1
|
Shi R, Wang X, Gang F, Shi J, Wang S, Liu W, Ye W, Sun X. Collagen-mediated in situ mineralization-enhanced biomimetic bone tissue engineering scaffolds. Colloids Surf B Biointerfaces 2025; 250:114566. [PMID: 39965482 DOI: 10.1016/j.colsurfb.2025.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Oriented poly(lactic acid) (PLA) fiber bone tissue engineering scaffolds are often limited by factors including poor material hydrophilicity and weak osteogenic activity. The introduction of in situ mineralization can address these issues, but it requires the assistance of hydrophilic materials to achieve optimal performance. Collagen, a nature-based ECM component, was adopted because it can enhance hydrophilicity, encourage cell adhesion, and biomimetrically induce mineralization, according to recent studies of ECM-mimicking scaffolds. Therefore, this study proposes a collagen-mediated in situ mineralization-enhanced scaffold design aimed at improving the hydrophilicity and osteogenic potential of oriented fiber scaffolds. Collagen (5-10 wt%) and phosphate-containing solutions (59.6 mM) were added to a PLA matrix, and scaffolds were electrospun at 12 kV. Subsequently, the scaffolds underwent in situ mineralization in a calcium ion-containing solution (101 mM), leading to the formation of calcium phosphate within the scaffold structure. The experimental results show that the introduction of collagen effectively promoted the formation of in situ mineralization, enhanced the hydrophilicity of the scaffold, and maintained good fiber orientation. The scaffolds exhibited significant mechanical anisotropy, with the Young's modulus parallel to the fiber direction reaching 5 MPa, which is 25 times greater than that in the direction perpendicular to the fibers. In vitro studies with rat bone marrow mesenchymal stem cells showed a 2.4-fold increase in osteogenic differentiation, as assessed by alkaline phosphatase activity. Micro-CT analysis showed that the increase of BV/TV was 3.26 times higher when compared to that of control scaffolds, while histological analysis revealed mature bone tissue formation characterized by well-organized collagen fibers. Overall, the present study describes a novel strategy of collagen-mediated in situ mineralization, first integrating enhanced hydrophilicity, mechanical anisotropy, and biomimetic bone-like properties to address major limitations associated with the current oriented fiber scaffolds.
Collapse
Affiliation(s)
- Rui Shi
- Department of Biology, Xinzhou Normal University, Xinzhou 034000, China
| | - Xiaotong Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Department of Orthognathic Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Fangli Gang
- Department of Biology, Xinzhou Normal University, Xinzhou 034000, China.
| | - Jiayu Shi
- Department of Biology, Xinzhou Normal University, Xinzhou 034000, China
| | - Shuping Wang
- Department of Biology, Xinzhou Normal University, Xinzhou 034000, China
| | - Wanting Liu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Weilong Ye
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Department of Orthognathic Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Xiaodan Sun
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Chen X, Wang W, Hu Y, Sun J, Zhang L, Chen Y, Liu J, Yu Y, Li J, Ge S. In Situ Assembled Metal-Phenolic Nanozyme Biointerfaces Revitalize Stem Cells and Optimize Diabetic Implant Osseointegration. Adv Healthc Mater 2025:e2404804. [PMID: 39935069 DOI: 10.1002/adhm.202404804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Indexed: 02/13/2025]
Abstract
The hyperglycemic microenvironment of diabetes inevitably leads to the accumulated reactive oxygen species (ROS) and impairs the function of stem cells, thereby impeding the process of osseointegration after implant placement. In this study, a self-assembled metal-phenolic nanozyme coating is presented for alleviating diabetic oxidative stress and improving osseointegration at implant interfaces. The antioxidant-like enzyme activity is induced by phenolic ligand-metal charge transfer (LMCT) during the coordination of epigallocatechin-3-gallate (EGCG) with copper phosphate nanosheets (Cu NS). The metal-phenolic nanozyme biointerfaces exhibits scavenging activity against a range of free radicals and facilitated the adhesion, migration, and osteogenic differentiation of stem cells, thereby enhancing the osseointegration of implants in diabetic rats. Additionally, the nanozyme coating strategy inhibits bacterial invasion and supports the adhesion of soft tissue cells. This study provides a prospective approach for surface modification to safeguard and enhance the osseointegration of implants in diabetic subjects.
Collapse
Affiliation(s)
- Xinxiao Chen
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Weijia Wang
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yuhan Hu
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jiao Sun
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Liguo Zhang
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yi Chen
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jin Liu
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yang Yu
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jianhua Li
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shaohua Ge
- Department of Periodontology/Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| |
Collapse
|
3
|
Asadikorayem M, Weber P, Surman F, Puiggalí‐Jou A, Zenobi‐Wong M. Foreign Body Immune Response to Zwitterionic and Hyaluronic Acid Granular Hydrogels Made with Mechanical Fragmentation. Adv Healthc Mater 2025; 14:e2402890. [PMID: 39498680 PMCID: PMC11730820 DOI: 10.1002/adhm.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Granular hydrogels have recently attracted the attention for diverse tissue engineering applications due to their versatility and modularity. Despite previous studies showing enhanced viability and metabolism of cells encapsulated in these hydrogels, the in vitro immune response and long-term fibrotic response of these scaffolds have not been well characterized. Here, bulk and granular hydrogels are studied based on synthetic zwitterionic (ZI) and natural polysaccharide hyaluronic acid (HA) made with mechanical fragmentation. In vitro, immunomodulatory studies show an increased stimulatory effect of HA granular hydrogels compared to bulk, while both bulk and granular ZI hydrogels do not induce an inflammatory response. Subcutaneous implantation in mice shows that both ZI and HA granular hydrogels resulted in less collagen capsule deposition around implants compared to bulk HA hydrogels 10 weeks after implantation. Moreover, the HA granular hydrogels are infiltrated by host cells, including macrophages and mature blood vessels, in a porosity-dependent manner. However, a large number of cells, including multinucleated giant cells as well as blood vessels, surround bulk and granular ZI hydrogels and are not able to infiltrate. Overall, this study provides new insights on the long-term stability and fibrotic response of granular hydrogels, paving the way for future studies and applications.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Anna Puiggalí‐Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
4
|
