1
|
Wang J, Zheng H, Kong B, Xu X, Feng Z, Zeng T, Wang W. Hybrid Density Functional Study on the p-Type Conductivity Mechanism in Intrinsic Point Defects and Group V Element-Doped 2D β-TeO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58545-58555. [PMID: 39412395 DOI: 10.1021/acsami.4c10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The newly discovered two-dimensional (2D) β-TeO2 possesses extraordinarily high p-type carrier mobility and demonstrates immense potential in the electronics field. However, current research on its p-type conductivity mechanisms and the modifications of element doping remains relatively insufficient. In this study, the intrinsic point defects and extrinsic element doping in monolayer β-TeO2 are comprehensively analyzed to probe the potential sources of the intrinsic p-type conductivity and the extrinsic p-type doping possibility in 2D β-TeO2 through hybrid density functional calculations. Our results reveal that the vacancy defects with low formation energies have deep transition levels and thus cannot be used as sources of unintentional p-type conductivity in 2D β-TeO2. The investigations and discussions via Group V element doping modifications in 2D β-TeO2 indicate that bismuth (Bi) doping can easily and significantly enhance the p-type conductivity of 2D β-TeO2 under the presence of O-rich, which can be achieved experimentally. Furthermore, Bi doping can significantly increase carrier mobility without seriously affecting the electronic structure. The finding shows that the Bi element is an ideal dopant candidate for a p-type modification in 2D β-TeO2. Our calculations pave an alternative strategy to achieve the realization of superior p-type conductivity in 2D β-TeO2.
Collapse
Affiliation(s)
- Jincheng Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Hongchun Zheng
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Bo Kong
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Xiang Xu
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Zhenzhen Feng
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Tixian Zeng
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
2
|
Gan W, Liu Y, Liu X, Xiao R, Ni K, Jiang M, Han H, Zhou X, Li S, Wu C, Li Y, Li H. Symmetry-Reduction Enhanced Polarization-Sensitive Photoresponse Based on One-Dimensional van der Waals Materials. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693823 DOI: 10.1021/acsami.4c03233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Designing high-performance polarization-sensitive photodetectors is essential for photonic device applications. Anisotropic one-dimensional (1D) van der Waals (vdW) materials have provided a promising platform to that end. Despite significant advances in 1D vdW photonic devices, their performance is still far from delivering practical potential. Herein, we propose the design of high-performance polarization-sensitive photodetectors using unique 1D vdW materials. By leveraging the chemical vapor transport technique, we successfully fabricate high-quality 1D vdW Nb2Pd1-xSe5 (x = 0.29) nanowires. The 1D vdW Nb2Pd1-xSe5 photodetector exhibits a high mobility of ∼56 cm2/(V s) and superior photoresponse performance, including a high responsivity of 1A/W and an ultrafast response time of ∼8 μs under 638 nm illumination. Moreover, the 1D vdW Nb2Pd1-xSe5 photodetector demonstrates excellent polarization-sensitive photoresponse with a degree of linear polarization (DOLP) up to 0.85 and can be modulated by adjusting the gate voltage, laser power density, and wavelength. Those exceptional performance are believed to be relevant to the symmetry-reduction induced by the partial occupation of Pd sites. This study offers feasible approaches to enhance the anisotropy of 1D vdW materials and the modulation of their polarization-sensitive photoresponse, which may provide deep insights into the physical origin of anisotropic properties of 1D vdW materials.
Collapse
Affiliation(s)
- Wei Gan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Yucheng Liu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Xue Liu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Ruichun Xiao
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Kaipeng Ni
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Ming Jiang
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Hui Han
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Xiaoya Zhou
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Sijia Li
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Chuanqiang Wu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Liu L, Liang H, Huang Y, Cai C, Liu W, Yu X, Zhang J. Sub-micron pixel polarization-sensitive photodetector based on silicon nanowire. OPTICS EXPRESS 2024; 32:13128-13139. [PMID: 38859291 DOI: 10.1364/oe.520500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 06/12/2024]
Abstract
Silicon nanowire is a potential candidate to be used as polarization-sensitive material, but the relative mechanism of polarization response must be carried out. Herein, a sub-micron metal-single silicon nanowire-metal photodetector exhibits polarization-sensitive characteristics with an anisotropic photocurrent ratio of 1.59 at 780 nm, an excellent responsivity of 24.58 mA/W, and a high detectivity of 8.88 × 109 Jones at 980 nm. The underlying principle of optical anisotropy in silicon nanowire is attributed to resonance enhancement verified by polarizing light microscopy and simulation. Furthermore, Stokes parameter measurements and imaging are all demonstrated by detecting the characteristics of linearly polarized light and imaging the polarizer array, respectively. Given the maturity of silicon processing, the sub-micron linearly polarized light detection proposed in this study lays the groundwork for achieving highly integrated, simplified processes, and cost-effective on-chip polarization-sensitive optical chips in the future.
