1
|
Raman R, Muthu J, Yen ZL, Qorbani M, Chen YX, Chen DR, Hofmann M, Hsieh YP. Selective activation of MoS 2 grain boundaries for enhanced electrochemical activity. NANOSCALE HORIZONS 2024; 9:946-955. [PMID: 38456521 DOI: 10.1039/d4nh00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Molybdenum disulfide (MoS2) has emerged as a promising material for catalysis and sustainable energy conversion. However, the inertness of its basal plane to electrochemical reactions poses challenges to the utilization of wafer-scale MoS2 in electrocatalysis. To overcome this limitation, we present a technique that enhances the catalytic activity of continuous MoS2 by preferentially activating its buried grain boundaries (GBs). Through mild UV irradiation, a significant enhancement in GB activity was observed that approaches the values for MoS2 edges, as confirmed by a site-selective photo-deposition technique and micro-electrochemical hydrogen evolution reaction (HER) measurements. Combined spectroscopic characterization and ab-initio simulation demonstrates substitutional oxygen functionalization at the grain boundaries to be the origin of this selective catalytic enhancement by an order of magnitude. Our approach not only improves the density of active sites in MoS2 catalytic processes but yields a new photocatalytic conversion process. By exploiting the difference in electronic structure between activated GBs and the basal plane, homo-compositional junctions were realized that improve the photocatalytic synthesis of hydrogen by 47% and achieve performances beyond the capabilities of other catalytic sites.
Collapse
Affiliation(s)
- Radha Raman
- Department of Physics, National Central University, Taoyuan 32001, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeyavelan Muthu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan.
| | - Zhi-Long Yen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Xiang Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ding-Rui Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Lin Q, Luo C, Jin D, Zhou L, Zhang R, Wang X. Precise Tuning of Bilayer Ultrasmall MoS 2 Featuring Inhibition of Carrier Recombination and Fast Surface Chemistry for Green H 2 Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305888. [PMID: 37726232 DOI: 10.1002/smll.202305888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Achieving water splitting to produce green H2 , using the noble-metal-free MoS2 , has attracted huge interest from researchers. However, tuning the number of MoS2 layers precisely while obtaining small lateral sizes to surge the H2 -evolution rate is a tremendous challenge. Here, a bottom-up strategy is designed for the in situ growth of ultrasmall lateral-sized MoS2 with tunable layers on CdS nanorods (CN) by controlling the decomposition temperature and concentration of substrate seed (NH4 )2 MoS4 . Here, the bilayer MoS2 and CN coupling (2L-MoS2 /CN) exhibits the optimum photocatalytic activity. Compared to thicker MoS2 , the 2L-MoS2 has sufficient reduction capacity to drive photocatalytic H2 evolution and the ultrasmall lateral size provides more active sites. Meanwhile, the indirect bandgap, in contrast to the direct bandgap of the monolayer MoS2 , suppresses the carrier recombination transferred to 2L-MoS2 . Under the synergistic effect of both, 2L-MoS2 /CN has fast surface chemical reactions, resulting in the photocatalytic H2 -evolution rate of up to 41.86 mmol g-1 h-1 . A novel strategy is provided here for tuning the MoS2 layers to achieve efficient H2 evolution.
Collapse
Affiliation(s)
- Qingzhuo Lin
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, 330031, China
| | - Chonghan Luo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, 330031, China
| | - Dai Jin
- School of Future Technology, Nanchang University, 999 Xuefu Road, Nanchang, 330031, China
| | - Ling Zhou
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, 330031, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, 330031, China
| | - Xuewen Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, 330031, China
| |
Collapse
|
3
|
Gu C, Sun T, Wang Z, Jiang S, Wang Z. High Resolution Electrochemical Imaging for Sulfur Vacancies on 2D Molybdenum Disulfide. SMALL METHODS 2023; 7:e2201529. [PMID: 36683170 DOI: 10.1002/smtd.202201529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Molybdenum disulfide (MoS2 ) is considered as one of the most promising non-noble-metal catalysts for hydrogen evolution reaction (HER). To achieve practical application, introducing sulfur (S) vacancies on the inert basal plane of MoS2 is a widely accepted strategy to improve its HER activity. However, probing active sites at the nanoscale and quantitatively analyzing the related electrocatalytic activity in electrolyte aqueous solution are still great challenges. In this work, utilizing high-resolution scanning electrochemical microscopy, optimized electrodes and newly designed thermal drift calibration software, the HER activity of the S vacancies on an MoS2 inert surface is in situ imaged with less than 20-nm-radius sensitivity and the HER kinetic data for S vacancies, including Tafel plot and onset potential, are quantitatively measured. Additionally, the stability of S vacancies over the wide range of pH 0-13 is investigated. This study provides a viable strategy for obtaining the catalytic kinetics of nanoscale active sites on structurally complex electrocatalysts and evaluating the stability of defects in different environments for 2D material-based catalysts.