Lin X, Huang Z, Huang H, Fang Y, Weng Y, Wang Z, Zhao H, Liu H. A tough Janus poly(vinyl alcohol)-based hydrogel for wound closure and anti postoperative adhesion. Acta Biomater 2024; 188:103-116. [PMID: 39243837 DOI: 10.1016/j.actbio.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Traditional adhesive hydrogels perform well in tissue adhesion but they fail to prevent postoperative tissue adhesion. To address this challenge, a biodegradable Janus adhesive hydrogel (J-AH) was designed and fabricated by the assembly of three different functional layers including anti-adhesive layer, reinforceable layer, and wet tissue adhesive layer. Each layer of J-AH serves a specific function: the top zwitterionic polymeric anti-adhesive layer shows superior resistance to cell/protein and tissue adhesion; the middle poly(vinyl alcohol)/tannic acid reinforceable matrix layer endows the hydrogel with good mechanical toughness of ∼2.700 MJ/m3; the bottom poly(acrylic acid)/polyethyleneimine adhesive layer imparts tough adhesion (∼382.93 J/m2 of interfacial toughness) to wet tissues. In the rat liver and femoral injury models, J-AH could firmly adhere to the bleeding tissues to seal the wounds and exhibit impressive hemostatic efficiency. Moreover, in the in vivo adhesion/anti-adhesion assay of J-AH between the defected cecum and peritoneal walls, the top anti-adhesive layer can effectively inhibit undesired postoperative abdominal adhesion and inflammatory reaction. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels with multi-functions including tissue adhesion, anti-postoperative adhesion and biodegradation. STATEMENT OF SIGNIFICANCE: Despite many adhesive hydrogels with tough tissue adhesion capability have been reported, their proclivity for undesired postoperative adhesion remains a serious problem. The postoperative adhesion may lead to major complications and even endanger the lives of patients. The injectable hydrogels can cover the irregular wound and suppress the formation of postoperative adhesion. However, due to the lack of adhesive properties with tissue, it is difficult for the hydrogels to maintain on the wound surface, resulting in poor anti-postoperative adhesion effect. Herein, we design a Janus adhesive hydrogel (J-AH). J-AH integrates together robust wet tissue adhesion and anti-postoperative adhesion. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels.
Collapse
Affiliation(s)
- Xiaojin Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zongxuan Huang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Hongjian Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Hu Zhao
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China; Fujian-Taiwan Science and Technology Cooperation Base of Biomedical, Materials and Tissue Engineering, Fujian 350007, China; Engineering Research Center of Industrial Biocatalysis, Fujian 350007, China.
| |
Collapse
|
5
|
Zhang Z, Sun H, Giannino J, Wu Y, Cheng C. Biodegradable Zwitterionic Polymers as PEG Alternatives for Drug Delivery. JOURNAL OF POLYMER SCIENCE 2024; 62:2231-2250. [PMID: 39247254 PMCID: PMC11376432 DOI: 10.1002/pol.20230916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 09/10/2024]
Abstract
Poly(ethylene glycol) (PEG) is a highly biocompatible and water-soluble polymer that is widely utilized for biomedical applications. Unfortunately, the immunogenicity and antigenicity of PEG severely restrict the biomedical efficacy of pegylated therapeutics. As emerging PEG alternatives, biodegradable zwitterionic polymers (ZPs) have attracted significant interest in recent years. Biodegradable ZPs generally are not only water-soluble and immunologically inert, but also possess a range of favorable biomedically relevant properties, without causing long-term side effects for in vivo biomedical applications. This review presents a systematic overview of recent studies on biodegradable ZPs. Their structural designs and synthetic strategies by integrating biodegradable base polymers with zwitterions are addressed. Their applications in the delivery of small molecule drugs (as mono-drugs or multi-drugs) and proteins are highlighted.
Collapse
Affiliation(s)
- Ziwen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Justin Giannino
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
- Cell, Gene and Tissue Engineering Center, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| |
Collapse
|
6
|
Kowalczuk K, Mons PJ, Ulrich HF, Wegner VD, Brendel JC, Mosig AS, Schacher FH. Asymmetric Block Extension of Star-Shaped [PEG-SH] 4 - toward Poly(dehydroalanine)-Functionalized PEG Hydrogels for Catch and Release of Charged Guest Molecules. Macromol Biosci 2024; 24:e2300230. [PMID: 37572335 DOI: 10.1002/mabi.202300230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Indexed: 08/14/2023]
Abstract
With the incorporation of polyampholytic segments into soft matter, hydrogels can serve as a reservoir for a variety of charged molecules which can be caught and released upon changes in pH value. Asymmetric block extension of one arm for star-shaped poly(ethylene glycol) [PEG26 -SH]4 using short segments of polyampholytic poly(dehydroalanine) (PDha) is herein demonstrated while maintaining the functional thiol end groups for network formation. For subsequent hydrogel synthesis with up to 10 wt.% PDha a straightforward and biocompatible photoinitiated thiol-ene click reaction is exploited. The investigation of the swelling properties of the hydrogel revealed responsive behavior toward ionic strength and variations in pH value. Moreover, the reversible adsorption of the model dyes methylene blue (MB) and acid orange 7 (AO7) is investigated by UV-vis measurements and the procedure can be successfully transferred to the adsorption of the adhesion peptide RGDS resulting in an uptake of 1.5 wt% RGDS with regard to the dry weight of the hydrogel.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| | - Peter J Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Hans F Ulrich
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
| | - Johannes C Brendel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| |
Collapse
|
7
|
Li J, Liang J, Chen S, Guo W, Chen T, Liu X. A Janus adhesive hydrogel sheet for preventing postoperative tissue adhesion of intestinal injuries. RSC Adv 2024; 14:4416-4423. [PMID: 38304561 PMCID: PMC10832361 DOI: 10.1039/d3ra08867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Although adhesive hydrogels represent an alternative to surgical sutures for non-invasive tissue wound sealing, those with indiscriminate adhesion fail to hold wounds while inhibiting postoperative tissue adhesion, thus limiting their application in intestinal repair. In this study, an asymmetric adhesive hydrogel sheet composed mainly of polyacrylic acid (PAA) and gelatin (GA) that can be wet-adhered to the surface of intestinal tissue was developed. One side of the GA-PAA hydrogel sheet was complexed with polyvinyl alcohol (PVA), which shielded the excess adhesion based on a physical barrier. Both sides of the PVA/GA-PAA hydrogel showed distinct adhesive and antiadhesive properties. Intriguingly, the anti-adhesive side showed significant anti-adhesion toward specific proteins. The results of animal experiments showed that the PVA/GA-PAA hydrogel could firmly adhere to the intestine to stop leakage and prevent post-operative tissue adhesion two weeks after surgery. The hematoxylin and eosin (H&E) staining results showed that the damaged intestinal serosa was repaired without tissue adhesion. It is believed that the controllable adhesion of the adhesive hydrogel offers better prospects for intestinal repair.
