1
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2025; 314:122862. [PMID: 39357154 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Shao Z, Di K, Wei J, Fan C, Feng X, Heng H, Wang K. Integrated Wearable Flexible Hydrogel Patch Sensing System for the Detection of Physiological Markers. Anal Chem 2024. [PMID: 39723894 DOI: 10.1021/acs.analchem.4c05553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Conventional wearable flexible sensing systems typically comprise three components: a flexible substrate that contacts the skin, a signal processing module, and a signal output module. These components function relatively independently, resulting in a complex system that lacks sufficient integration. Therefore, developing an integrated wearable flexible sensing system by combining the flexible substrate, the signal processing module, and the signal output module not only enhances performance and comfort, but also reduces manufacturing costs and the risk of failure. Hydrogel substrates are particularly advantageous due to their excellent biocompatibility, flexibility, and encapsulation capabilities. Herein, we designed an integrated wearable flexible sensing system using an agarose hydrogel to encapsulate biological oxidative enzymes (e.g., glucose oxidase (GOx), lactate oxidase, and ethanol oxidase) and silver nanowires-polydopamine (Ag NWs-PB) as the signal processing module and a color-changing TMB probe as the signal output module. Additionally, we incorporated a polydimethylsiloxane-silicon dioxide patch to collect sweat for detecting physiological markers (e.g., glucose, lactate, and ethanol). An example of the application to facilitate visual detection of glucose in sweat was developed by encapsulating GOx as a biological oxidative enzyme in a sensing system. The system provides results within 3.5 min and operates within a linear range of 0.02 to 5.00 mmol/L, achieving a limit of detection of 0.011 mmol/L. This innovation not only presents a more integrated and portable solution for wearable hydrogel systems, but also introduces a new, feasible method for detecting human physiological markers through a straightforward detection process.
Collapse
Affiliation(s)
- Zhiying Shao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huadong Heng
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Hanze M, Piper A, Hamedi MM. Stitched textile-based microfluidics for wearable devices. LAB ON A CHIP 2024; 25:28-40. [PMID: 39600207 PMCID: PMC11599943 DOI: 10.1039/d4lc00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Thread-based microfluidics, which rely on capillary forces in threads for liquid flow, are a promising alternative to conventional microfluidics, as they can be easily integrated into wearable textile-based biosensors. We present here advanced textile-based microfluidic devices fabricated by machine stitching, using only commercially available textiles. We stitch a polyester "Coolmax®" yarn with enhanced wicking abilities into both hydrophobic fabric and hydrophobically treated stretchable fabric, that serve as non-wicking substrates. In doing so we construct textile microfluidics capable of performing a wide variety of functions, including mixing and separation in 2D and 3D configurations. Furthermore, we integrate a stitched microfluidic device into a wearable T-shirt and show that this device can collect, transport, and detect sweat from the wearer's skin. These can also be machine-washed, making them inherently reusable. Finally, we integrate electrochemical sensors into the textile-based microfluidic devices using stitched gold-coated yarns to detect analytes in the microfluidic yarns. Our stitched textile-based microfluidic devices hold promise for wearable diagnostic applications. This novel, bottom-up fabrication using machine stitching is scalable, reproducible, low-cost, and compatible with the existing textile manufacturing industry.
Collapse
Affiliation(s)
- Martin Hanze
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
| | - Andrew Piper
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
4
|
Modarelli MJC, Kot-Thompson DM, Hoshino K. 5-Axis CNC micro-milling machine for three-dimensional microfluidics. LAB ON A CHIP 2024. [PMID: 39676609 DOI: 10.1039/d4lc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The gold standard of microfluidic fabrication techniques, SU-8 patterning, requires photolithography equipment and facilities and is not suitable for 3D microfluidics. A 3D printer is more convenient and may achieve high resolutions comparable to conventional photolithography, but only with select materials. Alternatively, 5-axis computer numerical control (CNC) micro-milling machines can efficiently prototype structures with high resolutions, high aspect ratios, and non-planar geometries from a variety of materials. These machines, however, have not been catered for laboratory-based, small-batch microfluidics development and are largely inaccessible to researchers. In this paper, we present a new 5-axis CNC micro-milling machine specifically designed for prototyping 3D microfluidic channels, made affordable for research and laboratories. The machine is assembled from commercially available products and custom-build parts, occupying 0.72 cubic meters, and operating entirely from computer aided design (CAD) and manufacturing (CAM) software. The 5-axis CNC micro-milling machine achieves sub-μm bidirectional repeatability (≤0.23 μm), machinable features <20 μm, and a work volume of 50 × 50 × 68 mm. The tool compatibility and milling parameters were designed to enable fabrication of virtually any mill-able material including metals like aluminum, brass, stainless steel, and titanium alloys. To demonstrate milling high resolution and high aspect ratios, we milled a thin wall from 360 brass with a width of 18.1 μm and an aspect ratio of ∼50 : 1. We also demonstrated fabricating molds from 360 brass with non-planar geometries to create polydimethylsiloxane (PDMS) microfluidic channels. These included a channel on a 90° edge and a channel on a rounded edge with a 250 μm radius of curvature. Our 5-axis CNC micro-milling machine offers the most versatility in prototyping microfluidics by enabling high resolutions, geometric complexity, a large work volume, and broad material compatibility, all within a user-friendly benchtop system.
Collapse
Affiliation(s)
- Mitchell J C Modarelli
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
| | - Devin M Kot-Thompson
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
| |
Collapse
|
5
|
Xue T, Lu X, Wen Y, Maleh HK, Duan X, Xu J. Recent progress of black phosphorene from preparation to diversified bio-/chemo-nanosensors and their challenges and opportunities for comprehensive health. Mikrochim Acta 2024; 191:771. [PMID: 39609277 DOI: 10.1007/s00604-024-06828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The introduction of comprehensive health, related to human living environment and mental state, helps people to improve human health literacy and accept scientific health guidance. The unique structure and properties of black phosphorene (BP) provide potential opportunities for rapid development and versatile applications of high-performance sensors serving comprehensive health. The review begins with the preparation from bulk black phosphorous crystals via transforming requirements of phosphorous allotropes and BP nanosheets via preparative strategies using both "top-down" and "bottom-up" methods. Then the diversified modification of BP and versatile fabrication of diversified bio-/chemo-nanosensors for sensitive detection of analytes are discussed. Besides, the challenges including the preparation of BP, diversified modification, devices for improving performance defects and chemo-/bio-nanosensors for enhancing performance are outlined together with potential opportunities for the BP preparation and applications in comprehensive health from agricultural environments, food safety, personal life, physical and mental life, and finally to medical care.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xinyu Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Hassan Karimi Maleh
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
6
|
Elgack ME, Abdelgawad M. Characterization of the Dynamic Flow Response in Microfluidic Devices. SMALL METHODS 2024:e2401773. [PMID: 39588888 DOI: 10.1002/smtd.202401773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Indexed: 11/27/2024]
Abstract
The purpose of this study is to characterize the dynamic response of fluid flow in microchannels, which can show significant delay times before reaching steady flow conditions. Two main sources of these delays are numerically and experimentally investigated, the hydraulic compliance which originates from the flexibility of the system components (microchannel, tubing, syringe, etc.), and the compressibility of the liquid dead volume in the setup, also known as the "bottleneck effect". A fluid-structure interaction model is presented for the compliance of rectangular PDMS microchannels that is used to form a numerically based relation for the compliance as a function of the pressure and geometry. This relation is successfully able to predict the dynamics of the flow inside PDMS microchannels in stop-flow experiments. The time delays associated with the bottleneck effect is also shown when using different syringe volumes, microchannel resistances, and liquid types. In these tests, the bottleneck effect has a much larger effect compared to the compliance of the PDMS microchannels. This is true even when using softer PDMS by increasing the monomer-to-curing agent mixing ratio. The characterization that is presented here allows for a simple analysis of microfluidic networks using the hydraulic-circuit approach.