Collapse
Affiliation(s)
- Chaoqun Gu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenyu Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Sisi Jiang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
4
|
Embedded 1T-rich MoS2 into C3N4 hollow microspheres for effective photocatalytic hydrogen production. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Han D, Du G, Wang Y, Jia L, Zhao W, Su Q, Ding S, Zhang M, Xu B. Chemical Energy-Driven Lithiation Preparation of Defect-Rich Transition Metal Nanostructures for Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202779. [PMID: 35934891 DOI: 10.1002/smll.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Transition metal nanostructures are widely regarded as important catalysts to replace the precious metal Pt for hydrogen evolution reaction (HER) in water splitting. However, it is difficult to obtain uniform-sized and ultrafine metal nanograins through general high-temperature reduction and sintering processes. Herein, a novel method of chemical energy-driven lithiation is introduced to synthesize transition metal nanostructures. By taking advantage of the slow crystallization kinetics at room temperature, more surface and boundary defects can be generated and remained, which reduce the atomic coordination number and tune the electronic structure and adsorption free energy of the metals. The obtained Ni nanostructures therein exhibit excellent HER performance. In addition, the bimetal of Co and Ni shows better electrocatalytic kinetics than individual Ni and Co nanostructures, reaching 100 mA cm-2 at a low overpotential of 127 mV. The high HER performance originates from well-formed synergistic effect between Ni and Co by tuning the electronic structures. Density functional theory simulations confirm that the bimetallic NiCo possesses a low Gibbs free energy of hydrogen adsorption, which are conducive to enhance its intrinsic activity. This work provides a general strategy that enables simultaneous defect engineering and electronic modulation of transition metal catalysts to achieve an enhancement in HER performance.
Collapse
Affiliation(s)
- Di Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Lina Jia
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wenqi Zhao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
7
|
de Freitas N, Florindo BR, Freitas VMS, Piazzetta MHDO, Ospina CA, Bettini J, Strauss M, Leite ER, Gobbi AL, Lima RS, Santhiago M. Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS 2 layers on gold surfaces. NANOSCALE 2022; 14:6811-6821. [PMID: 35388391 DOI: 10.1039/d2nr00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molybdenum disulfide (MoS2) is a very promising layered material for electrical, optical, and electrochemical applications because of its unique and outstanding properties. To unlock its full potential, among different preparation routes, electrochemistry has gain interest due to its simple, fast, scalable and simple instrumentation. However, obtaining large-area monolayer MoS2 that will enable the fabrication of novel electronic and electrochemical devices is still challenging. In this work, we reported a simple and fast electrochemical thinning process that results in ultra-large MoS2 down to monolayer on Au surfaces. The high affinity of MoS2 by Au surfaces enables the removal of bulk layers while preserving the first layer attached to the electrode. With a proper choice of the applied potential, more than 90% of the bulk regions can be removed from large-area MoS2 crystals, as confirmed by atomic force microscopy, photoluminescence, and Raman spectroscopy. We further address a set of contributions that are helpful to elucidate the features of MoS2, namely, the hyphenation of electrochemistry and optical microscopy for real-time observation of the thinning process that was revealed to occur from the edges to the center of the flake, an image treatment to estimate the thinning area and thinning rate, and the preparation of free-standing MoS2 layers by electrochemically thinning bulk flakes on microhole-structured Ni/Au meshes.
Collapse
Affiliation(s)
- Nicolli de Freitas
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Bianca R Florindo
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Vitória M S Freitas
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Maria H de O Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Carlos A Ospina
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Edson R Leite
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
8
|
Mukundan A, Feng SW, Weng YH, Tsao YM, Artemkina SB, Fedorov VE, Lin YS, Huang YC, Wang HC. Optical and Material Characteristics of MoS 2/Cu 2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int J Mol Sci 2022; 23:4745. [PMID: 35563136 PMCID: PMC9101548 DOI: 10.3390/ijms23094745] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition (CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy, atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary processing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman mapping measurements. The luminous energy gap between the two materials is examined through PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to the change in the photocurrent with the number of each cell, the linear regression of the three cell types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells and the number of cells.