Collapse
Affiliation(s)
- Jingmei Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University Guangzhou 510515 P.R. China
| | - Jiadi Liang
- Center of Stomatology, Shunde Hospital of Southern Medical University Foshan 528000 P.R. China
| | - Shanshan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University Guangzhou 510515 P.R. China
| | - Wucheng Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University Guangzhou 510515 P.R. China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University Guangzhou 510515 P.R. China
| | - Xiqiang Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
8
|
Zeng Z, Chen S, Chen Y. Zwitterionic Polymer: A New Paradigm for Protein Conjugation beyond PEG. ChemMedChem 2023; 18:e202300245. [PMID: 37675618 DOI: 10.1002/cmdc.202300245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
To render protein drugs more suitable for clinical treatment, PEGylation has been widely used to ameliorate their inherent deficiencies, such as poor stability, rapid elimination in the bloodstream, and high immunogenicity. While increasingly PEGylated protein drugs have been approved by the FDA, the non-degradability of PEG and the emergence of anti-PEG antibodies after injection raise concerns about their cumulative chronic toxicity and long-term therapeutic efficacy. Zwitterionic polymer, with a unique structure containing equal amounts of positively charged and negatively charged groups, shows a different hydration behavior to PEG, which may be a superior PEG alternative for protein conjugation. In this concept review, a series of features beyond that of PEGylated protein exhibited by protein-zwitterionic polymer conjugate are discussed and some suggestions are presented for their future direction.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shi Chen
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongming Chen
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Zhang Z, Wang L, Liu J, Yu H, Zhang X, Yin J, Luan S, Shi H. Water-Triggered Segment Orientation of Long-Lasting Anti-Biofouling Polyurethane Coatings on Biomedical Catheters via Solvent Exchange Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304379. [PMID: 37365958 DOI: 10.1002/smll.202304379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumens are demonstrated to have the potential in reducing complications. However, their effectiveness is constrained by poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethane (SUPU) with strong mechanical stability and long-term anti-biofouling is developed by controlling the ratio of sulfobetaine-diol and ureido-pyrimidinone. Once immersed in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain much higher durability than its direct drying one, even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing, and shearing, in PBS at 37 °C for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion, and long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment are validated in blood circulation through an ex vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricating stable hydrophilic coating through a simple solvent exchange to reduce thrombosis and infection of biomedical catheters.
Collapse
Affiliation(s)
- Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jiaying Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
10
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Liu K, Chen Y, Yang Z, Jin J. zwitterionic Pluronic analog-coated PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol 2023; 236:123870. [PMID: 36870645 DOI: 10.1016/j.ijbiomac.2023.123870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
In recent years, zwitterionic materials have drawn great attention in oral drug delivery system due to their capacity for rapid mucus diffusion and enhanced cellular internalization. However, zwitterionic materials tend to show strong polarity that was hard to directly coat hydrophobic nanoparticles (NPs). Inspired by Pluronic coating, a simple and convenient strategy to coat NPs with zwitterionic materials using zwitterionic Pluronic analogs was developed in this investigation. Poly(carboxybetaine)-poly(propylene oxide)-Poly(carboxybetaine) (PCB-PPO-PCB, PPP), containing PPO segments with MW > 2.0 kDa, can effectively adsorb on the surface of PLGA NPs with typical core-shell spherical in shape. The PLGA@PPP4K NPs were stable in gastrointestinal physiological environment and sequentially conquered mucus and epithelium barriers. Proton-assisted amine acid transporter 1 (PAT1) was verified to contribute to the enhanced internalization of PLGA@PPP4K NPs, and the NPs could partially evade lysosomal degradation pathway and utilize retrograde pathway for intracellular transport. In addition, the enhanced villi absorption in situ and oral liver distribution in vivo were also observed compared to PLGA@F127 NPs. Moreover, insulin-loaded PLGA@PPP4K NPs as an oral delivery application for diabetes induce a fine hypoglycemic response in diabetic rats after oral administration. The results of this study demonstrated that zwitterionic Pluronic analogs-coated NPs might provide a new perspective for zwitterionic materials application as well as oral delivery of biotherapeutics.
Collapse
Affiliation(s)
- Kedong Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Zhu Z, Zhang K, Xian Y, He G, Pan Z, Wang H, Zhang C, Wu D. A Choline Phosphoryl-Conjugated Chitosan/Oxidized Dextran Injectable Self-Healing Hydrogel for Improved Hemostatic Efficacy. Biomacromolecules 2023; 24:690-703. [PMID: 36534463 DOI: 10.1021/acs.biomac.2c01143] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of injectable hydrogels with good biocompatibility, self-healing, and superior hemostatic properties is highly desirable in emergency and clinical applications. Herein, we report an in situ injectable and self-healing hemostatic hydrogel based on choline phosphoryl functionalized chitosan (CS-g-CP) and oxidized dextran (ODex). The CP groups were hypothesized to accelerate hemostasis by facilitating erythrocyte adhesion and aggregation. Our results reveal that the CS-g-CP/ODex hydrogels exhibit enhanced blood clotting and erythrocyte adhesion/aggregation capacities compared to those of the CS/ODex hydrogels. The CS-g-CP50/ODex75 hydrogel presents rapid gelation time, good mechanical strength and tissue adhesiveness, satisfactory bursting pressure, and favorable biocompatibility. The hemostatic ability of the CS-g-CP50/ODex75 hydrogel was significantly improved compared to that of the CS/ODex hydrogel and commercial fibrin sealant in the rat tail amputation and liver/spleen injury models. Our study highlights the positive and synergistic effects of CP groups on hemostasis and strongly supports the CS-g-CP50/ODex75 hydrogel as a promising adhesive for hemorrhage control.