Collapse
Affiliation(s)
- Mohammed E Elgack
- Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE
| | - Mohamed Abdelgawad
- Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE
- Department of Mechanical Engineering, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
7
|
Duan H, Peng S, He S, Tang SY, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411433. [PMID: 39588557 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shi-Yang Tang
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Zhao W, Li Y, Tian J, Cui Q, Tang C, Yin F, Xu L, Cheng S, Fei X. Highly Stretchable Sensitive Multiscale Hydrogel Inspired by Biological Muscles for Wearing Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58313-58325. [PMID: 39422652 DOI: 10.1021/acsami.4c12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hydrogels have attracted substantial research interest for application in wearable electronics due to their stretchability, elasticity, and compliance. However, most hydrogels could not satisfy the application requirements for high-performance wearable sensors due to their poor sensitivity, low mechanical properties, and sensing detection range until this day. Inspired by the fascia in biological muscles, we propose a strategy to form entangled "clusters" through the dense entanglement between highly cross-linked elastic hydrogel microspheres and polymer segments, and prepared a multiscale hydrogel with high sensitivity and mechanical toughness. This strategy embedded highly swollen hydrogel microspheres (with different pore sizes) to act as the microregions of dense entanglement in the soft matrix to adjust the microstructure of multiscale gel. When pressure was applied, this structure could provide a fast response due to the stack layer formed by microspheres and soft matrix produced effective stress distribution, resulting in the outstanding sensitivity of the multiscale hydrogel (S = 1.1 kPa-1) in the pressure range of 0-50 kPa. The distinct microspheres functioning as microscale joint areas significantly augment energy dissipation, culminating in exceptional mechanical stability, ultrastretchability (≈1050%), and high strength of the multiscale hydrogel. The most notable progress was that the synthesized multiscale hydrogel not only combined the above advantages but also simultaneously solved multiple dilemmas of tedious synthesis steps, high cost, and poor durability. Besides, the multiscale hydrogel also had excellent antibacterial properties and biocompatibility, which enabled them to have large-scale application potential in wearable and implantable electronic devices. Our research could provide a universal approach to the creation of robust, flexible, wearable, and sensitive sensors, significantly increasing the uses of stress sensors in wearable technology.
Collapse
Affiliation(s)
- Wenhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qinqin Cui
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chenyang Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Longquan Xu
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Sheng Cheng
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Xu Fei
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| |
Collapse
|
9
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
10
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
11
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Milić L, Zambry NS, Ibrahim FB, Petrović B, Kojić S, Thiha A, Joseph K, Jamaluddin NF, Stojanović GM. Advances in textile-based microfluidics for biomolecule sensing. BIOMICROFLUIDICS 2024; 18:051502. [PMID: 39296324 PMCID: PMC11410389 DOI: 10.1063/5.0222244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor. This paper presents a condensed overview of the current developments in textile-based microfluidics and biosensors in biomedical applications over the past 20 years (2005-2024). A literature search was performed using the Scopus database. The fabrication techniques and materials used are discussed in this paper, as these will be key in various modifications and advancements in textile-based microfluidics. Furthermore, we also address the gaps in the application of textile-based microfluidic analytical devices in biomedicine and discuss the potential solutions. Advances in textile-based microfluidics are enabled by various printing and fabric manufacturing techniques, such as screen printing, embroidery, and weaving. Integration of these devices into everyday clothing holds promise for future vital sign monitoring, such as glucose, albumin, lactate, and ion levels, as well as early detection of hereditary diseases through gene detection. Although most testing currently takes place in a laboratory or controlled environment, this field is rapidly evolving and pushing the boundaries of biomedicine, improving the quality of human life.
Collapse
Affiliation(s)
- Lazar Milić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Bojan Petrović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | - Sanja Kojić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
13
|
Jin M, Su P, Huang X, Zhang R, Xu H, Wang Z, Su C, Katona JM, Ye Y. Micropatterned Polymer Nanoarrays with Distinct Superwettability for a Highly Efficient Sweat Collection and Sensing Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311380. [PMID: 38721961 DOI: 10.1002/smll.202311380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Indexed: 10/01/2024]
Abstract
Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection. The nanoarray is synthesized by manipulating monomer supersaturation during iCVD to induce controlled nucleation and preferential vertical growth of fluorinated polymer. Subsequent selective vapor deposition of a conformal hydrogel nanolayer results in superhydrophilic nanoarray floor and walls within the microchannel that provide a large capillary force and a superhydrophobic ceiling that drastically reduces flow friction, enabling rapid sweat transport along varied flow directions. A carbon/hydrogel/enzyme nanocomposite electrode is then fabricated by sequential deposition of highly porous carbon nanoparticles and hydrogel nanocoating to achieve sensitive and stable sweat detection. Further encapsulation of the assembled sweatsensing patch with superhydrophobic nanoarray imparts self-cleaning and water-proof capability. Finally, the sweat sensing patch demonstrates selective and sensitive glucose and lactate detection during the on-body test.
Collapse
Affiliation(s)
- Minghui Jin
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Peipei Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiaocheng Huang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ruhao Zhang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - He Xu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhenbo Wang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Cuicui Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jaroslav M Katona
- Faculty of Technology, University of Novi Sad, Novi Sad, Bul. Cara Lazara 1, Novi Sad, 21000, Serbia
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
14
|
Binabaji F, Dashtian K, Zare-Dorabei R, Naseri N, Noroozifar M, Kerman K. Innovative Wearable Sweat Sensor Array for Real-Time Volatile Organic Compound Detection in Noninvasive Diabetes Monitoring. Anal Chem 2024; 96:13522-13532. [PMID: 39110633 DOI: 10.1021/acs.analchem.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Wearable sweat sensors are reshaping healthcare monitoring, providing real-time data on hydration and electrolyte levels with user-friendly, noninvasive devices. This paper introduces a highly portable two-channel microfluidic device for simultaneous sweat sampling and the real-time detection of volatile organic compound (VOC) biomarkers. This innovative wearable microfluidic system is tailored for monitoring diabetes through the continuous and noninvasive tracking of acetone and ammonia VOCs, and it seamlessly integrates with smartphones for easy data management. The core of this system lies in the utilization of carbon polymer dots (CPDs) and carbon dots (CDs) derived from monomers such as catechol, resorcinol, o-phenylenediamine, urea, and citric acid. These dots are seamlessly integrated into hydrogels made from gelatin and poly(vinyl alcohol), resulting in an advanced solid-state fluorometric sensor coating on a cellulose paper substrate. These sensors exhibit exceptional performance, offering linear detection ranges of 0.05-0.15 ppm for acetone and 0.25-0.37 ppm for ammonia, with notably low detection limits of 0.01 and 0.08 ppm, respectively. Rigorous optimization of operational parameters, encompassing the temperature, sample volume, and assay time, has been undertaken to maximize device performance. Furthermore, these sensors demonstrate impressive selectivity, effectively discerning between biologically similar substances and other potential compounds commonly present in sweat. As this field matures, the prospect of cost-effective, continuous, personalized health monitoring through wearable VOC sensors holds significant potential for overcoming barriers to comprehensive medical care in underserved regions. This highlights the transformative capacity of wearable VOC sweat sensing in ensuring equitable access to advanced healthcare diagnostics, particularly in remote or geographically isolated areas.
Collapse
Affiliation(s)
- Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
15
|
Zhao H, Zhang L, Deng T, Li C. Microfluidic Sensing Textile for Continuous Monitoring of Sweat Glucose at Rest. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19605-19614. [PMID: 38568178 DOI: 10.1021/acsami.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.