Collapse
Affiliation(s)
- Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-H.W.); (Y.-M.T.)
| | - Shih-Wei Feng
- Department of Applied Physics, National University of Kaohsiung, 700 Kaohsiung University Rd., Nanzih District, Kaohsiung 81148, Taiwan;
| | - Yu-Hsin Weng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-H.W.); (Y.-M.T.)
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-H.W.); (Y.-M.T.)
| | - Sofya B. Artemkina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
| | - Vladimir E. Fedorov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
| | - Yen-Sheng Lin
- Department of Electronic Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan;
| | - Yu-Cheng Huang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Kaohsiung City 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-H.W.); (Y.-M.T.)
| |
Collapse
|
9
|
Xue Y, Wang X, Liang Z, Zhang X, Tian J. The fabrication of graphitic carbon nitride hollow nanocages with semi-metal 1T' phase molybdenum disulfide as co-catalysts for excellent photocatalytic nitrogen fixation. J Colloid Interface Sci 2022; 608:1229-1237. [PMID: 34749134 DOI: 10.1016/j.jcis.2021.10.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Improving the efficiency of photogenerated carrier separation is essential for photocatalytic N2 fixation. Herein, the 2D semi-metal 1T'-MoS2 was uniformly distributed in g-C3N4 nanocages (CNNCs) by a hydrothermal method, and the 1T'-MoS2/CNNC composite was obtained. 1T'-MoS2 as a co-catalyst can promote the transfer of electrons, improve the separation efficiency of photogenerated carriers, and also increase the number of effective active sites. In addition, the unique nanocage morphology of CNNCs is conducive to the scattering and reflection of incident light and improves the light absorption capacity. Therefore, the optimized 1T'-MoS2/CNNC composite (5 wt%) shows a significantly improved photocatalytic N2 fixation rate (9.8 mmol L-1 h-1 g-1) and good stability, which is significantly higher than pure CNNCs (2.9 mmol L-1 h-1 g-1), Pt/CNNC (8.2 mmol L-1 h-1 g-1) and Pt/g-C3N4 nanosheet (CNNS, 6.3 mmol L-1 h-1 g-1). This work guides guidance for the design of green and efficient N2 fixation photocatalysts.
Collapse
Affiliation(s)
- Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhangqian Liang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
10
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Lei W, Wang F, Lu B, Ye Z, Pan X. Zn-doped SnS with sulfur vacancies for enhanced photocatalytic hydrogen evolution from water. NEW J CHEM 2022. [DOI: 10.1039/d2nj03520k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tin sulfide has attracted considerable attention due to its adjustable optoelectronic properties. However, few present pieces of literature focus on the photocatalytic water splitting performance of stannous sulfide (SnS), despite...
Collapse
|
12
|
Mukundan A, Tsao YM, Artemkina SB, Fedorov VE, Wang HC. Growth Mechanism of Periodic-Structured MoS 2 by Transmission Electron Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:135. [PMID: 35010085 PMCID: PMC8796029 DOI: 10.3390/nano12010135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
Abstract
Molybdenum disulfide (MoS2) was grown on a laser-processed periodic-hole sapphire substrate through chemical vapor deposition. The main purpose was to investigate the mechanism of MoS2 growth in substrate with a periodic structure. By controlling the amount and position of the precursor, adjusting the growth temperature and time, and setting the flow rate of argon gas, MoS2 grew in the region of the periodic holes. A series of various growth layer analyses of MoS2 were then confirmed by Raman spectroscopy, photoluminescence spectroscopy, and atomic force microscopy. Finally, the growth mechanism was studied by transmission electron microscopy (TEM). The experimental results show that in the appropriate environment, MoS2 can be successfully grown on substrate with periodic holes, and the number of growth layers can be determined through measurements. By observing the growth mechanism, composition analysis, and selected area electron diffraction diagram by TEM, we comprehensively understand the growth phenomenon. The results of this research can serve as a reference for the large-scale periodic growth of MoS2. The production of periodic structures by laser drilling is advantageous, as it is relatively simpler than other methods.
Collapse
Affiliation(s)
- Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-M.T.)