Collapse
Affiliation(s)
- Ziran Zhu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, Beijing100190, China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing100049, China
| | - Kaiwen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Yiwen Xian
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Gang He
- Stomatology Center, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District Shenzhen, Guangdong518101, China
| | - Zheng Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, Beijing100190, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing100049, China
| | - Chong Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| |
Collapse
|
13
|
Wu D, Yin X, Zhao Y, Wang Y, Li D, Yang F, Wang L, Chen Y, Wang J, Yang H, Liu X, Liu F, Zhang T. Tinware-Inspired Aerobic Surface-Initiated Controlled Radical Polymerization (SI-Sn 0CRP) for Biocompatible Surface Engineering. ACS Macro Lett 2023; 12:71-76. [PMID: 36576724 DOI: 10.1021/acsmacrolett.2c00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface anchored polymer brushes prepared by surface-initiated controlled radical polymerization (SI-CRP) have raised considerable interest in biomaterials and bioengineering. However, undesired residues of noxious transition metal catalysts critically restrain their widespread biomedical applications. Herein, we present a robust and biocompatible surface-initiated controlled radical polymerization catalyzed by a Sn(0) sheet (SI-Sn0CRP) under ambient conditions. Through this approach, microliter volumes of vinyl monomers with diverse functions (heterocyclic, ionic, hydrophilic, and hydrophobic) could be efficiently converted to homogeneous polymer brushes. The excellent controllability of SI-Sn0CRP strategy is further demonstrated by the exquisite fabrication of predetermined block and patterned polymer brushes through chain extension and photolithography, respectively. Additionally, in virtue of intrinsic biocompatibility of Sn, the resultant polymer brushes present transcendent affinity toward blood and cell, in marked contrast to those of copper-based approaches. This strategy could provide an avenue for the controllable fabrication of biocompatible polymer brushes toward biological applications.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Fuchao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Long Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Liu
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
14
|
Liu S, Yang H, Zhang L, Bianco A, Ma B, Ge S. Multifunctional barrier membranes promote bone regeneration by scavenging H2O2, generating O2, eliminating inflammation, and regulating immune response. Colloids Surf B Biointerfaces 2023. [DOI: 10.1016/j.colsurfb.2023.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Yang W, Xuan C, Liu X, Zhang Q, Wu K, Bian L, Shi X. A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioact Mater 2022; 24:112-123. [PMID: 36582344 PMCID: PMC9760658 DOI: 10.1016/j.bioactmat.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer. The inner adhesive layer tightly and instantly adheres to the wound sites via -NHS chemistry; the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure; and the interlayer enhances the bulk resilience of the patch under excessive deformation. This complementary trilayer patch (TLP) possesses a unique combination of instant wet adhesion, high mechanical strength, and biological inertness. Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion. The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengkai Xuan
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Guangzhou Soonheal Medical Technology. Co, Ltd, Guangzhou, 510230, China
| | - Xuemin Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Liming Bian
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China,Corresponding author. National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
17
|
Ashraf J, Lau S, Akbarinejad A, Evans CW, Williams DE, Barker D, Travas-Sejdic J. Conducting Polymer-Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface. BIOSENSORS 2022; 12:1143. [PMID: 36551110 PMCID: PMC9775683 DOI: 10.3390/bios12121143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting polymers-based biointerfaces have emerged as advanced surfaces for interfacing biological tissues and organs with electronics. Antifouling of such biointerfaces is a challenge. In this study, we fabricated electrospun fibre mats from sulphonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (sSEBS), infused with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) (sSEBS-PEDOT), to produce a conductive (2.06 ± 0.1 S/cm), highly porous, fibre mat that can be used as a biointerface in bioelectronic applications. To afford antifouling, here the poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes were grafted onto the sSEBS-PEDOT conducting fibre mats via surface-initiated atom transfer radical polymerization technique (SI-ATRP). For that, a copolymer of EDOT and an EDOT derivative with SI-ATRP initiating sites, 3,4-ethylenedioxythiophene) methyl 2-bromopropanoate (EDOTBr), was firstly electropolymerized on the sSEBS-PEDOT fibre mat to provide sSEBS-PEDOT/P(EDOT-co-EDOTBr). The POEGMA brushes were grafted from the sSEBS-PEDOT/P(EDOT-co-EDOTBr) and the polymerization kinetics confirmed the successful growth of the brushes. Fibre mats with 10-mers and 30-mers POEGMA brushes were studied for antifouling using a BCA protein assay. The mats with 30-mers grafted brushes exhibited excellent antifouling efficiency, ~82% of proteins repelled, compared to the pristine sSEBS-PEDOT fibre mat. The grafted fibre mats exhibited cell viability >80%, comparable to the standard cell culture plate controls. Such conducting, porous biointerfaces with POEGMA grafted brushes are suitable for applications in various biomedical devices, including biosensors, liquid biopsy, wound healing substrates and drug delivery systems.
Collapse
Affiliation(s)
- Jesna Ashraf
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Sandy Lau
- Hub for Extracellular Vesicles Investigation (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1010, New Zealand
| | - Alireza Akbarinejad
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Clive W. Evans
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - David E. Williams
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
18
|
Li B, Shu R, Dai W, Yang F, Xu H, Shi X, Li Y, Bai D, Yang W, Deng Y. Bioheterojunction-Engineered Polyetheretherketone Implants With Diabetic Infectious Micromilieu Twin-Engine Powered Disinfection for Boosted Osteogenicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203619. [PMID: 36084239 DOI: 10.1002/smll.202203619] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Diabetic infectious micromilieu (DIM) leads to a critical failure rate of osseointegration by virtue of two main peculiarities: high levels of topical glucose and inevitable infection. To tackle the daunting issue, a bioheterojunction-engineered orthopedic polyetheretherketone (PEEK) implant consisting of copper sulfide/graphene oxide (CuS/GO) bioheterojunctions (bioHJs) and glucose oxidase (GOx) is conceived and developed for DIM enhanced disinfection and boosted osseointegration. Under hyperglycemic micromilieu, GOx can convert surrounding glucose into hydrogen peroxide (H2 O2 ). Then, upon infectious micromilieu, the bioHJs enable the catalyzation of H2 O2 to highly germicidal hydroxyl radical (·OH). As a result, the engineered implants massacre pathogenic bacteria through DIM twin-engine powered photo-chemodynamic therapy in vitro and in vivo. In addition, the engineered implants considerably facilitate cell viability and osteogenic activity of osteoblasts under a hyperglycemic microenvironment via synergistic induction of copper ions (Cu2+ ) and GO. In vivo studies using bone defect models of diabetic rats at 4 and 8 weeks further authenticate that bioHJ-engineering PEEK implants substantially elevate their osseointegration through biofilm elimination and vascularization, as well as macrophage reprogramming. Altogether, the present study puts forward a tactic that arms orthopedic implants with DIM twin-engine powered antibacterial and formidable osteogenic capacities for diabetic stalled osseointegration.
