1
|
Sun Y, Lee J, Kwon NH, Lim J, Jin X, Gogotsi Y, Hwang SJ. Enhancing Hydrogen Evolution Reaction Activity of Palladium Catalyst by Immobilization on MXene Nanosheets. ACS NANO 2024; 18:6243-6255. [PMID: 38345597 DOI: 10.1021/acsnano.3c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Efficient catalysts with minimal content of catalytically active noble metals are essential for the transition to the clean hydrogen economy. Catalyst supports that can immobilize and stabilize catalytic nanoparticles and facilitate the supply of electrons and reactants to the catalysts are needed. Being hydrophilic and more conductive compared with carbons, MXenes have shown promise as catalyst supports. However, the controlled assembly of their 2D sheets creates a challenge. This study established a lattice engineering approach to regulate the assembly of exfoliated Ti3C2Tx MXene nanosheets with guest cations of various sizes. The enlargement of guest cations led to a decreased interlayer interaction of MXene lamellae and increased surface accessibility, allowing intercalation of Pd nanoparticles. Stabilization of Pd nanoparticles between interlayer-expanded MXene nanosheets improved their electrocatalytic activity. The Pd-immobilized K+-intercalated MXene nanosheets (PdKMX) demonstrated exceptional electrocatalytic performance for the hydrogen evolution reaction with the lowest overpotential of 72 mV (@10 mA cm-2) and the highest turnover frequency of 1.122 s-1 (@ an overpotential of 100 mV), which were superior to those of the state-of-the-art Pd nanoparticle-based electrocatalysts. Weakening of the interlayer interaction during self-assembly with K+ ions led to fewer layers in lamellae and expansion of the MXene in the c direction during Pd anchoring, providing numerous surface-active sites and promoting mass transport. In situ spectroscopic analysis suggests that the effective interfacial electron injection from the Pd nanoparticles strongly immobilized on interlayer-expanded PdKMX may be responsible for the improved electrocatalytic performance.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joohyun Lim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Zhou Z, Zheng X, Liu M, Liu P, Han S, Chen Y, Lan B, Sun M, Yu L. Engineering Amorphous/Crystalline Structure of Manganese Oxide for Superior Oxygen Catalytic Performance in Rechargeable Zinc-Air Batteries. CHEMSUSCHEM 2022; 15:e202200612. [PMID: 35686961 DOI: 10.1002/cssc.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Although amorphous materials are popular in oxygen electrocatalysis, their performance requires further improvement to meet the need for rechargeable zinc-air batteries. In this work, an amorphous/crystalline layered manganese oxide (ACMO) was designed, and its unique amorphous/crystalline homogeneous structure activated its oxygen reduction activity with a positive half-wave potential of 0.81 V and oxygen evolution activity with a moderate overpotential of 407 mV at 10 mA cm-2 . Moreover, the amorphous/crystalline structure endowed ACMO with excellent stability. While employed as the air-electrode material for rechargeable zinc-air batteries, ACMO overcame the poor cycling stability of manganese oxide and cycled stably for 1000 cycles (≈17 days) at 10 mA cm-2 . Besides, it delivered a high power density of 159.7 mW cm-2 and a narrow voltage gap of 0.66 V. This work gives an insight into designing oxide materials with amorphous/crystalline structure and feasible guidance for harmonizing electrochemical activity and stability.