Collapse
Affiliation(s)
- He Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
17
|
Fedorowicz K, Prosser R. Electrically-driven modulation of flow patterns in liquid crystal microfludics. Sci Rep 2024; 14:4875. [PMID: 38418449 PMCID: PMC10901866 DOI: 10.1038/s41598-024-53436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
The flow of liquid crystals in the presence of electric fields is investigated as a possible means of flow control. The Beris-Edwards model is coupled to a free energy incorporating electric field effects. Simulations are conducted in straight channels and in junctions. Our findings reveal that local flow mediation can be achieved by the application of spatially varying electric fields. In rectangular straight channels, we report a two-stream velocity profile arising in response to the imposed electric field. Furthermore, we observe that the flow rate in each stream scales inversely with the Miesowicz viscosities, leading to the confinement of 70% of the throughput to one half of the channel. Similar flow partitioning is also demonstrated in channel junction geometries, where we show that using external fields provides a novel avenue for flow modulation in microfluidic circuits.
Collapse
Affiliation(s)
- Kamil Fedorowicz
- School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| | - Robert Prosser
- School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
18
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
19
|
Omar R, Yuan M, Wang J, Sublaban M, Saliba W, Zheng Y, Haick H. Self-powered freestanding multifunctional microneedle-based extended gate device for personalized health monitoring. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 398:134788. [PMID: 38164440 PMCID: PMC10652171 DOI: 10.1016/j.snb.2023.134788] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
Online monitoring of prognostic biomarkers is critically important when diagnosing disorders and assessing individuals' health, especially for chronic and infectious diseases. Despite this, current diagnosis techniques are time-consuming, labor-intensive, and performed offline. In this context, developing wearable devices for continuous measurements of multiple biomarkers from body fluids has considerable advantages including availability, rapidity, convenience, and minimal invasiveness over the conventional painful and time-consuming tools. However, there is still a significant challenge in powering these devices over an extended period, especially for applications that require continuous and long-term health monitoring. Herein, a new freestanding, wearable, multifunctional microneedle-based extended gate field effect transistor biosensor is fabricated for online detection of multiple biomarkers from the interstitial fluid including sodium, calcium, potassium, and pH along with excellent electrical response, reversibility, and precision. In addition, a hybrid powering system of triboelectric nanogenerator and solar cell was developed for creating a freestanding, closed-loop platform for continuous charging of the device's battery and integrated with an Internet of Things technology to broadcast the measurements online, suggesting a stand-alone, stable multifunctional tool which paves the way for advanced practical personalized health monitoring and diagnosis.
Collapse
Affiliation(s)
- Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Majd Sublaban
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ,United Kingdom
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
20
|
Yang H, Ji Y, Shen K, Qian Y, Ye C. Simultaneous detection of urea and lactate in sweat based on a wearable sweat biosensor. BIOMEDICAL OPTICS EXPRESS 2024; 15:14-27. [PMID: 38223175 PMCID: PMC10783907 DOI: 10.1364/boe.505004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Urea and lactate are biomarkers in sweat that is closely associated with human health. This study introduces portable, rapid, sensitive, stable, and high-throughput wearable sweat biosensors utilizing Au-Ag nanoshuttles (Au-Ag NSs) for the simultaneous detection of sweat urea and lactate. The Au-Ag NSs arrays within the biosensor's microfluidic cavity provide a substantial surface-enhanced Raman scattering (SERS) enhancement effect. The limit of detection (LOD) for urea and lactate are 2.35 × 10-6 and 8.66 × 10-7 mol/L, respectively. This wearable sweat biosensor demonstrates high resistance to compression bending, repeatability, and stability and can be securely attached to various body parts. Real-time sweat analysis of volunteers wearing the biosensors during exercise demonstrated the method's practicality. This wearable sweat biosensor holds significant potential for monitoring sweat dynamics and serves as a valuable tool for assessing bioinformation in sweat.
Collapse
Affiliation(s)
- Haifan Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yangyang Ji
- Department of Science and Education, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 226300, China
| | - Kang Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Chenchen Ye
- Department of Science and Education, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, China
| |
Collapse
|
21
|
Naula Duchi EA, Betancourt Cervantes HA, Yañez Espinosa CR, Rodríguez CA, Garza-Castañon LE, Martínez López JI. Particle Tracking and Micromixing Performance Characterization with a Mobile Device. SENSORS (BASEL, SWITZERLAND) 2023; 23:9900. [PMID: 38139748 PMCID: PMC10747875 DOI: 10.3390/s23249900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Strategies to stir and mix reagents in microfluid devices have evolved concomitantly with advancements in manufacturing techniques and sensing. While there is a large array of reported designs to combine and homogenize liquids, most of the characterization has been focused on setups with two inlets and one outlet. While this configuration is helpful to directly evaluate the effects of features and parameters on the mixing degree, it does not portray the conditions for experiments that involve more than two substances required to be subsequently combined. In this work, we present a mixing characterization methodology based on particle tracking as an alternative to the most common approach to measure homogeneity using the standard deviation of pixel intensities from a grayscale image. The proposed algorithm is implemented on a free and open-source mobile application (MIQUOD) for Android devices, numerically tested on COMSOL Multiphysics, and experimentally tested on a bidimensional split and recombine micromixer and a three-dimensional micromixer with sinusoidal grooves for different Reynolds numbers and geometrical features for samples with fluids seeded with red, blue, and green microparticles. The application uses concentration field data and particle track data to evaluate up to eleven performance metrics. Furthermore, with the insights from the experimental and numerical data, a mixing index for particles (mp) is proposed to characterize mixing performance for scenarios with multiple input reagents.
Collapse
Affiliation(s)
- Edisson A. Naula Duchi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - Héctor Andrés Betancourt Cervantes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - Christian Rodrigo Yañez Espinosa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - Ciro A. Rodríguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 64629, Mexico
| | - Luis E. Garza-Castañon
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - J. Israel Martínez López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 64629, Mexico
| |
Collapse
|
22
|
Dashtian K, Binabaji F, Zare-Dorabei R. Enhancing On-Skin Analysis: A Microfluidic Device and Smartphone Imaging Module for Real-Time Quantitative Detection of Multianalytes in Sweat. Anal Chem 2023; 95:16315-16326. [PMID: 37897415 DOI: 10.1021/acs.analchem.3c03516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Wearable sweat sensors present exciting opportunities for advancing personal health monitoring and noninvasive biomarker measurements. However, existing sensors often fall short in accurate detection of low analyte volumes and concentrations and lack multimodal sensing capabilities. Herein, we present a highly portable four-channel microfluidic device capable of conducting simultaneous sweat sampling and fluorometric sensing of potential biomarkers, such as l-Tyr, l-Trp, Crt, and NH4+, specifically designed for kidney disease monitoring. Our microfluidic device seamlessly integrates with smartphones, facilitating easy data retrieval and analysis. The core of the sensing array is a novel fluorometric solid-state mechanism utilizing carbon polymer dots derived from dopamine, catechol, and o-phenylenediamine monomers embedded in gelatin hydrogels. The sensors exhibit exceptional performance, offering linear ranges of 5-275, 6-170, 4-220, and 5-170 μM, with impressively low detection limits of 1.5, 1.2, 1.3, and 1.4 μM for l-Tyr, l-Trp, Crt, and NH4+, respectively. Through meticulous optimization of operational variables, comprising the temperature, sample volume, and assay time, we achieved the best performance of the device. Furthermore, the sensors exhibited remarkable selectivity, effectively distinguishing between biologically similar species and other potential biological compounds found in sweat. Our evaluation also extended to monitoring kidney diseases in patients and healthy individuals, showcasing the device's utility in world scenarios. Promising results showcase the potential of low-cost, multidiagnostic microfluidic sensor arrays, especially with synthetic skin integration, for enhanced disease detection and healthcare outcomes.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
23
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
24
|
Long F, Guo Y, Zhang Z, Wang J, Ren Y, Cheng Y, Xu G. Recent Progress of Droplet Microfluidic Emulsification Based Synthesis of Functional Microparticles. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300063. [PMID: 37745820 PMCID: PMC10517312 DOI: 10.1002/gch2.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/28/2023] [Indexed: 09/26/2023]
Abstract
The remarkable control function over the functional material formation process enabled by droplet microfluidic emulsification approaches can lead to the efficient and one-step encapsulation of active substances in microparticles, with the microparticle characteristics well regulated. In comparison to the conventional fabrication methods, droplet microfluidic technology can not only construct microparticles with various shapes, but also provide excellent templates, which enrich and expand the application fields of microparticles. For instance, intersection with disciplines in pharmacy, life sciences, and others, modifying the structure of microspheres and appending functional materials can be completed in the preparation of microparticles. The as-prepared polymer particles have great potential in a wide range of applications for chemical analysis, heavy metal adsorption, and detection. This review systematically introduces the devices and basic principles of particle preparation using droplet microfluidic technology and discusses the research of functional microparticle formation with high monodispersity, involving a plethora of types including spherical, nonspherical, and Janus type, as well as core-shell, hole-shell, and controllable multicompartment particles. Moreover, this review paper also exhibits a critical analysis of the current status and existing challenges, and outlook of the future development in the emerging fields has been discussed.