Collapse
Affiliation(s)
- Bin Li
- College of Biomedical Engineering, School of Chemical Engineering, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, P. R. China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, P. R. China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, P. R. China
| | - Hui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, 10031, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, P. R. China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, P. R. China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
19
|
Ming H, Tian C, He N, Zhao X, Luo F, Li Z, Li J, Tan H, Fu Q. Mussel-inspired polyurethane coating for bio-surface functionalization to enhance substrate adhesion and cell biocompatibility. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1811-1827. [PMID: 35648635 DOI: 10.1080/09205063.2022.2085342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Considerable implant materials are prone to cause a severe inflammatory reaction due to poor histocompatibility, which leads to various complications and implant failure. Surface coating modification of these implant materials is one of the most important techniques to settle this problem. However, fabricating a coating with both adequate adhesiveness and excellent biocompatibility remains a challenge. Inspired by the adhesion mechanism of mussels, a series of mussel-inspired polyurethanes (PU-LDAs) were synthysized through a step growth polymerization based on hexamethylene diisocyanate as a hard segment, polytetra-methylene-ether-glycol as a soft segment, lysine-dopamine (LDA) and butanediol as chain extenders with different mole ratios.The coatings of PU-LDAs were applied to various substrates, such as stainless steel, glass and PP using a facile one-step coating process. The introduction of 3,4-dihydroxyphenylalanine (DOPA) groups can greatly improve the adhesion ability of the coatings to the substrates demonstrated by a 180° peel test. The peel strength of the PU-LDA100 coating containing high LDA content was 76.3, 48.5 and 67.5 N/m, which was 106.2%, 246.4% and 192.2% higher than that of the PU-LDA00 coating without LDA on the surface of stainless steel, glass and PP, respectively. Meanwhile, this PU coating has a lower immune inflammatory response which provides a universal method for surface modification of implant materials. Moreover, the DOPA groups in PU-LDAs could combine with the amino and thiol groups on cell membrane surface, leading to the improvement of cell adhesion and growth. Therefore, it has great potential application in the field of biomedical implant materials for the clinic.
Collapse
Affiliation(s)
- Hao Ming
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - ChenXu Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Jian C, Wang Y, Liu H, Yin Z. A biotin-modified and H 2O 2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy. Eur J Pharm Biopharm 2022; 177:24-38. [PMID: 35667614 DOI: 10.1016/j.ejpb.2022.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Although synergistic effects of photothermal therapy (PTT) and chemotherapy for cancer have been extensively investigated in previous studies, more potential strategies need to be exploited to alleviate severe adverse effects. In this study, a biotin-modified and activatable nanotheranostic system is developed. This system (BPSP/DOX-CyBA) composed of H2O2-sensitive thioketal (TK) linker, hydrophilic biotin-decorated polyethylene glycol (PEG) segment, hydrophobic polycaprolactone (PCL) segment, could self-assemble into (99±1.3) nm nanoparticles and co-deliver H2O2-triggered photosensitizer CyBA and cytotoxic drugs DOX to tumor site. In vitro, DOX and CyBA could release rapidly from nanoparticles, CyBA accumulation in the mitochondria causes mitochondrial damage, leading to mitochondrial dysfunctions,while rising the level of ROS in B16F10 cells, and further to promote the micells to trigger release. CyBA could be activated into CyOH and the photothermal therapy was turn "off" into "on". In BPSP/DOX-CyBA group, the local temperature within tumor reached 50℃ and cell apoptosis rate reached 68.6% under Laser irradiation(650 nm, 1W/cm2). Fluorescence microscopy and flow cytometry analysis further demonstrated the better uptake efficiency on B16F10 cells with biotin decoration. In a mice B16F10 tumor model, the group with co-delivery CyBA and DOX had the best tumor retention effect, the maximal local temperature increasement and the minimum tumor growth with negligible side effects, suggesting the potential of BPSP/DOX-CyBA nanopalteform that synergistic photothermal therapy and chemotherapy and mitochondria damage as an effective melanoma treatment strategy.
Collapse
Affiliation(s)
- Chuanjiang Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huijun Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Polylactic acid film surface functionalized by zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] with improved biocompatibility. Colloids Surf B Biointerfaces 2022; 214:112461. [PMID: 35305321 DOI: 10.1016/j.colsurfb.2022.112461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Polylactic acid (PLA) is a non-toxic, biodegradable biological material that is widely used in tissue engineering and regenerative medicine. PLA is easy to adsorb non-specific proteins and lacks cell adhesion after implantation. Choline phosphate (CP) is a novel zwitterion with a reverse structure of phosphate choline (PC) on the cell membrane that can form a specific "CP-PC" interaction to promote cell adhesion. In our previous work, modification of choline phosphate polymers (PMCP) onto the PLA film surface improved the hydrophilicity and degradation properties. In this study, we further investigated the biocompatibility of PLA-PMCP films from protein adsorption, cell adhesion and proliferation, bacterial adhesion, blood compatibility, and inflammation in vivo. The PLA-PMCP surface can resist protein adsorption and bacterial adhesion due to the anti-fouling properties of the zwitterion PMCP. Meanwhile, the PLA-PMCP surface promotes the adhesion and proliferation of BMSCs due to the specific "CP-PC" effect. In addition, the PLA-PMCP film has good blood compatibility as well as the PLA film. During in vivo experiments, biocompatibility was improved and the inflammatory response and immune rejection of PLA-PMCP films were reduced compared to those of the original PLA film. Therefore, the PMCP-modified PLA film resists protein adsorption and bacterial adhesion, promotes cell adhesion and proliferation, and has good hemocompatibility and histocompatibility. This brings a significant potential for application in the fields of tissue engineering and regenerative medicine.