Collapse
Affiliation(s)
- Zihao Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Xiaoying Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | - Manna Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Peng Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Shengbo Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Yingru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Bang Lan
- School of Chemistry and Environment, Jiaying University, 514015, Meizhou, P. R.China
| | - Ming Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| |
Collapse
|
3
|
Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with 0D polyoxotungstate for highly efficient hybrid supercapacitor. J Colloid Interface Sci 2022; 616:548-559. [DOI: 10.1016/j.jcis.2022.02.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 11/19/2022]
|
4
|
Xia Q, Li D, Zhao L, Wang J, Long Y, Han X, Zhou Z, Liu Y, Zhang Y, Li Y, Adam AAA, Chou S. Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li-O 2 batteries. Chem Sci 2022; 13:2841-2856. [PMID: 35382475 PMCID: PMC8905958 DOI: 10.1039/d1sc05781b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Developing efficient energy storage and conversion applications is vital to address fossil energy depletion and global warming. Li-O2 batteries are one of the most promising devices because of their ultra-high energy density. To overcome their practical difficulties including low specific capacities, high overpotentials, limited rate capability and poor cycle stability, an intensive search for highly efficient electrocatalysts has been performed. Recently, it has been reported that heterostructured catalysts exhibit significantly enhanced activities toward the oxygen reduction reaction and oxygen evolution reaction, and their excellent performance is not only related to the catalyst materials themselves but also the special hetero-interfaces. Herein, an overview focused on the electrocatalytic functions of heterostructured catalysts for non-aqueous Li-O2 batteries is presented by summarizing recent research progress. Reduction mechanisms of Li-O2 batteries are first introduced, followed by a detailed discussion on the typical performance enhancement mechanisms of the heterostructured catalysts with different phases and heterointerfaces, and the various heterostructured catalysts applied in Li-O2 batteries are also intensively discussed. Finally, the existing problems and development perspectives on the heterostructure applications are presented.
Collapse
Affiliation(s)
- Qing Xia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| | - Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Lanling Zhao
- School of Physics, Shandong University Jinan 250100 China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Abulgasim Ahmed Abbaker Adam
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| |
Collapse
|
5
|
Jin X, Lee T, Tamakloe W, Patil SB, Soon A, Kang Y, Hwang S. In Situ Defect Engineering Route to Optimize the Cationic Redox Activity of Layered Double Hydroxide Nanosheet via Strong Electronic Coupling with Holey Substrate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103368. [PMID: 34713617 PMCID: PMC8728845 DOI: 10.1002/advs.202103368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
A defect engineering of inorganic solids garners great deal of research activities because of its high efficacy to optimize diverse energy-related functionalities of nanostructured materials. In this study, a novel in situ defect engineering route to maximize electrocatalytic redox activity of inorganic nanosheet is developed by using holey nanostructured substrate with strong interfacial electronic coupling. Density functional theory calculations and in situ spectroscopic analyses confirm that efficient interfacial charge transfer takes place between holey TiN and Ni-Fe-layered double hydroxide (LDH), leading to the feedback formation of nitrogen vacancies and a maximization of cation redox activity. The holey TiN-LDH nanohybrid is found to exhibit a superior functionality as an oxygen electrocatalyst and electrode for Li-O2 batteries compared to its non-holey homologues. The great impact of hybridization-driven vacancy introduction on the electrochemical performance originates from an efficient electrochemical activation of both Fe and Ni ions during electrocatalytic process, a reinforcement of interfacial electronic coupling, an increase in electrochemical active sites, and an improvement in electrocatalysis/charge-transfer kinetics.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Taehun Lee
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Wilson Tamakloe
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sharad B. Patil
- Department of Chemistry and NanoscienceCollege of Natural SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Aloysius Soon
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yong‐Mook Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Seong‐Ju Hwang
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
6
|
Zhou Z, Zheng X, Huang H, Wu Y, Han S, Cai W, Lan B, Sun M, Yu L. The synergistically enhanced activity and stability of layered manganese oxide via engineering of defects and K+ ions for oxygen electrocatalysis. CrystEngComm 2022. [DOI: 10.1039/d2ce00124a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural defects and interlayered ions are two classic architectures that regulate the electrochemical activity of layered manganese oxides. However, the synergistic effect of defects and interlayered ions and how it...
