1
|
Liu J, Chen Z, Wu C, Yu X, Yu X, Chen C, Li Z, Qiao Q, Cao Y, Zhou Y. Recent Advances in Antimony Selenide Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406028. [PMID: 39139003 DOI: 10.1002/adma.202406028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Photodetectors (PDs) rapidly capture optical signals and convert them into electrical signals, making them indispensable in a variety of applications including imaging, optical communication, remote sensing, and biological detection. Recently, antimony selenide (Sb2Se3) has achieved remarkable progress due to its earth-abundant, low toxicity, low price, suitable bandgap width, high absorption coefficient, and unique structural characteristics. Sb2Se3 has been extensively studied in solar cells, but there's a lack of timely updates in the field of PDs. A literature review based on Sb2Se3 PDs is urgently warranted. This review aims to provide a concise understanding of the latest progress in Sb2Se3 PDs, with a focus on the basic characteristics and the performance optimization for Sb2Se3 photoconductive-type and photodiode-type detectors, including nanostructure regulation, process optimization, and stability improvement of flexible devices. Furthermore, the application progresses of Sb2Se3 PDs in heart rate monitoring, and monolithic-integrated matrix images are introduced. Finally, this review presents various strategies with potential and feasibility to address challenges for the rapid development and commercial application of Sb2Se3 PDs.
Collapse
Affiliation(s)
- Jiaojiao Liu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Zhenbo Chen
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Cheng Wu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiaoming Yu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xuan Yu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Chao Chen
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan, Wuhan, Hubei, 430074, China
| | - Zhenhua Li
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Qian Qiao
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yu Cao
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| |
Collapse
|
2
|
Wang M, Liang D, Ma W, Mo Q, Zang Z, Qian Q, Cai W. Significant performance enhancement of UV-Vis self-powered CsPbBr 3 quantum dot-based photodetectors induced by ligand modification and P3HT embedding. OPTICS LETTERS 2022; 47:4512-4515. [PMID: 36048692 DOI: 10.1364/ol.468847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report a novel, to the best of our knowledge, strategy to improve the performance of UV-Vis self-powered CsPbBr3 quantum dot (QD) based photodetectors (PDs) by ligand modification and poly(3-hexylthiophene) (P3HT) embedding. Compared with those based on pure QDs, modified PDs show a shortened response time by nearly ten times, and increases of maximum responsivity and specific detectivity by nearly 45 and 97 times, respectively. Such PDs also show a high stability with 90% of the initial photocurrent being maintained even after storage in ambient air without any encapsulation for 30 days.
Collapse
|
3
|
Shen W, Zhang J, Dong R, Chen Y, Yang L, Chen S, Su Z, Dai Y, Cao K, Liu L, Chen S, Huang W. Stable and Efficient Red Perovskite Light-Emitting Diodes Based on Ca 2+-Doped CsPbI 3 Nanocrystals. Research (Wash D C) 2021; 2021:9829374. [PMID: 34957403 PMCID: PMC8672203 DOI: 10.34133/2021/9829374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/06/2022] Open
Abstract
α-CsPbI3 nanocrystals (NCs) with poor stability prevent their wide applications in optoelectronic fields. Ca2+ (1.00 Å) as a new B-site doping ion can successfully boost CsPbI3 NC performance with both improved phase stability and optoelectronic properties. With a Ca2+/Pb2+ ratio of 0.40%, both phase and photoluminescence (PL) stability could be greatly enhanced. Facilitated by increased tolerance factor, the cubic phase of its solid film could be maintained after 58 days in ambient condition or 4 h accelerated aging process at 120°C. The PL stability of its solution could be preserved to 83% after 147 days in ambient condition. Even using UV light to accelerate aging, the T50 of PL could boost 1.8-folds as compared to CsPbI3 NCs. Because Ca2+ doping can dramatically decrease defect densities of films and reduce hole injection barriers, the red light-emitting diodes (LEDs) exhibited about triple enhancement for maximum the external quantum efficiency (EQE) up to 7.8% and 2.2 times enhancement for half-lifetime of LED up to 85 min. We believe it is promising to further explore high-quality CsPbI3 NC LEDs via a Ca2+-doping strategy.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jianbin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ruimin Dong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Liu Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shuo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhan Su
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yujun Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Kun Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Sun R, Zhou D, Song H. Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices. NANO SELECT 2021. [DOI: 10.1002/nano.202100187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rui Sun
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun P. R. China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun P. R. China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun P. R. China
| |
Collapse
|
5
|
Wang F, Zou X, Xu M, Wang H, Wang H, Guo H, Guo J, Wang P, Peng M, Wang Z, Wang Y, Miao J, Chen F, Wang J, Chen X, Pan A, Shan C, Liao L, Hu W. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100569. [PMID: 34032025 PMCID: PMC8292906 DOI: 10.1002/advs.202100569] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Indexed: 06/01/2023]
Abstract