Collapse
|
22
|
Zhang Y, Wang Y, Xin Q, Li M, Yu P, Luo J, Xu X, Chen X, Li J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mater Chem B 2022; 10:2497-2503. [PMID: 35019930 DOI: 10.1039/d1tb02493k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythrocyte membrane nanosystems have become one of the important research directions of disease treatment, especially for tumor treatment, and can enhance the long circulation time of anti-cancer drugs in vivo, and penetrate and accumulate in the tumor site effectively. However, erythrocyte membranes lack targeting properties and it is necessary to provide tumor-targeting function by modifying erythrocyte membranes. In this study, we report on a novel modification method of an erythrocyte membrane nanosystem to target tumors. Specifically, the tumor-targeting molecule folate-poly (ethylene glycol) (FA-PEG) was modified with a zwitterionic 2-(methyl acryloyoxy) ethyl choline phosphate (MCP) by the Michael addition reaction to obtain MCP-modified FA-PEG (MCP-PEG-FA). Based on the strong "N-P" tetravalent electrostatic interaction between MCP and phosphatidyl choline on the erythrocyte membranes, MCP-PEG-FA can be modified on the erythrocyte membrane encapsulated doxorubicin (DOX) loaded poly(lactic-co-glycolic acid) (PLGA) nanosystem to form a tumor-targeting erythrocyte membrane nanosystem (FA-RBC@PLGA-DOX). The results show that MCP-PEG-FA was synthesized and successfully bonded to the erythrocyte membrane nanosystem, and the FA-RBC@PLGA-DOX nanosystem had a better tumor-targeting function and tumor killing effect compared with those of the nanosystems without FA ligand modification. The universal modification method of erythrocyte membranes is successfully provided and can be applied to the treatment of various diseases.
Collapse
Affiliation(s)
- Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610003, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
23
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
24
|
Gu X, Zha Y, Li Y, Chen J, Liu S, Du Y, Zhang S, Wang J. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater 2022; 141:190-197. [PMID: 35041901 DOI: 10.1016/j.actbio.2022.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Osteochondral lesion potentially causes a variety of joint degenerative diseases if it cannot be treated effectively and timely. Microfracture as the conservative surgical choice achieves limited results for the larger defect whereas cartilage patches trigger integrated instability and cartilage fibrosis. To tackle aforementioned issues, here we explore to fabricate an integrated osteochondral scaffold for synergetic regeneration of cartilage and subchondral bone in one system. On the macro level, we fabricated three integrated scaffolds with distinct channel patterns of Non-channel, Consecutive-channel and Inconsecutive-channel via Selective Laser Sintering (SLS). On the micro level, both cartilage zone and subchondral bone zone of integrated scaffold were made of small polycaprolactone (PCL) microspheres and large PCL microspheres, respectively. Our findings showed that Inconsecutive-channel scaffolds possessed integrated hierarchical structure, adaptable compression strength, gradient interconnected porosity. Cartilage zone presented a dense phase for the inhibition of vessel invasion while subchondral bone zone generated a porous phase for the ingrowth of bone and vessel. Both cartilage regeneration and subchondral bone remodeling in the group of Inconsecutive-channel scaffolds have been demonstrated by histological evaluation and immunofluorescence staining in vivo. Consequently, our current work not only achieves an effective and regenerative microsphere scaffold for osteochondral reconstruction, but also provides a feasible methodology to recover injured joint through integrated design with diverse hierarchy. STATEMENT OF SIGNIFICANCE: Recovery of osteochondral lesion highly depends on hierarchical architecture and tunable vascularization in distinct zones. We therefore design a special integrated osteochondral scaffold with inconsecutive channel structure and vascularized modulation. The channel pattern impacts on mechanical strength and the infiltration of bone marrow, and eventually triggers synergetic repair of osteochondral defect. The cartilage zone of integrated scaffolds consisted of small PCL microspheres forms a dense phase for physical restriction of vascularized infiltration whereas the subchondral bone zone made of large PCL microspheres generates porous trabecula-like structure for promoting vascularization. Consequently, the current work indicates both mechanical adaptation and regional vascularized modulation play a pivotal role on osteochondral repair.
Collapse
|
25
|
A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Facile preparation of tertiary amine grafted poly (α,β-L-aspartic acid) with zwitterionic property to limit nonspecific protein adsorption. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1805331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
28
|
Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Indexed: 02/06/2023]
Abstract
The delicate structure and fantastic functions of biological membranes are the successful evolutionary results of a long-term natural selection process. Their excellent biocompatibility and biofunctionality are widely utilized to construct multifunctional biomedical materials mainly by directly camouflaging materials with single or mixed biological membranes, decorating or incorporating materials with membrane-derived vesicles (e.g., exosomes), and designing multifunctional materials with the structure/functions of biological membranes. Here, the structure-function relationship of some important biological membranes and biomimetic membranes are discussed, such as various cell membranes, extracellular vesicles, and membranes from bacteria and organelles. Selected literature examples of multifunctional biomaterials derived from biological membranes for biomedical applications, such as drug- and gene-delivery systems, tissue-repair scaffolds, bioimaging, biosensors, and biological detection, are also highlighted. These designed materials show excellent properties, such as long circulation time, disease-targeted therapy, excellent biocompatibility, and selective recognition. Finally, perspectives and challenges associated with the clinical applications of biological-membrane-derived materials are discussed.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xingyu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- College of Medicine Southwest Jiaotong University Chengdu 610003 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
29
|
Wang H, Fu X, Shi J, Li L, Sun J, Zhang X, Han Q, Deng Y, Gan X. Nutrient Element Decorated Polyetheretherketone Implants Steer Mitochondrial Dynamics for Boosted Diabetic Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101778. [PMID: 34396715 PMCID: PMC8529468 DOI: 10.1002/advs.202101778] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Indexed: 02/05/2023]
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) creates a hyperglycemic micromilieu around implants, resulting inthe high complication and failure rate of implantation because of mitochondrial dysfunction in hyperglycemia. To address the daunting issue, the authors innovatively devised and developed mitochondria-targeted orthopedic implants consisted of nutrient element coatings and polyetheretherketone (PEEK). Dual nutrient elements, in the modality of ZnO and Sr(OH)2 , are assembled onto the sulfonated PEEK surface (Zn&Sr-SPEEK). The results indicate the synergistic liberation of Zn2+ and Sr2+ from coating massacres pathogenic bacteria and dramatically facilitates cyto-activity of osteoblasts upon the hyperglycemic niche. Intriguingly, Zn&Sr-SPEEK implants are demonstrated to have a robust ability to recuperate hyperglycemia-induced mitochondrial dynamic disequilibrium and dysfunction by means of Dynamin-related protein 1 (Drp1) gene down-regulation, mitochondrial membrane potential (MMP) resurgence, and reactive oxygen species (ROS) elimination, ultimately enhancing osteogenicity of osteoblasts. In vivo evaluations utilizing diabetic rat femoral/tibia defect model at 4 and 8 weeks further confirm that nutrient element coatings substantially augment bone remodeling and osseointegration. Altogether, this study not only reveals the importance of Zn2+ and Sr2+ modulation on mitochondrial dynamics that contributes to bone formation and osseointegration, but also provides a novel orthopedic implant for diabetic patients with mitochondrial modulation capability.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xinliang Fu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiacheng Shi