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-M.T.)
| | - Sofya B. Artemkina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
| | - Vladimir E. Fedorov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-M.T.)
| |
Collapse
|
13
|
Sulfide-Based Photocatalysts Using Visible Light, with Special Focus on In2S3, SnS2 and ZnIn2S4. Catalysts 2021. [DOI: 10.3390/catal12010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sulfides are frequently used as photocatalysts, since they absorb visible light better than many oxides. They have the disadvantage of being more easily photocorroded. This occurs mostly in oxidizing conditions; therefore, they are commonly used instead in reduction processes, such as CO2 reduction to fuels or H2 production. Here a summary will be presented of a number of sulfides used in several photocatalytic processes; where appropriate, some recent reviews will be presented of their behaviour. Results obtained in recent years by our group using some octahedral sulfides will be shown, showing how to determine their wavelength-dependent photocatalytic activities, checking their mechanisms in some cases, and verifying how they can be modified to extend their wavelength range of activity. It will be shown here as well how using photocatalytic or photoelectrochemical setups, by combining some enzymes with these sulfides, allows achieving the photo-splitting of water into H2 and O2, thus constituting a scheme of artificial photosynthesis.
Collapse
|
14
|
Nabiyan A, Max JB, Neumann C, Heiland M, Turchanin A, Streb C, Schacher FH. Polyampholytic Graft Copolymers as Matrix for TiO 2 /Eosin Y/[Mo 3 S 13 ] 2- Hybrid Materials and Light-Driven Catalysis. Chemistry 2021; 27:16924-16929. [PMID: 33547705 PMCID: PMC9290844 DOI: 10.1002/chem.202100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/12/2022]
Abstract
An effective strategy to enhance the performance of inorganic semiconductors is moving towards organic-inorganic hybrid materials. Here, we report the design of core-shell hybrid materials based on a TiO2 core functionalized with a polyampholytic (poly(dehydroalanine)-graft-(n-propyl phosphonic acid acrylamide) shell (PDha-g-PAA@TiO2 ). The PDha-g-PAA shell facilitates the efficient immobilization of the photosensitizer Eosin Y (EY) and enables electronic interactions between EY and the TiO2 core. This resulted in high visible-light-driven H2 generation. The enhanced light-driven catalytic activity is attributed to the unique core-shell design with the graft copolymer acting as bridge and facilitating electron and proton transfer, thereby also preventing the degradation of EY. Further catalytic enhancement of PDha-g-PAA@TiO2 was possible by introducing [Mo3 S13 ]2- cluster anions as hydrogen-evolution cocatalyst. This novel design approach is an example for a multi-component system in which reactivity can in future be independently tuned by selection of the desired molecular or polymeric species.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Johannes Bernhard Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Christof Neumann
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaLessingstr. 1007743JenaGermany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrey Turchanin
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaLessingstr. 1007743JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Felix Helmut Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
15
|
Yu X, Ng SF, Putri LK, Tan LL, Mohamed AR, Ong WJ. Point-Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g-C 3 N 4 ) Photocatalysts toward Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006851. [PMID: 33909946 DOI: 10.1002/smll.202006851] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.
Collapse
Affiliation(s)
- Xinnan Yu
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor, Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor, Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor, Darul Ehsan, 43900, Malaysia
| | - Lutfi Kurnianditia Putri
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau, Pinang, 14300, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Selangor, Darul Ehsan, 47500, Malaysia
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau, Pinang, 14300, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor, Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor, Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
16
|
Xu JY, Tong X, Besteiro LV, Li X, Hu C, Liu R, Channa AI, Zhao H, Rosei F, Govorov AO, Wang Q, Wang ZM. Rational synthesis of novel "giant" CuInTeSe/CdS core/shell quantum dots for optoelectronics. NANOSCALE 2021; 13:15301-15310. [PMID: 34490860 DOI: 10.1039/d1nr04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
"Giant" core/shell quantum dots (g-QDs) are promising candidates for emerging optoelectronic technologies thanks to their facile structure/composition-tunable optoelectronic properties and outstanding photo-physical/chemical stability. Here, we synthesized a new type of CuInTeSe (CITS)/CdS g-QDs and regulated their optoelectronic properties by controlling the shell thickness. Through increasing the shell thickness, as-prepared g-QDs exhibited tunable red-shifted emission (from 900 to 1200 nm) and prolonged photoluminescence (PL) lifetimes (up to ∼14.0 μs), indicating a formed band structure showing efficient charge separation and transfer, which is further testified by theoretical calculations and ultrafast time-resolved transient absorption (TA) spectroscopy. These CITS/CdS g-QDs with various shell thicknesses can be employed to fabricate photoelectrochemical (PEC) cells, exhibiting improved photoresponse and stability as compared to the bare CITS QD-based devices. The results indicate that the rational design and engineering of g-QDs is very promising for future QD-based optoelectronic technologies.