Collapse
|
4
|
Jiang H, Fu J, Wei J, Li S, Nie C, Sun F, Wu QYS, Liu M, Dong Z, Wei X, Gao W, Qiu CW. Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light. Nat Commun 2024; 15:1225. [PMID: 38336952 PMCID: PMC10858052 DOI: 10.1038/s41467-024-45498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
High quantum efficiency and wide-band detection capability are the major thrusts of infrared sensing technology. However, bulk materials with high efficiency have consistently encountered challenges in integration and operational complexity. Meanwhile, two-dimensional (2D) semimetal materials with unique zero-bandgap structures are constrained by the bottleneck of intrinsic quantum efficiency. Here, we report a near-mid infrared ultra-miniaturized graphene photodetector with configurable 2D potential well. The 2D potential well constructed by dielectric structures can spatially (laterally and vertically) produce a strong trapping force on the photogenerated carriers in graphene and inhibit their recombination, thereby improving the external quantum efficiency (EQE) and photogain of the device with wavelength-immunity, which enable a high responsivity of 0.2 A/W-38 A/W across a broad infrared detection band from 1.55 to 11 µm. Thereafter, a room-temperature detectivity approaching 1 × 109 cm Hz1/2 W-1 is obtained under blackbody radiation. Furthermore, a synergistic effect of electric and light field in the 2D potential well enables high-efficiency polarization-sensitive detection at tunable wavelengths. Our strategy opens up alternative possibilities for easy fabrication, high-performance and multifunctional infrared photodetectors.
Collapse
Affiliation(s)
- Hao Jiang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Jintao Fu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Jingxuan Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaojuan Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Changbin Nie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Feiying Sun
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Qing Yang Steve Wu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mingxiu Liu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xingzhan Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.
| | - Weibo Gao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Wang H, Li Y, Gao P, Wang J, Meng X, Hu Y, Yang J, Huang Z, Gao W, Zheng Z, Wei Z, Li J, Huo N. Polarization- and Gate-Tunable Optoelectronic Reverse in 2D Semimetal/Semiconductor Photovoltaic Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309371. [PMID: 37769436 DOI: 10.1002/adma.202309371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Polarimetric photodetector can acquire higher resolution and more surface information of imaging targets in complex environments due to the identification of light polarization. To date, the existing technologies yet sustain the poor polarization sensitivity (<10), far from market application requirement. Here, the photovoltaic detectors with polarization- and gate-tunable optoelectronic reverse phenomenon are developed based on semimetal 1T'-MoTe2 and ambipolar WSe2 . The device exhibits gate-tunable reverse in rectifying and photovoltaic characters due to the directional inversion of energy band, yielding a wide range of current rectification ratio from 10-2 to 103 and a clear object imaging with 100 × 100 pixels. Acting as a polarimetric photodetector, the polarization ratio (PR) value can reach a steady state value of ≈30, which is compelling among the state-of-the-art 2D-based polarized detectors. The sign reversal of polarization-sensitive photocurrent by varying the light polarization angles is also observed, that can enable the PR value with a potential to cover possible numbers (1→+∞/-∞→-1). This work develops a photovoltaic detector with polarization- and gate-tunable optoelectronic reverse phenomenon, making a significant progress in polarimetric imaging and multifunction integration applications.