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Limei Li
- Science and Technology Achievement Incubation CenterKunming Medical UniversityKunming650500China
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qiuyang Han
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yi Deng
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
30
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
31
|
Song F, Zhang L, Chen R, Liu Q, Liu J, Yu J, Liu P, Duan J, Wang J. Bioinspired Durable Antibacterial and Antifouling Coatings Based on Borneol Fluorinated Polymers: Demonstrating Direct Evidence of Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33417-33426. [PMID: 34250807 DOI: 10.1021/acsami.1c06030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Substituting natural products for traditional poison-killing antifouling agents is an efficient and promising method to alleviate the increasingly serious ecological crisis and aggravate the loss due to marine biofouling. Herein, the successful synthesis of poly(methyl methacrylate-co-ethyl acrylate-co-hexafluorobutyl methacrylate-co-isobornyl methacrylate) copolymer (PBAF) with borneol monomers and fluorine by a free radical polymerization method is reported. The PBA0.09F coating exhibits outstanding antibacterial and antifouling activity, achieving 98.2% and 92.3% resistance to Escherichia coli and Staphylococcus aureus, respectively, and the number of Halamphora sp. adhesion is only 26 (0.1645 mm2) in 24 h. This remarkable antibacterial and antifouling performance is attributed to the incorporation of fluorine components into the copolymer, which induces a low surface energy and hydrophobicity and the complex molecular structure of the natural nontoxic antifouling agent borneol. In addition, the results showed that the contents of the adhesion-related proteins mfp-3, mfp-5, and mfp-6 were significantly reduced, which proved that natural substances affect the secretion of biological proteins. Importantly, the PBAF coating exhibits excellent environmental friendliness and long-term stability. The antifouling mechanism is clarified, and an effective guide for an environmentally friendly antifouling coating design is proposed.
Collapse
Affiliation(s)
- Fan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linlin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - PeiLi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jizhou Duan
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
32
|
Xu R, Cui X, Xin Q, Lu M, Li Z, Li J, Chen X. Zwitterionic PMCP-functionalized titanium surface resists protein adsorption, promotes cell adhesion, and enhances osteogenic activity. Colloids Surf B Biointerfaces 2021; 206:111928. [PMID: 34153618 DOI: 10.1016/j.colsurfb.2021.111928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Titanium (Ti) has excellent biocompatibility and corrosion resistance and is widely used as a biomedical material for orthopedic implants. However, the bare Ti surface limits cell adhesion without biological activity and promotes unnecessary protein adsorption, which can activate the coagulation pathway with blood-contacting devices. To improve the antifouling and biological activity of Ti, zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] (PMCP) was used to modify the Ti surface via surface-initiated atom transfer radical polymerization. The Ti-PMCP surface reduced bovine serum albumin and fibrinogen adsorption owing to the zwitterionic antifouling property. Ti-PMCP is involved in the unique interaction between PMCP on the Ti surface and phosphate choline on cell membranes, and therefore, the Ti-PMCP surface can promote the adhesion and proliferation of MC3T3-e1 cells and bone marrow mesenchymal cells (BMSCs). In addition, the Ti-PMCP surface was effective in promoting the osteogenic differentiation of MC3T3-e1 cells and BMSCs because the phosphate group in MCP can stimulate osteogenic signaling pathways. Therefore, the PMCP-modified Ti surface can resist protein adsorption and promote the adhesion, proliferation, and differentiation of osteoblast-related cells and has great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Ran Xu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China; Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xuezhong Cui
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China; Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Lu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiqiang Li
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China; Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
33
|
Choi JS, Lee MS, Kim J, Eom MR, Jeong EJ, Lee M, Park SA, Jeong JH, Kwon SK. Hyaluronic Acid Coating on Hydrophobic Tracheal Scaffold Enhances Mesenchymal Stem Cell Adhesion and Tracheal Regeneration. Tissue Eng Regen Med 2021; 18:225-233. [PMID: 33765289 PMCID: PMC8012419 DOI: 10.1007/s13770-021-00335-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long segmental tracheal repair is challenging in regenerative medicine due to low adhesion of stem cells to tracheal scaffolds. Optimal transplantation of stem cells for tracheal defects has not been established. We evaluated the role of hyaluronic acid (HA) coating of tracheal scaffolds in mesenchymal stem cell (MSC) adhesion and tracheal regeneration in a rabbit model. METHODS A three-dimensionally printed tubular tracheal prosthesis was incubated with dopa-HA-fluorescein isothiocyanate in phosphate-buffered saline for 2 days. MSCs were incubated with an HA-coated scaffold, and their adhesion was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. HA coated scaffolds with or without MSC seeding were transplanted at the circumferential tracheal defect in rabbits, and survival, rigid bronchoscopy, radiologic findings, and histologic findings were compared between the two groups. RESULTS HA-coated scaffolds showed better MSC adhesion than non-coated scaffolds. The HA-coated scaffolds with MSC group showed a wider airway and greater mucosal regeneration compared to the HA-coated scaffolds without MSC group. CONCLUSION HA coating of scaffolds can promote MSC adhesion and tracheal regeneration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Min Sang Lee
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jooyoung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Min Rye Eom
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Eun Ji Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Minhyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
| |
Collapse
|
34
|
Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021; 22:1494-1508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Onur Özcan
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Dirk Schanzenbach
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - André Laschewsky
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Jiao Q, Cao L, Zhao Z, Zhang H, Li J, Wei Y. Zwitterionic Hydrogel with High Transparency, Ultrastretchability, and Remarkable Freezing Resistance for Wearable Strain Sensors. Biomacromolecules 2021; 22:1220-1230. [PMID: 33586969 DOI: 10.1021/acs.biomac.0c01724] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.