Collapse
Affiliation(s)
- Jing-Yin Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Lucas V Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2 Varennes, Québec, Canada
| | - Xin Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Chenxia Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ruitong Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ali Imran Channa
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Haiguang Zhao
- College of Physics & State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Federico Rosei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2 Varennes, Québec, Canada
| | | | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
17
|
Cao Y. Roadmap and Direction toward High-Performance MoS 2 Hydrogen Evolution Catalysts. ACS NANO 2021; 15:11014-11039. [PMID: 34251805 DOI: 10.1021/acsnano.1c01879] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
Collapse
Affiliation(s)
- Yang Cao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871 P. R. China
| |
Collapse
|
18
|
Wang L, Zhang L, Lin B, Zheng Y, Chen J, Zheng Y, Gao B, Long J, Chen Y. Activation of Carbonyl Oxygen Sites in β-Ketoenamine-Linked Covalent Organic Frameworks via Cyano Conjugation for Efficient Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101017. [PMID: 33979001 DOI: 10.1002/smll.202101017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
2D covalent organic frameworks (COFs) are drawing intense attention in heterogenous photocatalysis due to their porous, crystalline, and tailor-made structures. For highly efficient solar-to-chemical energy conversion, revealing and modulating active centers in the skeletons of COFs are of great importance but encounter severe challenges. Herein, it is demonstrated that cyano conjugation on a typical β-ketoenamine-linked COF via aldehyde-imine Schiff-base condensation contributes to an enhanced stable photocatalytic H2 -evolution rate of 1.8 mmol h-1 g-1 (λ > 420 nm) with a superior apparent quantum yield of 2.12% at 420 nm, compared to pristine COFs. Both experimental results and density functional theory calculations disclose that the cyano conjugation can efficiently improve photoinduced charge separation and effectively decrease the energy barrier for H-intermediate generation on the carbonyl oxygen sites of the functionalized COFs. These findings present a precise organic functionalization strategy to optimize active centers on COF-based photocatalysts for the practical applications.
Collapse
Affiliation(s)
- Lvting Wang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lili Zhang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bizhou Lin
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yanzhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingling Chen
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yun Zheng
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bifen Gao
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jinlin Long
- Sate Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| | - Yilin Chen
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
19
|
Li J, Guiney LM, Downing JR, Wang X, Chang CH, Jiang J, Liu Q, Liu X, Mei KC, Liao YP, Ma T, Meng H, Hersam MC, Nel AE, Xia T. Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Non-Toxic 2D Boron Nitride Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101084. [PMID: 34032006 PMCID: PMC8225588 DOI: 10.1002/smll.202101084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Indexed: 05/07/2023]
Abstract
2D boron nitride (BN) and molybdenum disulfide (MoS2 ) materials are increasingly being used for applications due to novel chemical, electronic, and optical properties. Although generally considered biocompatible, recent data have shown that BN and MoS2 could potentially be hazardous under some biological conditions, for example, during, biodistribution of drug carriers or imaging agents to the liver. However, the effects of these 2D materials on liver cells such as Kupffer cells (KCs), liver sinusoidal endothelial cells, and hepatocytes, are unknown. Here, the toxicity of BN and MoS2 , dispersed in Pluronic F87 (designated BN-PF and MoS2 -PF) is compared with aggregated forms of these materials (BN-Agg and MoS2 -Agg) in liver cells. MoS2 induces dose-dependent cytotoxicity in KCs, but not other cell types, while the BN derivatives are non-toxic. The effect of MoS2 could be ascribed to nanosheet dissolution and the release of hexavalent Mo, capable of inducing mitochondrial reactive oxygen species generation and caspases 3/7-mediated apoptosis in KUP5 cells. In addition, the phagocytosis of MoS2 -Agg triggers an independent response pathway involving lysosomal damage, NLRP3 inflammasome activation, caspase-1 activation, IL-1β, and IL-18 production. These findings demonstrate the importance of Mo release and the state of dispersion of MoS2 in impacting KC viability.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Linda M Guiney
- Departments of Materials Science and Engineering Chemistry and Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Departments of Materials Science and Engineering Chemistry and Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tiancong Ma
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark C Hersam
- Departments of Materials Science and Engineering Chemistry and Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - André E Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Wang Z, Kannan H, Su T, Swaminathan J, Shirodkar SN, Robles Hernandez FC, Benavides HC, Vajtai R, Yakobson BI, Meiyazhagan A, Ajayan PM. Substitution of copper atoms into defect-rich molybdenum sulfides and their electrocatalytic activity. NANOSCALE ADVANCES 2021; 3:1747-1757. [PMID: 36132560 PMCID: PMC9419841 DOI: 10.1039/d0na01064b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 06/14/2023]
Abstract
Studies on intercalation or substitution of atoms into layered two-dimensional (2D) materials are rapidly expanding and gaining significant consideration due to their importance in electronics, catalysts, batteries, sensors, etc. In this manuscript, we report a straightforward method to create sulphur (S) deficient molybdenum (Mo) sulfide (MoS2-x ) structures and substitute them with zerovalent copper (Cu) atoms using a colloidal synthesis method. The synthesized materials were studied using several techniques to understand the proportion and position of copper atoms and the effect of copper functionalization. Specifically, the impact of change in the ratio of Cu : S and the hydrogen evolution reaction (HER) activity of the derived materials were evaluated. This technique paves the way for the synthesis of various functionalized 2D materials with a significant impact on their physical and chemical behavior making them potential candidates for catalysis and several other applications such as energy storage and the development of numerous functional devices.