Collapse
Affiliation(s)
- Fei Long
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Yanhong Guo
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Zhiyu Zhang
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Gaojie Xu
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| |
Collapse
|
25
|
Liu Y, Li J, Xiao S, Liu Y, Bai M, Gong L, Zhao J, Chen D. Revolutionizing Precision Medicine: Exploring Wearable Sensors for Therapeutic Drug Monitoring and Personalized Therapy. BIOSENSORS 2023; 13:726. [PMID: 37504123 PMCID: PMC10377150 DOI: 10.3390/bios13070726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Precision medicine, particularly therapeutic drug monitoring (TDM), is essential for optimizing drug dosage and minimizing toxicity. However, current TDM methods have limitations, including the need for skilled operators, patient discomfort, and the inability to monitor dynamic drug level changes. In recent years, wearable sensors have emerged as a promising solution for drug monitoring. These sensors offer real-time and continuous measurement of drug concentrations in biofluids, enabling personalized medicine and reducing the risk of toxicity. This review provides an overview of drugs detectable by wearable sensors and explores biosensing technologies that can enable drug monitoring in the future. It presents a comparative analysis of multiple biosensing technologies and evaluates their strengths and limitations for integration into wearable detection systems. The promising capabilities of wearable sensors for real-time and continuous drug monitoring offer revolutionary advancements in diagnostic tools, supporting personalized medicine and optimal therapeutic effects. Wearable sensors are poised to become essential components of healthcare systems, catering to the diverse needs of patients and reducing healthcare costs.
Collapse
Affiliation(s)
- Yuqiao Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Junmin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shenghao Xiao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanhui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingxia Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixiu Gong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqian Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
26
|
Ren X, Zhou Y, Lu F, Zhai L, Wu H, Chen Z, Wang C, Zhu X, Xie Y, Cai P, Xu J, Tang X, Li J, Yao J, Jiang Q, Hu B. Contact Lens Sensor with Anti-jamming Capability and High Sensitivity for Intraocular Pressure Monitoring. ACS Sens 2023. [PMID: 37262351 DOI: 10.1021/acssensors.3c00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Contact lens sensors provide a noninvasive approach for intraocular pressure (IOP) monitoring in patients with glaucoma. Accurate measurement of this imperceptible pressure variation requires highly sensitive sensors in the absence of simultaneously amplifying IOP signal and blinking-induced noise. However, current noise-reduction methods rely on external filter circuits, which thicken contact lenses and reduce signal quality. Here, we introduce a contact lens strain sensor with an anti-jamming ability by utilizing a self-lubricating layer to reduce the coefficient of friction (COF) to remove the interference from the tangential force. The sensor achieves exceptionally high sensitivity due to the strain concentration layout and the confined occurrence of sympatric microcracks. The animal tests prove our lens can accurately detect IOP safely and reliably.
Collapse
Affiliation(s)
- Xueyang Ren
- Department of Neuro-Psychiatric Institute, the Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yunfan Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fangzhou Lu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Leili Zhai
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Zhongda Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuefei Zhu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neuro-Psychiatric Institute, the Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Pingqiang Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Juan Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, the Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jianqing Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
27
|
Vinnacombe-Willson GA, Lee JK, Chiang N, Scarabelli L, Yue S, Foley R, Frost I, Weiss PS, Jonas SJ. Exploring the Bottom-Up Growth of Anisotropic Gold Nanoparticles from Substrate-Bound Seeds in Microfluidic Reactors. ACS APPLIED NANO MATERIALS 2023; 6:6454-6460. [PMID: 37152920 PMCID: PMC10152454 DOI: 10.1021/acsanm.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
We developed an unconventional seed-mediated in situ synthetic method, whereby gold nanostars are formed directly on the internal walls of microfluidic reactors. The dense plasmonic substrate coatings were grown in microfluidic channels with different geometries to elucidate the impacts of flow rate and profile on reagent consumption, product morphology, and density. Nanostar growth was found to occur in the flow-limited regime and our results highlight the possibility of creating shape gradients or incorporating multiple morphologies in the same microreactor, which is challenging to achieve with traditional self-assembly. The plasmonic-microfluidic platforms developed herein have implications for a broad range of applications, including cell culture/sorting, catalysis, sensing, and drug/gene delivery.
Collapse
Affiliation(s)
- Gail A. Vinnacombe-Willson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joy K. Lee
- Department
of Pediatrics, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Naihao Chiang
- Department
of Chemistry, University of Houston, Houston, Texas 77004, United States
| | - Leonardo Scarabelli
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra 08193 Spain
| | - Shouzheng Yue
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Ruth Foley
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Isaura Frost
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Steven J. Jonas
- Department
of Pediatrics, University of California,
Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Eli
& Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
28
|
Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023; 25:10. [PMID: 36913137 PMCID: PMC10009869 DOI: 10.1007/s10544-023-00649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.
Collapse
Affiliation(s)
- E Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Muge Anil Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Ilayda Ozkan
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Seren Kecili
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - M Semih Baslar
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
29
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
30
|
Lapizco-Encinas BH, Zhang YV. Microfluidic systems in clinical diagnosis. Electrophoresis 2023; 44:217-245. [PMID: 35977346 DOI: 10.1002/elps.202200150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
The use of microfluidic devices is highly attractive in the field of biomedical and clinical assessments, as their portability and fast response time have become crucial in providing opportune therapeutic treatments to patients. The applications of microfluidics in clinical diagnosis and point-of-care devices are continuously growing. The present review article discusses three main fields where miniaturized devices are successfully employed in clinical applications. The quantification of ions, sugars, and small metabolites is examined considering the analysis of bodily fluids samples and the quantification of this type of analytes employing real-time wearable devices. The discussion covers the level of maturity that the devices have reached as well as cost-effectiveness. The analysis of proteins with clinical relevance is presented and organized by the function of the proteins. The last section covers devices that can perform single-cell metabolomic and proteomic assessments. Each section discusses several strategically selected recent reports on microfluidic devices successfully employed for clinical assessments, to provide the reader with a wide overview of the plethora of novel systems and microdevices developed in the last 5 years. In each section, the novel aspects and main contributions of each reviewed report are highlighted. Finally, the conclusions and future outlook section present a summary and speculate on the future direction of the field of miniaturized devices for clinical applications.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
31
|
Sharma S, Selvan M, Naskar S, Mondal S, Adhya P, Mukhopadhyay T, Mondal T. Printable Graphene-Sustainable Elastomer-Based Cross Talk Free Sensor for Point of Care Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57265-57280. [PMID: 36519850 DOI: 10.1021/acsami.2c17805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing sensors for monitoring physiological parameters such as temperature and strain for point of care (POC) diagnostics is critical for better care of the patients. Various commercial sensors are available to get the job done; however, challenges like the structural rigidity of such sensors confine their usage. As an alternative, flexible sensors have been looked upon recently. In most cases, flexible sensors cannot discriminate the signals from different stimuli. While there have been reports on the printable sensors providing cross-talk-free solutions, research related to developing sensors from a sustainable source providing discriminability between signals is not well-explored. Herein, we report the development of a stencil printable composition made of graphene and epoxidized natural rubber. The stencil printability index was vetted using rheological studies. Post usage, the developed sensor was dissolved in an organic solvent at room temperature. This, along with the choice of a sustainable elastomer, warrants the minimization of electronic waste and carbon footprint. The developed material demonstrated good conformability with the skin and could perceive and decouple the signals from temperature and strain without inducing any crosstalks. Using a representative volume element model, a comparison between experimental findings and computation studies was made. The developed sensors demonstrated gauge factors of -506 and 407 in the bending strain regimes of 0-0.04% and 0.04%-0.09%, respectively, while the temperature sensitivity was noted to be -0.96%/°C. The printed sensors demonstrated a multifunctional sensing behavior for monitoring various active physiological parameters ranging from temperature, strain, pulse, and breathing to auditory responses. Using a Bluetooth module, various parameters like temperature and strain could be monitored seamlessly in a smart-phone. The current development would be crucial to open new avenues to fabricate crosstalk-free sensors from sustainable sources for POC diagnostics.