Collapse
Affiliation(s)
- Hanyu Wang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Yan Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Jina Wang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Xuefeng Meng
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Yin Hu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Nengjie Huo
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| |
Collapse
|
6
|
Gao Y, Liao J, Chen H, Ning H, Wu Q, Li Z, Wang Z, Zhang X, Shao M, Yu Y. High Performance Polarization-Resolved Photodetectors Based on Intrinsically Stretchable Organic Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204727. [PMID: 36398626 PMCID: PMC9839839 DOI: 10.1002/advs.202204727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Polarization-sensitive photodetectors based on anisotropic semiconductors sense both the intensity and polarization state information without extra optical components. Here, a self-powered organic photodetector (OPD) composed of intrinsically stretchable polymer donor PNTB6-Cl and non-fullerene acceptor Y6 is reported. The PNTB6-Cl:Y6 photoactive film accommodates a remarkable 100% strain without fracture, exhibiting a high optical anisotropy of 1.8 after strain alignment. The resulting OPD not only shows an impressive faint-light detection capability (high spectral responsivity of 0.45 A W-1 and high specific detectivity of 1012 Jones), but also has a high anisotropic responsivity ratio of 1.42 under the illumination of parallel and traversed polarized light. To the best of the authors' knowledge, both the detector performance and polarization features are among the best-performing OPDs and polarization-sensitive photodetectors. As a proof-of-concept, polarization-sensitive OPDs are also utilized to set up a polarimetric imaging system and full-Stokes polarimeter. This work explores the potential of highly stretchable organic semiconductors for state-of-art polarization imaging and spectroscopy applications.
Collapse
Affiliation(s)
- Yerun Gao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jiawen Liao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haoyu Chen
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haijun Ning
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of GuangdongShantou UniversityGuangdong515063P. R. China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of GuangdongShantou UniversityGuangdong515063P. R. China
| | - Zhilin Li
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhenye Wang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xinliang Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Ming Shao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yu Yu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
7
|
Mohan S. Ambiguity in indexing electron diffraction patterns of R
3 crystals. ACTA CRYSTALLOGRAPHICA SECTION A FOUNDATIONS AND ADVANCES 2022; 78:507-514. [DOI: 10.1107/s2053273322008907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
The R
3 space group inherently lacks 2110, m
001 and m_{{\bar 1}10} symmetry operations. However, in crystals with R
3 symmetry, these transformations produce `pseudoplanes' with the same interplanar spacing and angles as the original crystallographic planes, causing a lack of uniqueness in the electron diffraction (ED) pattern. The difference in atomic arrangements of pseudoplanes and original planes is reflected in the intensities of diffraction spots; it is hard to differentiate in standard ED patterns, frequently causing wrong assignment of the zone axes. The implications of this ambiguity in analysis of crystal orientations are discussed in detail and a suitable routine to follow while indexing R
3 ED patterns is proposed.
Collapse
|
8
|
Zhang X, Yao Y, Liang L, Niu X, Wu J, Luo J. Self-Assembly of 2D Hybrid Double Perovskites on 3D Cs 2 AgBiBr 6 Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angew Chem Int Ed Engl 2022; 61:e202205939. [PMID: 35654743 DOI: 10.1002/anie.202205939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/22/2022]
Abstract
We report the self-assembly of 2D double perovskite (BLA)2 CsAgBiBr7 (BLA=benzylammonium) on 3D Cs2 AgBiBr6 crystals, providing the first demonstration of polarization-sensitive photodetection using lead-free double perovskite heterocrystals (HCs). The (BLA)2 CsAgBiBr7 /Cs2 AgBiBr6 HC successfully combines the anisotropy of 2D double perovskites with the well-defined interface provided by heterogeneous integration. Driven by the built-in electric field in junction, photodetectors of HCs exhibit unique polarization dependence of zero-bias photocurrent with a large anisotropy ratio up to 9, which is 6 times amplified as compared to the pristine 2D (BLA)2 CsAgBiBr7 . More importantly, the present devices can remain polarization-sensitive with incident light intensity down to the nW cm-2 level. Our study on lead-free hybrid perovskite HCs marks a step toward establishing robust material foundations for fundamental scientific investigations and the development of optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Zhang X, Yao Y, Liang L, Niu X, Wu J, Luo J. Self‐Assembly of 2D Hybrid Double Perovskites on 3D Cs2AgBiBr6 Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyuan Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Yunpeng Yao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Lishan Liang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Xinyi Niu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Jianbo Wu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Junhua Luo
- Chinese Academy of Sciences Crystalline Materials Yangqiao West Rd #155 350002 Fuzhou CHINA
| |
Collapse
|
10
|
Zhang K, Ren Z, Cao H, Li L, Wang Y, Zhang W, Li Y, Yang H, Meng Y, Ho JC, Wei Z, Shen G. Near-Infrared Polarimetric Image Sensors Based on Ordered Sulfur-Passivation GaSb Nanowire Arrays. ACS NANO 2022; 16:8128-8140. [PMID: 35511070 DOI: 10.1021/acsnano.2c01455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The near-infrared polarimetric image sensor has a wide range of applications in the military and civilian fields, thus developing into a research hotspot in recent years. Because of their distinguishing 1D structure features, the ordered GaSb nanowire (NW) arrays possess potential applications for near-infrared polarization photodetection. In this work, single-crystalline GaSb NWs are synthesized through a sulfur-catalyzed chemical vapor deposition process. A sulfur-passivation thin layer is formed on the NW surface, which prevents the GaSb NW core from being oxidized. The photodetector based on sulfur-passivation GaSb (S-GaSb) NWs has a lower dark current and higher responsivity than that built with pure GaSb NWs. The photodetector exhibits a large responsivity of 9.39 × 102 A/W and an ultrahigh detectivity of 1.10 × 1011 Jones for 1.55 μm incident light. Furthermore, the dichroic ratio of the device is measured to reach 2.65 for polarized 1.55 μm light. Through a COMSOL simulation, it is elucidated that the origin of the polarized photoresponse is the attenuation of a light electric field inside the NW when the angle of incident polarization light rotates. Moreover, a flexible polarimetric image sensor with 5 × 5 pixels is successfully constructed on the ordered S-GaSb NW arrays, and it exhibits a good imaging ability for incident near-infrared polarization light. These good photoresponse properties and polarized imaging abilities can empower ordered S-GaSb NW arrays with technological potentials in next-generation large-scale near-infrared polarimetric imaging sensors.