Collapse
Affiliation(s)
- Zixing Wang
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| | - Tonghui Su
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
- School of Materials Science and Engineering, Beihang University Beijing 100091 P.R. China
| | - Jayashree Swaminathan
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| | - Sharmila N Shirodkar
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| | - Francisco C Robles Hernandez
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
- Department of Mechanical Engineering Technology, University of Houston Houston Texas 77204-4020 USA
| | - Hector Calderon Benavides
- Departamento de Física, ESFM-IPN, Ed. 9, Instituto Politécnico Nacional UPALM Mexico D.F. 07738 Mexico
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged Rerrich Béla Tér 1 Szeged H-6720 Hungary
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University Houston TX 77005 USA
| |
Collapse
|
21
|
Zheng H, Lu Y, Ye KH, Hu J, Liu S, Yan J, Ye Y, Guo Y, Lin Z, Cheng J, Cao Y. Atomically thin photoanode of InSe/graphene heterostructure. Nat Commun 2021; 12:91. [PMID: 33398029 PMCID: PMC7782821 DOI: 10.1038/s41467-020-20341-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Achieving high-efficiency photoelectrochemical water splitting requires a better understanding of ion kinetics, e.g., diffusion, adsorption and reactions, near the photoelectrode's surface. However, with macroscopic three-dimensional electrodes, it is often difficult to disentangle the contributions of surface effects to the total photocurrent from that of various factors in the bulk. Here, we report a photoanode made from a InSe crystal monolayer that is encapsulated with monolayer graphene to ensure high stability. We choose InSe among other photoresponsive two-dimensional (2D) materials because of its unique properties of high mobility and strongly suppressing electron-hole pair recombination. Using the atomically thin electrodes, we obtained a photocurrent with a density >10 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is several orders of magnitude greater than other 2D photoelectrodes. In addition to the outstanding characteristics of InSe, we attribute the enhanced photocurrent to the strong coupling between the hydroxide ions and photo-generated holes near the anode surface. As a result, a persistent current even after illumination ceased was also observed due to the presence of ions trapped holes with suppressed electron-hole recombination. Our results provide atomically thin materials as a platform for investigating ion kinetics at the electrode surface and shed light on developing next-generation photoelectrodes with high efficiency.
Collapse
Affiliation(s)
- Haihong Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yizhen Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jinyuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yuxi Guo
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. .,Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
22
|
Eidsvåg H, Rasukkannu M, Velauthapillai D, Vajeeston P. In-depth first-principle study on novel MoS2 polymorphs. RSC Adv 2021; 11:3759-3769. [PMID: 35424321 PMCID: PMC8694157 DOI: 10.1039/d0ra10443d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/25/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
14 new MoS2 polymorphs were studied using first-principle calculations based on density functional theory. We found a new promising MoS2 candidate for photocatalytic and photovoltaic applications.