Collapse
Affiliation(s)
- Simran Sharma
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Muthamil Selvan
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Susmita Naskar
- Faculty of Engineering and Physical Sciences, University of Southampton, SouthamptonSO171BJ, United Kingdom
| | - Soumyadeep Mondal
- Faculty of Engineering and Physical Sciences, University of Southampton, SouthamptonSO171BJ, United Kingdom
| | - Pragyadipta Adhya
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Tanmoy Mukhopadhyay
- Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur208016, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
32
|
Zhang T, Ratajczak AM, Chen H, Terrell JA, Chen C. A Step Forward for Smart Clothes─Fabric-Based Microfluidic Sensors for Wearable Health Monitoring. ACS Sens 2022; 7:3857-3866. [PMID: 36455259 DOI: 10.1021/acssensors.2c01827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We report the first demonstration of fabric-based microfluidics for wearable sensing. A new technology to develop microfluidics on fabrics, as a part of an undergarment, is described here. Compared to conventional microfluidics from polydimethylsiloxane, fabric-based microfluidics are simple to make, robust, and suitable for efficient sweat delivery. Specifically, acrylonitrile butadiene styrene (ABS) films with precut microfluidic patterns were infused through fabrics to form hydrophobic areas in a specially controlled sandwich structure. Experimental tests and simulations confirmed the sweat delivery efficiency of the microfluidics. Electrodes were screen-printed onto the fabric-based microfluidic. A novel wearable potentiometer based on Arduino was also developed as the transducer and signal readouts, which was low-cost, standardized, open-source, and capable of wireless data transfer. We applied the sensor system as a standalone or as a module of a T-shirt to quantify [Ca2+] in a wearer's sweat, with physiological and accurate results generated. Overall, this work represents a critical step in turning regular undergarments into biochemically smart platforms for health monitoring, which will broadly benefit human healthcare.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - Adam Michael Ratajczak
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - Hui Chen
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| |
Collapse
|
33
|
Palinski TJ, Guan B, Bradshaw-Hajek BH, Lienhard MA, Priest C, Miranda FA. Reversible colorimetric sensing of volatile analytes by wicking in close proximity to a photonic film. RSC Adv 2022; 12:36150-36157. [PMID: 36545087 PMCID: PMC9756422 DOI: 10.1039/d2ra06740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Isolation of volatile analytes from environmental or biological fluids is a rate-determining step that can delay the response time for continuous sensing. In this paper, we demonstrate a colorimetric sensing system that enables the rapid detection of gas-phase analytes released from a flowing micro-volume fluid sample. The sensor platform is an analyte-responsive metal-insulator-metal (MIM) thin-film structure integrated with a large area quartz micropillar array. This allows precise planar alignment and microscale separation (310 μm) of the optical and fluidic structures. This configuration offers rapid and homogeneous color changes over large areas that permits detection by low-resolution optics or eye, which is well-suited to portable/wearable devices. For our proof-of-principle demonstration, we utilized a poly(methyl methacrylate) (PMMA) spacer and evaluated the sensor's response (color change) to ethanol vapor. We show that the RGB color value is quantitatively linked to the spacer swelling, which is reversible and repeatable. The optofluidic platform reduces the sensor response time from minutes to seconds compared with experiments using a conventional chamber. The sensor's concentration-dependent response was examined, confirming the potential of the reported sensing platform for continuous, compact, and quantitative colorimetric analysis of volatile analytes in low-volume samples, such as biofluids.
Collapse
Affiliation(s)
- Timothy J Palinski
- Communications & Intelligent Systems Division, NASA Glenn Research Center Cleveland Ohio 44135 USA
| | - Bin Guan
- Future Industries Institute, University of South Australia Mawson Lakes SA 5095 Australia
- UniSA STEM, University of South Australia Mawson Lakes SA 5095 Australia
| | | | - Michael A Lienhard
- Communications & Intelligent Systems Division, NASA Glenn Research Center Cleveland Ohio 44135 USA
| | - Craig Priest
- Future Industries Institute, University of South Australia Mawson Lakes SA 5095 Australia
- UniSA STEM, University of South Australia Mawson Lakes SA 5095 Australia
- Australian National Fabrication Facility - South Australia Node, University of South Australia SA 5095 Australia
| | - Félix A Miranda
- Communications & Intelligent Systems Division, NASA Glenn Research Center Cleveland Ohio 44135 USA
| |
Collapse
|
34
|
Chen M, Li P, Wang R, Xiang Y, Huang Z, Yu Q, He M, Liu J, Wang J, Su M, Zhang M, Jian A, Ouyang J, Zhang C, Li J, Dong M, Zeng S, Wu J, Hong P, Hou C, Zhou N, Zhang D, Zhou H, Tao G. Multifunctional Fiber-Enabled Intelligent Health Agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200985. [PMID: 35820163 DOI: 10.1002/adma.202200985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The application of wearable devices is promoting the development toward digitization and intelligence in the field of health. However, the current smart devices centered on human health have disadvantages such as weak perception, high interference degree, and unfriendly interaction. Here, an intelligent health agent based on multifunctional fibers, with the characteristics of autonomy, activeness, intelligence, and perceptibility enabling health services, is proposed. According to the requirements for healthcare in the medical field and daily life, four major aspects driven by intelligent agents, including health monitoring, therapy, protection, and minimally invasive surgery, are summarized from the perspectives of materials science, medicine, and computer science. The function of intelligent health agents is realized through multifunctional fibers as sensing units and artificial intelligence technology as a cognitive engine. The structure, characteristics, and performance of fibers and analysis systems and algorithms are reviewed, while discussing future challenges and opportunities in healthcare and medicine. Finally, based on the above four aspects, future scenarios related to health protection of a person's life are presented. Intelligent health agents will have the potential to accelerate the realization of precision medicine and active health.