Collapse
|
7
|
Liu L, Liu Y, Wang C, Peng X, Fang W, Hou Y, Wang J, Ye J, Wu Y. Li 2 O 2 Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li-O 2 Batteries. SMALL METHODS 2022; 6:e2101280. [PMID: 35041287 DOI: 10.1002/smtd.202101280] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Aprotic Li-O2 batteries are regarded as the most promising technology to resolve the energy crisis in the near future because of its high theoretical specific energy. The key electrochemistry of a nonaqueous Li-O2 battery highly relies on the formation of Li2 O2 during discharge and its reversible decomposition during charge. The properties of Li2 O2 and its formation mechanisms are of high significance in influencing the battery performance. This review article demonstrates the latest progress in understanding the Li2 O2 electrochemistry and the recent advances in regulating the Li2 O2 growth pathway. The first part of this review elaborates the Li2 O2 formation mechanism and its relationship with the oxygen reduction reaction/oxygen evolution reaction electrochemistry. The following part discusses how the cycling parameters, e.g., current density and discharge depth, influence the Li2 O2 morphology. A comprehensive summary of recent strategies in tailoring Li2 O2 formation including rational design of cathode structure, certain catalyst, and surface engineering is demonstrated. The influence resulted from the electrolyte, e.g., salt, solvent, and some additives on Li2 O2 growth pathway, is finally discussed. Further prospects of the ways in making advanced Li-O2 batteries by control of favorable Li2 O2 formation are highlighted, which are valuable for practical construction of aprotic lithium-oxygen batteries.
Collapse
Affiliation(s)
- Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihao Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chen Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Xiaohui Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuyang Hou
- CSIRO Mineral Resources, Clayton, VIC, 3168, Australia
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, P. R. China
| | - Jilei Ye
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
8
|
Kim M, Park YH, Kim MH, Jin X, Hwang SJ. Complementary combinative strategy of defect engineering and graphene coupling for efficient energy-functional materials. Chem Asian J 2021; 16:3937-3943. [PMID: 34585836 DOI: 10.1002/asia.202101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Indexed: 11/11/2022]
Abstract
The synergetic combination of defect engineering and graphene coupling enables to develop an effective way of exploring efficient bifunctional electrocatalyst/electrode materials. Defect-engineered amorphous MoO2 -reduced graphene oxide (rGO) nanohybrid was synthesized by soft-chemical reduction of K2 MoO4 in graphene oxide colloids. Mo K-edge X-ray absorption spectroscopy clearly demonstrates the rutile-type local atomic structure of amorphous MoO2 with significant oxygen vacancies and intimate electronic coupling with rGO. The defect-introduced MoO2 -rGO nanohybrid shows excellent bifunctionality as electrocatalyst for hydrogen evolution reaction and electrode for sodium-ion batteries, which are superior to those of crystalline MoO2 -rGO homologue. The beneficial effect of simultaneous defect control and rGO coupling can be ascribed to the provision of oxygen vacancies acting as active sites, the increase of electrical conductivity, and the improvement of reaction kinetics.
Collapse
Affiliation(s)
- Minji Kim
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeon Hu Park
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Zhang Y, Zhang S, Ma J, Huang A, Yuan M, Li Y, Sun G, Chen C, Nan C. Oxygen Vacancy-Rich RuO 2-Co 3O 4 Nanohybrids as Improved Electrocatalysts for Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39239-39247. [PMID: 34375079 DOI: 10.1021/acsami.1c08720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium oxygen (Li-O2) batteries have shown great potential as new energy-storage devices due to the high theoretical energy density. However, there are still substantial problems to be solved before practical application, including large overpotential, low energy efficiency, and poor cycle life. Herein, we have successfully synthesized a RuO2-Co3O4 nanohybrid with a rich oxygen vacancy and large specific surface area. The Li-O2 batteries based on the RuO2-Co3O4 nanohybrid shown obviously reduced overpotential and improved circulatory property, which can cycle stably for more than 100 cycles at a current density of 200 mA g-1. Experimental results and density function theory calculation prove that the introduction of RuO2 can increase oxygen vacancy concentration of Co3O4 and accelerate the charge transfer. Meanwhile, the hollow and porous structure leads to a large specific surface area about 104.5 m2 g-1, exposing more active sites. Due to the synergistic effect, the catalyst of the RuO2-Co3O4 nanohybrid can significantly reduce the adsorption energy of the LiO2 intermediate, thereby reducing the overpotential effectively.
Collapse
Affiliation(s)
- Yu Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Shuting Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jie Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Aijian Huang
- Department of Chemistry, Tsinghua University, Beijing 10084, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yufeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|