Collapse
Affiliation(s)
- Håkon Eidsvåg
- Department of Computing, Mathematics and Physics
- Western Norway University of Applied Sciences
- Bergen
- Norway
| | - Murugesan Rasukkannu
- Department of Computing, Mathematics and Physics
- Western Norway University of Applied Sciences
- Bergen
- Norway
| | - Dhayalan Velauthapillai
- Department of Computing, Mathematics and Physics
- Western Norway University of Applied Sciences
- Bergen
- Norway
| | - Ponniah Vajeeston
- Center for Materials Science and Nanotechnology
- Department of Chemistry
- University of Oslo
- Oslo
- Norway
| |
Collapse
|
23
|
DiStefano JG, Murthy AA, Hao S, Dos Reis R, Wolverton C, Dravid VP. Topology of transition metal dichalcogenides: the case of the core-shell architecture. NANOSCALE 2020; 12:23897-23919. [PMID: 33295919 DOI: 10.1039/d0nr06660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-planar architectures of the traditionally flat 2D materials are emerging as an intriguing paradigm to realize nascent properties within the family of transition metal dichalcogenides (TMDs). These non-planar forms encompass a diversity of curvatures, morphologies, and overall 3D architectures that exhibit unusual characteristics across the hierarchy of length-scales. Topology offers an integrated and unified approach to describe, harness, and eventually tailor non-planar architectures through both local and higher order geometry. Topological design of layered materials intrinsically invokes elements highly relevant to property manipulation in TMDs, such as the origin of strain and its accommodation by defects and interfaces, which have broad implications for improved material design. In this review, we discuss the importance and impact of geometry on the structure and properties of TMDs. We present a generalized geometric framework to classify and relate the diversity of possible non-planar TMD forms. We then examine the nature of curvature in the emerging core-shell architecture, which has attracted high interest due to its versatility and design potential. We consider the local structure of curved TMDs, including defect formation, strain, and crystal growth dynamics, and factors affecting the morphology of core-shell structures, such as synthesis conditions and substrate morphology. We conclude by discussing unique aspects of TMD architectures that can be leveraged to engineer targeted, exotic properties and detail how advanced characterization tools enable detection of these features. Varying the topology of nanomaterials has long served as a potent methodology to engineer unusual and exotic properties, and the time is ripe to apply topological design principles to TMDs to drive future nanotechnology innovation.
Collapse
Affiliation(s)
- Jennifer G DiStefano
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Kim J, Jung H, Jung SM, Hwang J, Kim DY, Lee N, Kim KS, Kwon H, Kim YT, Han JW, Kim JK. Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. J Am Chem Soc 2020; 143:1399-1408. [DOI: 10.1021/jacs.0c10661] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jaerim Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeonjung Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sang-Mun Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Noho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyu-Su Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Yong-Tae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
25
|
Plasmonic p-n heterojunction of Ag/Ag2S/Ag2MoO4 with enhanced Vis-NIR photocatalytic activity for purifying wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117347] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Feng S, Tan J, Zhao S, Zhang S, Khan U, Tang L, Zou X, Lin J, Cheng HM, Liu B. Synthesis of Ultrahigh-Quality Monolayer Molybdenum Disulfide through In Situ Defect Healing with Thiol Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003357. [PMID: 32743967 DOI: 10.1002/smll.202003357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Monolayer transition metal dichalcogenides are 2D materials with many potential applications. Chemical vapor deposition (CVD) is a promising method to synthesize these materials. However, CVD-grown materials generally have poorer quality than mechanically exfoliated ones and contain more defects due to the difficulties in controlling precursors' distribution and concentration during growth where solid precursors are used. Here, thiol is proposed to be used as a liquid precursor for CVD growth of high quality and uniform 2D MoS2 . Atomic-resolved structure characterizations indicate that the concentration of sulfur vacancies in the MoS2 grown from thiol is the lowest among all reported CVD samples. Low temperature spectroscopic characterization further reveals the ultrahigh optical quality of the grown MoS2 . Density functional theory simulations indicate that thiol molecules could interact with sulfur vacancies in MoS2 and repair these defects during the growth of MoS2 , resulting in high-quality MoS2 . This work provides a facile and controllable method for the growth of high-quality 2D materials with ultralow sulfur vacancies and high optical quality, which will benefit their optoelectronic applications.