Collapse
Affiliation(s)
- Kai Zhang
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
- Institute of Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihui Ren
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelxsectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Huichen Cao
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Lingling Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Ying Wang
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wei Zhang
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yubao Li
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Haitao Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - You Meng
- Department of Materials Science and Engineering, and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Guozhen Shen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Zou C, Liu Q, Chen K, Chen F, Zhao Z, Cao Y, Deng C, Wang X, Li X, Zhan S, Gao F, Li S. A high-performance polarization-sensitive and stable self-powered UV photodetector based on a dendritic crystal lead-free metal-halide CsCu 2I 3/GaN heterostructure. MATERIALS HORIZONS 2022; 9:1479-1488. [PMID: 35262131 DOI: 10.1039/d1mh02073k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive photodetectors are the core of optics applications and have been successfully demonstrated in photodetectors based on the newly-emerging metal-halide perovskites. However, achieving high polarization sensitivity is still extremely challenging. In addition, most of the previously reported photodetectors were concentrated on 1D lead-halide perovskites and 2D asymmetric intrinsic structure materials, but suffered from being external bias driven, lead-toxicity, poor stability and complex processes, severely limiting their practical applications. Here, we demonstrate a high-performance polarization-sensitive and stable polarization-sensitive UV photodetector based on a dendritic crystal lead-free metal-halide CsCu2I3/GaN heterostructure. By combining the anisotropic morphology and asymmetric intrinsic structure of CsCu2I3 dendrites with the isotropic material GaN film, a high specific surface area and built-in electric field are achieved, exhibiting an ultra-high polarization selectivity up to 28.7 and 102.8 under self-driving mode and -3 V bias, respectively. To our knowledge, such a high polarization selectivity has exceeded those of all of the reported perovskite-based devices, and is comparable to, or even superior to, those of the conventional 2D heterostructure materials. Interestingly, the unsealed device shows outstanding stability, and can be stored for over 2 months, and effectively maintained the performance even after repeated heating (373K)-cooling (300K) for different periods of time in ambient air, indicating a remarkable temperature tolerance and desired compatibility for applications under harsh conditions. Such excellent performance and simple method strongly show that the CsCu2I3/GaN heterojunction photodetector has great potential in practical applications with high polarization-sensitivity. This work provides a new insight into designing novel high-performance polarization-sensitive optoelectronic devices.
Collapse
Affiliation(s)
- Can Zou
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Qing Liu
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Kai Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Fei Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Zixuan Zhao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Yunxuan Cao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Congcong Deng
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xingfu Wang
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xiaohang Li
- King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor Laboratory, Thuwal 23955, Saudi Arabia
| | - Shaobin Zhan
- Shenzhen Institute of Information Technology, Innovation and Entrepreneurship School, Shenzhen, 518172, P. R. China.
| | - Fangliang Gao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Shuti Li
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
- 21C Innovation Laboratory, Contemporary Amperex Technology Ltd, Ningde, Fujian, 352100, P. R. China.