Collapse
Affiliation(s)
- Qin Jiao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, P. R. China
| | - Lilong Cao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, P. R. China
| | - Zhijie Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, P. R. China
| | - Hong Zhang
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, P. R. China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
36
|
Takahashi M, Shimizu A, Yusa S, Higaki Y. Lyotropic Morphology Transition of Double Zwitterionic Diblock Copolymer Aqueous Solutions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Masaya Takahashi
- Graduate School of Engineering Oita University 700 Dannoharu Oita 870‐1192 Japan
| | - Akane Shimizu
- Graduate School of Engineering Oita University 700 Dannoharu Oita 870‐1192 Japan
| | - Shin‐ichi Yusa
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha, Himeji Hyogo 671‐2280 Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University 700 Dannoharu Oita 870‐1192 Japan
| |
Collapse
|
37
|
Zhang J, Liu L, Wang L, Zhu W, Wang H. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application. J Mater Chem B 2020; 8:8908-8913. [PMID: 33026400 DOI: 10.1039/d0tb01717e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteria-induced infections have always been associated with various medical devices. The construction of an intelligent antimicrobial surface is an important challenge. In this study, we report the construction of a zwitterionic surface with good biocompatibility under physiological conditions and which shows an anti-adhesion effect on the original bacteria. Once the bacteria multiply, the acidic environment initiated by the bacteria will cause the amide bond on the surface to break, and the zwitterionic surface can be rapidly converted to a cationic bactericidal surface. Confocal laser scanning (CLSM) and scanning electron microscopy (SEM) show that the zwitterionic surface has efficient antibacterial activity with an anti-adhesion property while the pH-responsive transition to quaternary ammonium compounds with a germicidal surface in the acidic environment of bacterial metabolism aids the activity. Thus, the pH-responsive zwitterionic-to-cationic transition antibacterial design opens up new ideas for the efficient and safe application of cationic bactericides in clinical medical antibacterial materials.
Collapse
Affiliation(s)
- Jing Zhang
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Lei Liu
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Lu Wang
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Wenhe Zhu
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Huiyan Wang
- Jilin Medical University, Jilin 132013, P. R. China.
| |
Collapse
|
38
|
Feng Y, Xin Q, Zhang W, Wang Z, Gao S, Chen X, Chen X, Li J. Cell-Membrane-Targeted Drug Delivery System Based on Choline-Phosphate-Functionalized β-Cyclodextrin. Macromol Biosci 2020; 20:e2000069. [PMID: 32864834 DOI: 10.1002/mabi.202000069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/16/2020] [Indexed: 12/19/2022]
Abstract
In this study, a novel cyclodextrin derivative, i.e., zwitterionic choline phosphate (CP)-functionalized β-cyclodextrin (CP-β-CD) is successfully synthesized by click chemistry reaction. CP-β-CD has excellent cell-membrane-targeted ability because of the CP group can bind to phosphate choline (PC) in the cell membrane and promote the cellular uptake. Due to the introduction of CP group on β-CD, it disrupts the hydrogen network between natural β-CD molecules. Meanwhile, the water solubility of CP-β-CD is improved dramatically to 816 mg mL-1 , which is 440 times as that of unmodified β-CD. Apatinib, a small molecular inhibitor, is used as a model of hydrophobic drug and loaded into CP-β-CD to study the solubilization effect and the anti-angiogenisis activity. In addition, the cytotoxicity of CP-β-CD is also studied, and it is demonstrated that CP-β-CD is nontoxic. These results indicate that the apatinib can be transported into cell interior and play an excellent anti-angiogenisis activity after being loaded into CP-β-CD drug delivery system. This work suggests that the water soluble CP-β-CD with excellent cell internalization efficiency has a potential application prospect in the field of drug delivery.
Collapse
Affiliation(s)
- Ying Feng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qiangwei Xin
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wanlin Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zuxin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shan Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610000, P. R. China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
39
|
Patel R, Patel M, Sung JS, Kim JH. Preparation and characterization of bioinert amphiphilic P(VDF-co-CTFE)-g-POEM graft copolymer. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rajkumar Patel
- Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, 85 Songdogwahak‐ro, Yeonsu‐gu, South Korea
| | - Madhumita Patel
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Jung-Suk Sung
- Department of Life Sciences, Dongguk University-Seoul, Biomedi Campus, Goyang-si, Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
40
|
Zwitterionic choline phosphate functionalized chitosan with antibacterial property and superior water solubility. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Nikam SP, Chen P, Nettleton K, Hsu YH, Becker ML. Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications. Biomacromolecules 2020; 21:2714-2725. [DOI: 10.1021/acs.biomac.0c00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shantanu P. Nikam
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Peiru Chen
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Karissa Nettleton
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Yen-Hao Hsu
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
42
|
Mukai M, Ihara D, Chu CW, Cheng CH, Takahara A. Synthesis and Hydration Behavior of a Hydrolysis-Resistant Quasi-Choline Phosphate Zwitterionic Polymer. Biomacromolecules 2020; 21:2125-2131. [DOI: 10.1021/acs.biomac.0c00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masaru Mukai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Ihara
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chien-Wei Chu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chao-Hung Cheng
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
43
|
Poly[2-(methacryloyloxy)ethyl choline phosphate] functionalized polylactic acid film with improved degradation resistance both in vitro and in vivo. Colloids Surf B Biointerfaces 2020; 185:110630. [DOI: 10.1016/j.colsurfb.2019.110630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
|
44
|
Chen X, Yang D. Functional zwitterionic biomaterials for administration of insulin. Biomater Sci 2020; 8:4906-4919. [DOI: 10.1039/d0bm00986e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the structures and biomedical applications of zwitterionic biomaterials in the administration of insulin.
Collapse
Affiliation(s)
- Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Dongqiong Yang
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
45
|
Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J Mater Chem B 2020; 8:2199-2215. [DOI: 10.1039/d0tb00139b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes the protein bioinspired materials for the repair of hard tissues such as enamel, dentin and bone.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610003
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|