Collapse
Affiliation(s)
- Min Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Pan Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuanzhuo Xiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhiheng Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Qiao Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Muyao He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jia Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiaxi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Minyu Su
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Manni Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Aijia Jian
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jingyu Ouyang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chenxi Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jing Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Mengxue Dong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Shaoning Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ping Hong
- Beijing Sport University, Beijing, 100091, P. R. China
| | - Chong Hou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ning Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Dingyu Zhang
- Hubei Provincial Health and Health Committee, Wuhan, Hubei, 430015, P. R. China
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
35
|
de Brito Ayres L, Brooks J, Whitehead K, Garcia CD. Rapid Detection of Staphylococcus aureus Using Paper-Derived Electrochemical Biosensors. Anal Chem 2022; 94:16847-16854. [DOI: 10.1021/acs.analchem.2c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lucas de Brito Ayres
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Jordan Brooks
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Kristi Whitehead
- Department of Biological Sciences, Clemson University, Clemson 29634, South Carolina, United States
| | - Carlos D. Garcia
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| |
Collapse
|
36
|
Singh A, Ahmed A, Sharma A, Arya S. Graphene and Its Derivatives: Synthesis and Application in the Electrochemical Detection of Analytes in Sweat. BIOSENSORS 2022; 12:910. [PMID: 36291046 PMCID: PMC9599499 DOI: 10.3390/bios12100910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 05/25/2023]
Abstract
Wearable sensors and invasive devices have been studied extensively in recent years as the demand for real-time human healthcare applications and seamless human-machine interaction has risen exponentially. An explosion in sensor research throughout the globe has been ignited by the unique features such as thermal, electrical, and mechanical properties of graphene. This includes wearable sensors and implants, which can detect a wide range of data, including body temperature, pulse oxygenation, blood pressure, glucose, and the other analytes present in sweat. Graphene-based sensors for real-time human health monitoring are also being developed. This review is a comprehensive discussion about the properties of graphene, routes to its synthesis, derivatives of graphene, etc. Moreover, the basic features of a biosensor along with the chemistry of sweat are also discussed in detail. The review mainly focusses on the graphene and its derivative-based wearable sensors for the detection of analytes in sweat. Graphene-based sensors for health monitoring will be examined and explained in this study as an overview of the most current innovations in sensor designs, sensing processes, technological advancements, sensor system components, and potential hurdles. The future holds great opportunities for the development of efficient and advanced graphene-based sensors for the detection of analytes in sweat.
Collapse
Affiliation(s)
| | | | | | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India
| |
Collapse
|
37
|
Guo CY, Chang HC, Wang KJ, Hsieh TL. An Arterial Compliance Sensor for Cuffless Blood Pressure Estimation Based on Piezoelectric and Optical Signals. MICROMACHINES 2022; 13:1327. [PMID: 36014249 PMCID: PMC9413124 DOI: 10.3390/mi13081327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Blood pressure (BP) data can influence therapeutic decisions for some patients, while non-invasive devices that continuously monitor BP can provide patients with a more comprehensive BP assessment. Therefore, this study proposes a multi-sensor-based small cuffless BP monitoring device that integrates a piezoelectric sensor array and an optical sensor, which can monitor the patient's physiological signals from the radial artery. METHOD Based on the Moens-Korteweg (MK) equation of the hemodynamic model, pulse wave velocity (PWV) can be correlated with arterial compliance and BP can be estimated. Therefore, the novel method proposed in this study involves using a piezoelectric sensor array to measure the PWV and an optical sensor to measure the photoplethysmography (PPG) intensity ratio (PIR) signal to estimate the participant's arterial parameters. The parameters measured by multiple sensors were combined to estimate BP based on the P-β model derived from the MK equation. RESULT We recruited 20 participants for the BP monitoring experiment to compare the performance of the BP estimation method with the regression model and the P-β model method with arterial compliance. We then compared the estimated BP with a reference device for validation. The results are presented as the error mean ± standard deviation (SD). Based on the regression model method, systolic blood pressure (SBP) was 0.32 ± 5.94, diastolic blood pressure (DBP) was 2.17 ± 6.22, and mean arterial pressure (MAP) was 1.55 ± 5.83. The results of the P-β model method were as follows: SBP was 0.75 ± 3.9, DBP was 1.1 ± 3.12, and MAP was 0.49 ± 2.82. CONCLUSION According to the results of our proposed small cuffless BP monitoring device, both methods of estimating BP conform to ANSI/AAMI/ISO 81060-2:20181_5.2.4.1.2 criterion 1 and 2, and using arterial parameters to calibrate the MK equation model can improve BP estimate accuracy. In the future, our proposed device can provide patients with a convenient and comfortable BP monitoring solution. Since the device is small, it can be used in a public place without attracting other people's attention, thereby effectively improving the patient's right to privacy, and increasing their willingness to use it.
Collapse
Affiliation(s)
- Cheng-Yan Guo
- Accurate Meditech Inc., New Taipei City 241406, Taiwan
| | | | - Kuan-Jen Wang
- Accurate Meditech Inc., New Taipei City 241406, Taiwan
| | - Tung-Li Hsieh
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City 807618, Taiwan
| |
Collapse
|
38
|
Anselmo S, De Luca G, Ferrara V, Pignataro B, Sancataldo G, Vetri V. Insight into mechanisms of creatinine optical sensing using fluorescein-gold complex. Methods Appl Fluoresc 2022; 10. [PMID: 35901805 DOI: 10.1088/2050-6120/ac8524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022]
Abstract
Creatinine level in biological fluids is a clinically relevant parameter to monitor vital functions and it is well assessed that measuring creatinine levels in the human body can be of great utility to evaluate renal, muscular, or thyroid dysfunctions. The accurate detection of creatinine levels may have a critical role in providing information on health status and represents a tool for the early diagnosis of severe pathologies. Among different methods for creatinine detection that have been introduced and that are evolving with increasing speed, fluorescence-based and colorimetric sensors represent one of the best alternatives, thanks to their affordability, sensitivity and easy readability. In this work, we demonstrate that the fluorescein-Au3+ complex provides a rapid, selective, and sensitive tool for the quantification of creatinine concentrations in ranges typical of sweat and urine. UV-visible absorption, diffuse reflectance spectroscopy, steady state and time resolved fluorescence spectroscopy were used to shed light on the molecular mechanisms involved in the changes of optical properties, which underlie the multiplexed sensor analytical reply. Interestingly, sensing can be performed in solution or on solid nylon support accessing different physiological concentrations from micromolar to millimolar range. As a proof-of-concept, the nylon-based platform was used to demonstrate its effectiveness in creatinine detection on a solid and flexible substrate, showing its analytical colorimetric properties as an easy and disposable creatinine point-of-care test.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Giuseppe De Luca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, viale delle Scienze ed. 16, Palermo, 90128, ITALY
| | - Vittorio Ferrara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica, University of Palermo, viale delle Scienze ed. 18, Palermo, Sicilia, 90128, ITALY
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, viale delle Scienze ed. 18, Palermo, 90128, ITALY
| |
Collapse
|
39
|
Wang Z, Li Y, Gong S, Li W, Duan H, Cheng P, Chen Y, Dong Z. Three-Dimensional Open Water Microchannel Transpiration Mimetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30435-30442. [PMID: 35736861 DOI: 10.1021/acsami.2c09165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key problem that hinders the water transportation performance and application of microchannels is the annoying gaslock. Realizing liquid transport without the gaslock requires a specially designed pump and a channel system, as well as the reduction of gas concentration in liquids. In nature, to eat viscous nectar with high efficiency, hummingbirds use their open geometric tongue for nectar-sucking. Inspired by hummingbirds' tongue, we report a bionic open microchannel that discharges unwanted gas inside the microchannel from the opening without influencing its fluidic performance. The opening can also be used for extrusion of oil droplets in microchannels, indicating great potential applications in oil-water separation and chemical slow release, especially for bubble discharge in microchannels. Most significantly, a mimicked "leaf" with our bionic open microchannnels exhibits marvelous "transpiration" performance when irradiated by a laser. Our work provides a new strategy for the fabrication of open microchannels and sheds light on potential applications of multiphase phenomena in microchannels including oil-water separation, phase change heat and mass transfer, solar vapor generation, and precisely controllable drug delivery.