Photodetectors built from conventional bulk materials such as silicon, III-V or II-VI compound semiconductors are one of the most ubiquitous types of technology in use today. The past decade has witnessed a dramatic increase in interest in emerging photodetectors based on perovskite materials driven by the growing demands for uncooled, low-cost, lightweight, and even flexible photodetection technology. Though perovskite has good electrical and optical properties, perovskite-based photodetectors always suffer from nonideal quantum efficiency and high-power consumption. Joint manipulation of electrons and photons in perovskite photodetectors is a promising strategy to improve detection efficiency. In this review, electrical and optical characteristics of typical types of perovskite photodetectors are first summarized. Electrical manipulations of electrons in perovskite photodetectors are discussed. Then, artificial photonic nanostructures for photon manipulations are detailed to improve light absorption efficiency. By reviewing the manipulation of electrons and photons in perovskite photodetectors, this review aims to provide strategies to achieve high-performance photodetectors.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Xuming Zou
- Key Laboratory for Micro‐Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Mengjian Xu
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
- Terahertz Technology Innovation Research InstituteTerahertz Spectrum and Imaging Technology Cooperative Innovation CenterShanghai Key Lab of Modern Optical SystemUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Hao Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Hailu Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Huijun Guo
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Jiaxiang Guo
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Peng Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Meng Peng
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Zhen Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Yang Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Jinshui Miao
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Fansheng Chen
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Jianlu Wang
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
| | - Anlian Pan
- Key Laboratory for Micro‐Nano Physics and Technology of Hunan ProvinceCollege of Materials Science and EngineeringHunan UniversityChangsha410082China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesSchool of Physics and EngineeringZhengzhou UniversityZhengzhou45000China
| | - Lei Liao
- Key Laboratory for Micro‐Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Weida Hu
- State Key Laboratory of Infrared PhysicsKey Laboratory of Intelligent Infrared PerceptionShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
6
|
Li C, Li J, Li Z, Zhang H, Dang Y, Kong F. High-Performance Photodetectors Based on Nanostructured Perovskites. NANOMATERIALS 2021; 11:nano11041038. [PMID: 33921639 PMCID: PMC8073735 DOI: 10.3390/nano11041038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
In recent years, high-performance photodetectors have attracted wide attention because of their important applications including imaging, spectroscopy, fiber-optic communications, remote control, chemical/biological sensing and so on. Nanostructured perovskites are extremely suitable for detective applications with their long carrier lifetime, high carrier mobility, facile synthesis, and beneficial to device miniaturization. Because the structure of the device and the dimension of nanostructured perovskite have a profound impact on the performance of photodetector, we divide nanostructured perovskite into 2D, 1D, and 0D, and review their applications in photodetector (including photoconductor, phototransistor, and photodiode), respectively. The devices exhibit high performance with high photoresponsivity, large external quantum efficiency (EQE), large gain, high detectivity, and fast response time. The intriguing properties suggest that nanostructured perovskites have a great potential in photodetection.
Collapse
Affiliation(s)
- Chunlong Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (H.Z.)
- Correspondence: (C.L.); (Y.D.); (F.K.)
| | - Jie Li
- International College of Optoelectronic Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China;
| | - Zhengping Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (H.Z.)
| | - Huayong Zhang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (H.Z.)
| | - Yangyang Dang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (C.L.); (Y.D.); (F.K.)
| | - Fangong Kong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (H.Z.)
- Correspondence: (C.L.); (Y.D.); (F.K.)
| |
Collapse
|
7
|
Wang HP, Li S, Liu X, Shi Z, Fang X, He JH. Low-Dimensional Metal Halide Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003309. [PMID: 33346383 DOI: 10.1002/adma.202003309] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites (MHPs) have been a hot research topic due to their facile synthesis, excellent optical and optoelectronic properties, and record-breaking efficiency of corresponding optoelectronic devices. Nowadays, the development of miniaturized high-performance photodetectors (PDs) has been fueling the demand for novel photoactive materials, among which low-dimensional MHPs have attracted burgeoning research interest. In this report, the synthesis, properties, photodetection performance, and stability of low-dimensional MHPs, including 0D, 1D, 2D layered and nonlayered nanostructures, as well as their heterostructures are reviewed. Recent advances in the synthesis approaches of low-dimensional MHPs are summarized and the key concepts for understanding the optical and optoelectronic properties related to the PD applications of low-dimensional MHPs are introduced. More importantly, recent progress in novel PDs based on low-dimensional MHPs is presented, and strategies for improving the performance and stability of perovskite PDs are highlighted. By discussing recent advances, strategies, and existing challenges, this progress report provides perspectives on low-dimensional MHP-based PDs in the future.
