Rui Jin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Chenguang Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
28
|
Bari NK, Kumar G, Hazra JP, Kaur S, Sinha S. Functional protein shells fabricated from the self-assembling protein sheets of prokaryotic organelles. J Mater Chem B 2020; 8:523-533. [DOI: 10.1039/c9tb02224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fabricating single component protein compartments from the shells proteins of bacterial microcompartments.
Collapse
Affiliation(s)
- Naimat K. Bari
- Institute of Nano Science and Technology
- Habitat Centre
- Sector-64
- Mohali
- India
| | - Gaurav Kumar
- Institute of Nano Science and Technology
- Habitat Centre
- Sector-64
- Mohali
- India
| | - Jagadish P. Hazra
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER)
- Mohali
- Knowledge City
- Sector 81
| | - Simerpreet Kaur
- Institute of Nano Science and Technology
- Habitat Centre
- Sector-64
- Mohali
- India
| | - Sharmistha Sinha
- Institute of Nano Science and Technology
- Habitat Centre
- Sector-64
- Mohali
- India
| |
Collapse
|
29
|
Wang T, Xu J, Fan X, Yan X, Yao D, Li R, Liu S, Li X, Liu J. Giant "Breathing" Proteinosomes with Jellyfish-like Property. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47619-47624. [PMID: 31747244 DOI: 10.1021/acsami.9b18160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design and construction of "breathing" self-assemblies has been a rather popular topic due to their potential in materials science and nanotechnology. Inspired by the "breathing" behavior of natural jellyfish, herein, we presented the construction of a giant "breathing" proteinosome through an interfacial self-assembly of proteins and surfactants at the oil/water interface of emulsions: The proteinosome displays "breathing" behavior and can swell and shrink for multiple cycles by protein folding and unfolding through the alternate addition and removal of denaturant; more importantly, when green fluorescent proteins were selected as alternative protein building blocks, the fluorescence of proteinosome can be reversibly switched on/off just like the behavior of jellyfish. Moreover, accompanied by reversible swelling and shrinking and on/off fluorescence, the expanded and shrunk membrane pore can be tuned for distinguishing quantum dots of different sizes. The folding-responsive breathing behavior of intelligent proteinosomes provides a platform for functional biomaterials.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Xu Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Ruyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| |
Collapse
|
30
|
Fluorescent hydrogel test kit coordination with smartphone: Robust performance for on-site dimethoate analysis. Biosens Bioelectron 2019; 145:111706. [DOI: 10.1016/j.bios.2019.111706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
|
31
|
Shi P, Qin J, Wu X, Wang L, Zhang T, Yang D, Zan X, Appelhans D. A Facile and Universal Method to Efficiently Fabricate Diverse Protein Capsules for Multiple Potential Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39209-39218. [PMID: 31553877 DOI: 10.1021/acsami.9b15019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins are considered to be one of the most important highly reproducible and monodisperse building blocks with specific functions in life sciences and material science. Protein capsules and their hybrids composed of protein-polymer conjugates have been intensively explored in drug delivery, catalysis, and cell-mimicking functions. Herein, we present a facile, universal, and efficient method to fabricate the diverse protein capsules, independent of the molecular weight (Mw), isoelectric points (IEP), wettability, amino acid sequence, and functional domains of enumerated proteins. The protein capsules were well characterized by various techniques. Furthermore, their ability to store the original protein functionality was demonstrated, which was mainly embodied in their enzyme responsiveness and good biocompatibility in vitro and in vivo. We believe that these protein capsules have multiple potential applications such as in drug delivery, tissue engineering, catalysis, and other application fields.
Collapse
Affiliation(s)
- Pengzhong Shi
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , P. R. China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
| | - Jianghui Qin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , P. R. China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , P. R. China
| | - Liwen Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , P. R. China
| | - Tinghong Zhang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
| | - Dejun Yang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , P. R. China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , P. R. China
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , Dresden 01069 , Germany
| |
Collapse
|