Collapse
Affiliation(s)
- Simin Feng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shuqing Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Usman Khan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Lei Tang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junhao Lin
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
27
|
Li M, Li J, Jin Z. Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Li KC, Lu MY, Nguyen HT, Feng SW, Artemkina SB, Fedorov VE, Wang HC. Intelligent Identification of MoS 2 Nanostructures with Hyperspectral Imaging by 3D-CNN. NANOMATERIALS 2020; 10:nano10061161. [PMID: 32545726 PMCID: PMC7353172 DOI: 10.3390/nano10061161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Increasing attention has been paid to two-dimensional (2D) materials because of their superior performance and wafer-level synthesis methods. However, the large-area characterization, precision, intelligent automation, and high-efficiency detection of nanostructures for 2D materials have not yet reached an industrial level. Therefore, we use big data analysis and deep learning methods to develop a set of visible-light hyperspectral imaging technologies successfully for the automatic identification of few-layers MoS2. For the classification algorithm, we propose deep neural network, one-dimensional (1D) convolutional neural network, and three-dimensional (3D) convolutional neural network (3D-CNN) models to explore the correlation between the accuracy of model recognition and the optical characteristics of few-layers MoS2. The experimental results show that the 3D-CNN has better generalization capability than other classification models, and this model is applicable to the feature input of the spatial and spectral domains. Such a difference consists in previous versions of the present study without specific substrate, and images of different dynamic ranges on a section of the sample may be administered via the automatic shutter aperture. Therefore, adjusting the imaging quality under the same color contrast conditions is unnecessary, and the process of the conventional image is not used to achieve the maximum field of view recognition range of ~1.92 mm2. The image resolution can reach ~100 nm and the detection time is 3 min per one image.
Collapse
Affiliation(s)
- Kai-Chun Li
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High Tech Innovations, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (K.-C.L.); (H.T.N.)
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan;
| | - Hong Thai Nguyen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High Tech Innovations, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (K.-C.L.); (H.T.N.)
| | - Shih-Wei Feng
- Department of Applied Physics, National University of Kaohsiung, 700 Kaohsiung University Rd., Nanzih District, Kaohsiung 81148, Taiwan;
| | - Sofya B. Artemkina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
| | - Vladimir E. Fedorov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High Tech Innovations, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (K.-C.L.); (H.T.N.)
- Correspondence:
| |
Collapse
|
29
|
Duan P, Yang S, He P, Zhang P, Xie X, Ding G. Coordinating capillary infiltration with anodic oxidation: a multi-functional strategy for electrochemical fabrication of graphene. RSC Adv 2020; 10:43324-43333. [PMID: 35519722 PMCID: PMC9058281 DOI: 10.1039/d0ra07531k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Coordinating the capillarity infiltration with anodic oxidation enables electrochemical fabrication of various graphene materials at different temperatures.
Collapse
Affiliation(s)
- Pu Duan
- State Key Laboratory of Functional Materials for Informatics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Peng He
- State Key Laboratory of Functional Materials for Informatics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Penglei Zhang
- State Key Laboratory of Functional Materials for Informatics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials for Informatics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Guqiao Ding
- State Key Laboratory of Functional Materials for Informatics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
30
|
Sun X, Shi L, Huang H, Song X, Ma T. Surface engineered 2D materials for photocatalysis. Chem Commun (Camb) 2020; 56:11000-11013. [DOI: 10.1039/d0cc04790b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
2D materials, with thin thickness, large lateral size and abundant exposed surface atoms with dominant facets, provide ideal platforms for carrying out surface engineering at the atomic level for optimizing their photocatalytic performance.
Collapse
Affiliation(s)
- Xiaodong Sun
- Institute of Clean Energy Chemistry
- Key Laboratory for Green Synthesis and Preparative Chemistry of Adv. Mater
- College of Chemistry
- Liaoning University
- Shenyang 110036
| | - Litong Shi
- Institute of Clean Energy Chemistry
- Key Laboratory for Green Synthesis and Preparative Chemistry of Adv. Mater
- College of Chemistry
- Liaoning University
- Shenyang 110036
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
- China
| | - Ximing Song
- Institute of Clean Energy Chemistry
- Key Laboratory for Green Synthesis and Preparative Chemistry of Adv. Mater
- College of Chemistry
- Liaoning University
- Shenyang 110036
| | - Tianyi Ma
- Discipline of Chemistry
- School of Environmental & Life Sciences
- The University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
31
|
Cao Y, Wang G, Ma Q, Jin Z. An amorphous nickel boride-modified ZnxCd1−xS solid solution for enhanced photocatalytic hydrogen evolution. Dalton Trans 2020; 49:1220-1231. [DOI: 10.1039/c9dt04311j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, the rational design of amorphous NixB as a co-catalyst for the modification of ZnxCd1−xS was achieved.
Collapse
Affiliation(s)
- Yue Cao
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R.China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| | - Guorong Wang
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R.China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan,750021
- PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P.R.China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
| |
Collapse
|