| |
Collapse
|
12
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
13
|
Zhao K, Wei Z, Xia J. 主族层状低维半导体的偏振光探测器. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Wu G, Chung HS, Bae TS, Cho J, Lee KC, Cheng HH, Coileáin CÓ, Hung KM, Chang CR, Wu HC. Efficient Suppression of Charge Recombination in Self-Powered Photodetectors with Band-Aligned Transferred van der Waals Metal Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61799-61808. [PMID: 34927430 DOI: 10.1021/acsami.1c20499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recombination of photogenerated electron-hole pairs dominates the photocarrier lifetime and then influences the performance of photodetectors and solar cells. In this work, we report the design and fabrication of band-aligned van der Waals-contacted photodetectors with atomically sharp and flat metal-semiconductor interfaces through transferred metal integration. A unity factor α is achieved, which is essentially independent of the wavelength of the light, from ultraviolet to near-infrared, indicating effective suppression of charge recombination by the device. The short-circuit current (0.16 μA) and open-circuit voltage (0.72 V) of the band-aligned van der Waals-contacted devices are at least 1 order of magnitude greater than those of band-aligned deposited devices and 2 orders of magnitude greater than those of non-band-aligned deposited devices. High responsivity, detectivity, and polarization sensitivity ratio of 283 mA/W, 6.89 × 1012 cm Hz1/2 W-1, and 3.05, respectively, are also obtained for the device at zero bias. Moreover, the efficient suppression of charge recombination in our air-stable self-powered photodetectors also results in a fast response speed and leads to polarization-sensitive performance.
Collapse
Affiliation(s)
- Gang Wu
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hee-Suk Chung
- Jeonju Center, Korea Basic Science Institute, Jeonju 54896, Republic of Korea
| | - Tae-Sung Bae
- Jeonju Center, Korea Basic Science Institute, Jeonju 54896, Republic of Korea
| | - Jiung Cho
- Western Seoul Center, Korea Basic Science Institute, Seoul 03579, Republic of Korea
| | - Kuo-Chih Lee
- Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Hung Hsiang Cheng
- Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Cormac Ó Coileáin
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Neubiberg 85579, Germany
| | - Kuan-Ming Hung
- Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan, ROC
| | - Ching-Ray Chang
- Department of Physics, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Han-Chun Wu
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
15
|
Zhang X, Li L, Ji C, Liu X, Li Q, Zhang K, Peng Y, Hong M, Luo J. Rational design of high-quality 2D/3D perovskite heterostructure crystals for record-performance polarization-sensitive photodetection. Natl Sci Rev 2021; 8:nwab044. [PMID: 34858607 PMCID: PMC8566186 DOI: 10.1093/nsr/nwab044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization-sensitive photodetection is central to optics applications and has been successfully demonstrated in photodetectors of two-dimensional (2D) materials, such as layered hybrid perovskites; however, achieving high polarization sensitivity in such a photodetector remains extremely challenging. Here, for the first time, we demonstrate a high-performance polarization-sensitive photodetector using single-crystalline 2D/3D perovskite heterostructure, namely, (4-AMP)(MA)2Pb3Br10/MAPbBr3 (MA = methylammonium; 4-AMP = 4-(aminomethyl)piperidinium), which exhibits ultrahigh polarization sensitivity up to 17.6 under self-driven mode. To our knowledge, such a high polarization selectivity has surpassed all of the reported perovskite-based devices, and is comparable to, or even better than, the traditional inorganic heterostructure-based photodetectors. Further studies reveal that the built-in electric field formed at the junction can spatially separate the photogenerated electrons and holes, reducing their recombination rate and thus enhancing the performance for polarization-sensitive photodetection. This work provides a new source of polarization-sensitive materials and insights into designing novel optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qing Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
16
|
Ran W, Ren Z, Wang P, Yan Y, Zhao K, Li L, Li Z, Wang L, Yang J, Wei Z, Lou Z, Shen G. Integrated polarization-sensitive amplification system for digital information transmission. Nat Commun 2021; 12:6476. [PMID: 34753933 PMCID: PMC8578569 DOI: 10.1038/s41467-021-26919-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/22/2021] [Indexed: 12/03/2022] Open
Abstract
Polarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.