Collapse
Affiliation(s)
- Zhaolong Wang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yingying Li
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuai Gong
- MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenhao Li
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ping Cheng
- MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongping Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Zhichao Dong
- Chinese Academy of Sciences Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Future Technology College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
40
|
Huang X, Wang P, Liu J, Xu F, Liu C, Xu Z, Hou Z, Ye F. Patterning High-Resolution Microstructures on Thermoplastics by Ceramic Nanoparticles Filled Epoxy Coated Molds for Duplicating Nature-Derived Functional Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28270-28279. [PMID: 35680478 DOI: 10.1021/acsami.2c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patterning high-resolution microstructures on thermoplastic substrates is of fundamental importance for the commercialization of microfluidics, advanced functional surfaces, and optical elements. Though many methods are developed to fabricate micropatterned plastic devices with 100 μm resolution, they suffer substantially higher cost or lower productivity when the resolution of the micropatterns is to be further improved. Here, we develop low-cost molds consisting of thin ceramic-filled-epoxy composite coatings on steel substrates. By virtue of the loaded ZrO2 nanoparticle fillers, the enhanced mechanical and thermal properties of the composite molds enable the epoxy microstructures to survive harsh conditions in conventional thermoplastic processing methods including hot embossing, imprinting, and mold injection. With the ceramic-filled-epoxy coated molds, we are able to improve the fabrication resolution of microstructures on plastics to 10 μm with unprecedented low-cost and excellent durability.
Collapse
Affiliation(s)
- Xing Huang
- School of Engineering, Zhejiang University City College, Hangzhou, 310015, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Wang
- School of Engineering, Zhejiang University City College, Hangzhou, 310015, China
| | - Junfeng Liu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fangmin Xu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cong Liu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongbin Xu
- School of Engineering, Zhejiang University City College, Hangzhou, 310015, China
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute and Institute of Robotics, Zhejiang University, Ningbo 315100, China
| | - Zhanglin Hou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
41
|
Jing L, Xie CY, Li QQ, Yao HF, Yang MQ, Li H, Xia F, Li SG. A Sandwich-type Lateral Flow Strip Using a Split, Single Aptamer for Point-of-Care Detection of Cocaine. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application. MICROMACHINES 2022; 13:mi13050784. [PMID: 35630251 PMCID: PMC9146494 DOI: 10.3390/mi13050784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023]
Abstract
The wearable device industry is on the rise, with technology applications ranging from wireless communication technologies to the Internet of Things. However, most of the wearable sensors currently on the market are expensive, rigid and bulky, leading to poor data accuracy and uncomfortable wearing experiences. Near-field communication sensors are low-cost, easy-to-manufacture wireless communication technologies that are widely used in many fields, especially in the field of wearable electronic devices. The integration of wireless communication devices and sensors exhibits tremendous potential for these wearable applications by endowing sensors with new features of wireless signal transferring and conferring radio frequency identification or near-field communication devices with a sensing function. Likewise, the development of new materials and intensive research promotes the next generation of ultra-light and soft wearable devices for healthcare. This review begins with an introduction to the different components of near-field communication, with particular emphasis on the antenna design part of near-field communication. We summarize recent advances in different wearable areas of near-field communication sensors, including structural design, material selection, and the state of the art of scenario-based development. The challenges and opportunities relating to wearable near-field communication sensors for healthcare are also discussed.
Collapse
|
43
|
Tseng HY, Lizama JH, Alvarado NAS, Hou HH. Lab-on-PCB: One step away from the accomplishment of μTAS? BIOMICROFLUIDICS 2022; 16:031302. [PMID: 35761964 PMCID: PMC9233562 DOI: 10.1063/5.0091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The techniques, protocols, and advancements revolving around printed circuit boards (PCBs) have been gaining sustained attention in the realm of micro-total analysis systems (μTAS) as more and more efforts are devoted to searching for standardized, highly reliable, and industry-friendly solutions for point-of-care diagnostics. In this Perspective, we set out to identify the current state in which the field of μTAS finds itself, the challenges encountered by researchers in the implementation of these technologies, and the potential improvements that can be targeted to meet the current demands. We also line up some trending innovations, such as 3D printing and wearable devices, along with the development of lab-on-PCB to increase the possibility of multifunctional biosensing activities propelled by integrated microfluidic networks for a wider range of applications, anticipating to catalyze the full potential of μTAS.
Collapse
Affiliation(s)
- Hsiu-Yang Tseng
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jose H. Lizama
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Noel A. S. Alvarado
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
44
|
Zhang W, Zhao B, Yang Q, Zhou L, Jiang H, Niu K, Ding J. Design and test of intelligent inspection and monitoring system for cotton bale storage based on RFID. Sci Rep 2022; 12:4491. [PMID: 35296688 PMCID: PMC8927612 DOI: 10.1038/s41598-022-08229-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 11/09/2022] Open
Abstract
To solve the inspection problems in cotton storage, as well as the need for environmental monitoring in the process of modern cotton bale storage, an intelligent inspection and temperature and humidity intelligent monitoring system based on RFID cotton bale was developed by adopting RFID (Radio Frequency Identification) technology, wireless temperature and humidity real-time monitoring technology and handheld terminal intelligent inspection technology. The system was composed of RFID positioning inspection module and temperature and humidity real-time monitoring and transmission module. The artificial neural network (ANN) based on the particle swarm optimization (PSO) algorithm was used to process the monitoring data of the system by Gaussian filtering, and an accurate classification model of RSSI and label position was established. The test results showed that: Through the comparative analysis of the RFID indoor positioning algorithm, the positioning error of the PSO-ANN algorithm was small. In the actual cotton bale warehouse test, the relative error of positioning and monitoring for RFID cotton bale intelligent inspection and monitoring system was less than 6.7%, which effectively improved the working efficiency of inspection personnel and the security of cotton bale storage. The relative error of temperature and humidity was less than 8% and less than 7%, which could display the temperature and humidity information in real time and meet the real-time demand. This study improved the management personnel's effective positioning and inspection of the cotton bale, prevented the loss of cotton bale, reduced the deterioration probability of cotton bale, and effectively improved the storage management level of the cotton bale. It was of great practical significance to realize the networking, automation, and intelligence of cotton bale storage management.
Collapse
Affiliation(s)
- Weipeng Zhang
- The State Key Laboratory of Soil-Plant-Machinery System Technology, Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China
| | - Bo Zhao
- The State Key Laboratory of Soil-Plant-Machinery System Technology, Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China.
| | | | - Liming Zhou
- The State Key Laboratory of Soil-Plant-Machinery System Technology, Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China
| | - Hanlu Jiang
- The State Key Laboratory of Soil-Plant-Machinery System Technology, Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China
| | - Kang Niu
- The State Key Laboratory of Soil-Plant-Machinery System Technology, Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China
| | - Jian Ding
- Agricultural Machinery Service Center in Pingdu City, Pingdu, 266700, China
| |
Collapse
|
45
|
Hong X, Wu H, Wang C, Zhang X, Wei C, Xu Z, Chen D, Huang X. Hybrid Janus Membrane with Dual-Asymmetry Integration of Wettability and Conductivity for Ultra-Low-Volume Sweat Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9644-9654. [PMID: 35133787 DOI: 10.1021/acsami.1c16820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Highly sensitive and selective analysis of sweat at ultra-low sample volume remains a major challenge in the field of biosensing. Manipulation of small volumes of liquid for efficient sampling is essential to address this challenge. A hybrid Janus membrane with dual-asymmetry integration of wettability and conductivity is developed for regulated micro-volume liquid transport in wearable sweat biosensing. Unlike the uncontrollable liquid diffusion in a conventional porous membrane, the asymmetric wettability of porous Janus membrane leads to unique unidirectional liquid transport with high breakthrough pressure (1737.66 Pa) and fast self-pumping rate (35.94 μL/min) for micro-volume liquid sampling. The asymmetric conductive layer shows excellent flexible conductivity, anti-interference of friction, and efficient electrochemical interface due to the in situ generation of gold nanoparticles on one side of the membrane. The fabricated Pt-enzyme electrodes on the membrane promises effective testing range, great selectivity, and high sensitivity and accuracy (correlation efficiency, glucose: R2 = 0.999, lactate: R2 = 0.997), enabling ultra-low volume (∼0.15 μL) real time measurements on the skin surface. The innovative Janus membrane with unidirectional, self-pumping, and anti-interference performance provides a new strategy for miniaturized wearable microfluidic sweat electrochemical biosensor preparation in athletic performance evaluation, health monitoring, disease diagnosis, intelligent medicine, and so forth.