Collapse
Affiliation(s)
- Hsin-Ping Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siyuan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
8
|
Tooghi A, Fathi D, Eskandari M. Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate. Sci Rep 2020; 10:18699. [PMID: 33122757 PMCID: PMC7596715 DOI: 10.1038/s41598-020-75630-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022] Open
Abstract
In this paper, a nanostructured perovskite solar cell (PSC) on a textured silicon substrate is examined, and its performance is analyzed. First, its configuration and the simulated unit cell are discussed, and its fabrication method is explained. In this proposed structure, poly-dimethylsiloxane (PDMS) is used instead of glass. It is shown that the use of PDMS dramatically reduces the reflection from the cell surface. Furthermore, the light absorption is found to be greatly increased due to the light trapping and plasmonic enhancement of the electric field in the active layer. Then, three different structures, are compared with the main proposed structure in terms of absorption, considering the imperfect fabrication conditions and the characteristics of the built PSC. The findings show that in the worst fabrication conditions considered structure (FCCS), short-circuit current density (Jsc) is 22.28 mA/cm2, which is 27% higher than that of the planar structure with a value of 17.51 mA/cm2. As a result, the efficiencies of these FCCSs are significant as well. In the main proposed structure, the power conversion efficiency (PCE) is observed to be improved by 32%, from 13.86% for the planar structure to 18.29%.
Collapse
Affiliation(s)
- Alireza Tooghi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mehdi Eskandari
- Nanomaterial Research Group, Academic Center for Education, Culture and Research (ACECR) on TMU, Tehran, Iran
| |
Collapse
|
9
|
Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z. Ultrasensitive Flexible Solar-Blind Photodetectors Based on Graphene/Amorphous Ga 2O 3 van der Waals Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47714-47720. [PMID: 33045829 DOI: 10.1021/acsami.0c10259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible photodetectors (PDs) have become the latest research interest owing to their potential applications in future implantable sensors and foldable/wearable optoelectronics. Ga2O3, an emerging ultrawide band gap semiconductor, is considered as the native photosensitive material for solar-blind PDs. The reported fabrication temperature of Ga2O3 films is usually above 600 °C, which hinders its practical application for flexible devices. In this work, flexible PDs based on graphene/amorphous Ga2O3 van der Waals heterojunctions are fabricated, which demonstrate promising photoresponse to solar-blind ultraviolet light. The device yields a high photo-to-dark current ratio (∼105) and large responsivity (22.75 A/W) under 254 nm light illumination, which could be ascribed to the efficient photogenerated electron-hole pair separation by the strong built-in field. Moreover, flexible PDs also show long-term environmental stability and outstanding mechanical flexibility without any encapsulation. Our work provides a new potential candidate for realizing cost-effective high-performance flexible optoelectronic applications.
Collapse
Affiliation(s)
- Yuehui Wang
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Zhibin Yang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Haoran Li
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Shan Li
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Yusong Zhi
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Zuyong Yan
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Xu Huang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Xianhua Wei
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Weihua Tang
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| |
Collapse
|
10
|
Li P, Duan Y, Lu Y, Xiao A, Zeng Z, Xu S, Zhang J. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr 3 quantum dot glass for WLEDs. NANOSCALE 2020; 12:6630-6636. [PMID: 32186315 DOI: 10.1039/d0nr01207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CsPbX3(Cl, Br, I) perovskite quantum dot glass has been widely reported, and the discovery of next-generation perovskite luminescent materials has been challenged by doping rare earth activators with energy-level transitions. In this work, we report a novel Eu-doped quantum dot glass material with tunable luminescence properties. The structure characteristics and tunable luminescence mechanism were investigated by combining X-ray diffraction, X-ray photoelectric spectroscopy, excitation and emission spectra. It was found that Eu ions replaced the lattice of Pb in CsPbBr3 quantum dots and formed CsEuBr3 quantum dots, which resulted in a blue emission. Meanwhile, a green emission from CsPbBr3 quantum dots and a red emission originally from Eu3+ in the glass matrix can also be observed by controlling the heat treatment temperature. A light-emitting diode is designed based on the prepared Eu-doped quantum dot glass without doping any phosphors, and a warm light with CCT at 4075 K is obtained. The present work provides a new luminescence tunable design principle for europium-doped quantum dot glass materials and could inspire the future exploration of rare earth ion-doped quantum dot glass materials.
Collapse
Affiliation(s)
- Panpan Li
- Institute of Optoelectronic Materials and Devices China Jiliang University, Hangzhou, 310018, China.
| | | | | | | | | | | | | |
Collapse
|