Collapse
Affiliation(s)
- Wenhao Ran
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Ren
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxu Yan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhexin Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zheng Lou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guozhen Shen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Yang W, Yang J, Zhao K, Gao Q, Liu L, Zhou Z, Hou S, Wang X, Shen G, Pang X, Xu Q, Wei Z. Low-Noise Dual-Band Polarimetric Image Sensor Based on 1D Bi 2 S 3 Nanowire. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100075. [PMID: 34021718 PMCID: PMC8292854 DOI: 10.1002/advs.202100075] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Indexed: 05/03/2023]
Abstract
With the increasing demand for detection accuracy and sensitivity, dual-band polarimetric image sensor has attracted considerable attention due to better object recognition by processing signals from diverse wavebands. However, the widespread use of polarimetric sensors is still limited by high noise, narrow photoresponse range, and low linearly dichroic ratio. Recently, the low-dimensional materials with intrinsic in-plane anisotropy structure exhibit the great potential to realize direct polarized photodetection. Here, strong anisotropy of 1D layered bismuth sulfide (Bi2 S3 ) is demonstrated experimentally and theoretically. The Bi2 S3 photodetector exhibits excellent device performance, which enables high photoresponsivity (32 A W-1 ), Ion /Ioff ratio (1.08 × 104 ), robust linearly dichroic ratio (1.9), and Hooge parameter (2.0 × 10-5 at 1 Hz) which refer to lower noise than most reported low-dimensional materials-based devices. Impressively, such Bi2 S3 nanowire exhibits a good broadband photoresponse, ranging from ultraviolet (360 nm) to short-wave infrared (1064 nm). Direct polarimetric imaging is implemented at the wavelengths of 532 and 808 nm. With these remarkable features, the 1D Bi2 S3 nanowires show great potential for direct dual-band polarimetric image sensors without using any external optical polarizer.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450052China
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Juehan Yang
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Kai Zhao
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qiang Gao
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Liyuan Liu
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shijun Hou
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoting Wang
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Guozhen Shen
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinchang Pang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450052China
| | - Qun Xu
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450052China
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
18
|
Shao Y, Song J, Li X, Ren G, Song F. Synthesis of Noble Metal M@YSiO 2 Yolk-Shell Nanoparticles with Thin Organic/Inorganic Hybrid Outer Shells via an Aqueous Medium Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7237-7245. [PMID: 34126746 DOI: 10.1021/acs.langmuir.1c00875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple method is proposed for the synthesis of noble metal M@YSiO2 (M = Au, Pd, Ag) yolk-shell nanoparticles. The effects of synthesis conditions on the preparation of yolk-shell nanoparticles were discussed in detail. According to the different corrosion resistances between inorganic silica and organosilicone in a selective etching solution, yolk-shell nanoparticles with large cavity and thin shell were prepared using the same aqueous medium in a step-by-step synthesis process. Different from traditional methods, this method is facile and efficient because the main synthesis process is carried out in an aqueous phase. This extended method may benefit the synthesis and application of other nanomaterials with a similar yolk-shell structure.
Collapse
Affiliation(s)
- Yutong Shao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, P. R. China
| | - Jitao Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, P. R. China
| | - Xiaorong Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, P. R. China
| | - Guoqing Ren
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
19
|
Huang YT, Kavanagh SR, Scanlon DO, Walsh A, Hoye RLZ. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. NANOTECHNOLOGY 2021; 32:132004. [PMID: 33260167 DOI: 10.1088/1361-6528/abcf6d] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lead-halide perovskites have demonstrated astonishing increases in power conversion efficiency in photovoltaics over the last decade. The most efficient perovskite devices now outperform industry-standard multi-crystalline silicon solar cells, despite the fact that perovskites are typically grown at low temperature using simple solution-based methods. However, the toxicity of lead and its ready solubility in water are concerns for widespread implementation. These challenges, alongside the many successes of the perovskites, have motivated significant efforts across multiple disciplines to find lead-free and stable alternatives which could mimic the ability of the perovskites to achieve high performance with low temperature, facile fabrication methods. This Review discusses the computational and experimental approaches that have been taken to discover lead-free perovskite-inspired materials, and the recent successes and challenges in synthesizing these compounds. The atomistic origins of the extraordinary performance exhibited by lead-halide perovskites in photovoltaic devices is discussed, alongside the key challenges in engineering such high-performance in alternative, next-generation materials. Beyond photovoltaics, this Review discusses the impact perovskite-inspired materials have had in spurring efforts to apply new materials in other optoelectronic applications, namely light-emitting diodes, photocatalysts, radiation detectors, thin film transistors and memristors. Finally, the prospects and key challenges faced by the field in advancing the development of perovskite-inspired materials towards realization in commercial devices is discussed.
Collapse
Affiliation(s)
- Yi-Teng Huang
- Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Seán R Kavanagh
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David O Scanlon
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Aron Walsh
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|