Collapse
Affiliation(s)
- Xiao Hong
- Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huimin Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengcheng Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinran Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjie Wei
- Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhikang Xu
- Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaojun Huang
- Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
46
|
Bonament A, Prel A, Sallese JM, Lallement C, Madec M. Analytic modelling of passive microfluidic mixers. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3892-3908. [PMID: 35341279 DOI: 10.3934/mbe.2022179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper deals with a new analytical model for microfluidic passive mixers. Two common approaches already exist for such a purpose. On the one hand, the resolution of the advection-diffusion-reaction equation (ADRE) is the first one and the closest to physics. However, ADRE is a partial differential equation that requires finite element simulations. On the other hand, analytical models based on the analogy between microfluidics and electronics have already been established. However, they rely on the assumption of homogeneous fluids, which means that the mixer is supposed to be long enough to obtain a perfect mixture at the output. In this paper, we derive an analytical model from the ADRE under several assumptions. Then we integrate these equations within the electronic-equivalent models. The resulting models computed the relationship between pressure and flow rate in the microfluidic circuit but also takes the concentration gradients that can appear in the direction perpendicular to the channel into account. The model is compared with the finite element simulation performed with COMSOL Multiphysics in several study cases. We estimate that the global error introduced by our model compared to the finite element simulation is less than 5% in every use case. In counterparts, the cost in terms of computational resources is drastically reduced. The analytical model can be implemented in a large range of modelling and simulation languages, including SPICE and hardware description language such as Verilog-AMS. This feature is very interesting in the context of the in silico prototyping of large-scale microfluidic devices or multi-physics devices involving microfluidic circuits, e.g. lab-on-chips.
Collapse
Affiliation(s)
- Alexi Bonament
- Laboratory of Engineer Sciences, Computer Science and Imagine (ICube), UMR 7357 (UniversitȦ de Strasbourg/Centre National de Recherche Scientifique), Strasbourg, France
| | - Alexis Prel
- Laboratory of Engineer Sciences, Computer Science and Imagine (ICube), UMR 7357 (UniversitȦ de Strasbourg/Centre National de Recherche Scientifique), Strasbourg, France
| | - Jean-Michel Sallese
- STI-IEL-Electronics Laboratory, Ecole Polytechnique FȦdȦrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christophe Lallement
- Laboratory of Engineer Sciences, Computer Science and Imagine (ICube), UMR 7357 (UniversitȦ de Strasbourg/Centre National de Recherche Scientifique), Strasbourg, France
| | - Morgan Madec
- Laboratory of Engineer Sciences, Computer Science and Imagine (ICube), UMR 7357 (UniversitȦ de Strasbourg/Centre National de Recherche Scientifique), Strasbourg, France
| |
Collapse
|
47
|
Khor SM, Choi J, Won P, Ko SH. Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:221. [PMID: 35055239 PMCID: PMC8781831 DOI: 10.3390/nano12020221] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023]
Abstract
Recently, several studies have been conducted on wearable biosensors. Despite being skin-adhesive and mountable diagnostic devices, flexible biosensor patches cannot truly be considered wearable biosensors if they need to be connected to external instruments/processors to provide meaningful data/readings. A realistic and usable wearable biosensor should be self-contained, with a fully integrated device framework carefully designed and configured to provide reliable and intelligent diagnostics. There are several major challenges to achieving continuous sweat monitoring in real time for the systematic and effective management of type II diabetes (e.g., prevention, screening, monitoring, and treatment) through wearable sweat glucose biosensors. Consequently, further in-depth research regarding the exact interrelationship between active or passive sweat glucose and blood glucose is required to assess the applicability of wearable glucose biosensors in functional health monitoring. This review provides some useful insights that can enable effective critical studies of these unresolved issues. In this review, we first classify wearable glucose biosensors based on their signal transduction, their respective challenges, and the advanced strategies required to overcome them. Subsequently, the challenges and limitations of enzymatic and non-enzymatic wearable glucose biosensors are discussed and compared. Ten basic criteria to be considered and fulfilled in the development of a suitable, workable, and wearable sweat-based glucose biosensor are listed, based on scientific reports from the last five years. We conclude with our outlook for the controllable, well-defined, and non-invasive monitoring of epidermal glucose for maximum diagnostic potential in the effective management of type II diabetes.
Collapse
Affiliation(s)
- Sook Mei Khor
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.K.); (J.C.)
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Joonhwa Choi
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.K.); (J.C.)
| | - Phillip Won
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.K.); (J.C.)
- Institute of Advanced Machines and Design/Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
48
|
Zhong B, Jiang K, Wang L, Shen G. Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103257. [PMID: 34713981 PMCID: PMC8728835 DOI: 10.1002/advs.202103257] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Indexed: 05/22/2023]
Abstract
Wearable sweat sensors have received significant research interest and have become popular as sweat contains considerable health information about physiological and psychological states. However, measured biomarker concentrations vary with sweat rates, which has a significant effect on the accuracy and reliability of sweat biosensors. Wearable sweat loss measuring devices (SLMDs) have recently been proposed to overcome the limitations of biomarker tracking and reduce inter- and intraindividual variability. In addition, they offer substantial potential for monitoring human body homeostasis, because sweat loss plays an indispensable role in thermoregulation and skin hydration. Previous studies have not carried out a comprehensive and systematic review of the principles, importance, and development of wearable SLMDs. This paper reviews wearable SLMDs with a new health perspective from the role of sweat loss to advanced mechanisms and designs. Two types of sweat and their measurement significance for practical applications are highlighted. Then, a comprehensive review of advances in different wearable SLMDs based on hygrometers, absorbent materials, and microfluidics is presented by describing their respective device architectures, present situations, and future directions. Finally, concluding remarks on opportunities for future application fields and challenges for future sweat sensing are presented.
Collapse
Affiliation(s)
- Bowen Zhong
- State Key Laboratory for Superlattices and Microstructures, Institution of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100029, China
| | - Kai Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, Chinese PLA, Beijing, 100853, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institution of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100029, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institution of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
49
|
Song L, Chen J, Xu BB, Huang Y. Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS NANO 2021; 15:18822-18847. [PMID: 34841852 DOI: 10.1021/acsnano.1c07176] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The noble metal nanoparticle has been widely utilized as a plasmonic unit to enhance biosensors, by leveraging its electric and/or optical properties. Integrated with the "flexible" feature, it further enables opportunities in developing healthcare products in a conformal and adaptive fashion, such as wrist pulse tracers, body temperature trackers, blood glucose monitors, etc. In this work, we present a holistic review of the recent advance of flexible plasmonic biosensors for the healthcare sector. The technical spectrum broadly covers the design and selection of a flexible substrate, the process to integrate flexible and plasmonic units, the exploration of different types of flexible plasmonic biosensors to monitor human temperature, blood glucose, ions, gas, and motion indicators, as well as their applications for surface-enhanced Raman scattering (SERS) and colorimetric detections. Their fundamental working principles and structural innovations are scoped and summarized. The challenges and prospects are articulated regarding the critical importance for continued progress of flexible plasmonic biosensors to improve living quality.
Collapse
Affiliation(s)
- Liping Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, People's Republic of China
- National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering, Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chines Academy of Sciences, Ningbo 315300, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, People's Republic of China
| |
Collapse
|
50
|
Mbunge E, Muchemwa B, Jiyane S, Batani J. Sensors and healthcare 5.0: transformative shift in virtual care through emerging digital health technologies. GLOBAL HEALTH JOURNAL 2021. [DOI: 10.1016/j.glohj.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|