1
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Wang H, Pei Y, Wang K, Zuo Y, Wei M, Xiong J, Zhang P, Chen Z, Shang N, Zhong D, Pei P. First-Row Transition Metals for Catalyzing Oxygen Redox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304863. [PMID: 37469215 DOI: 10.1002/smll.202304863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Rechargeable zinc-air batteries are widely recognized as a highly promising technology for energy conversion and storage, offering a cost-effective and viable alternative to commercial lithium-ion batteries due to their unique advantages. However, the practical application and commercialization of zinc-air batteries are hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Recently, extensive research has focused on the potential of first-row transition metals (Mn, Fe, Co, Ni, and Cu) as promising alternatives to noble metals in bifunctional ORR/OER electrocatalysts, leveraging their high-efficiency electrocatalytic activity and excellent durability. This review provides a comprehensive summary of the recent advancements in the mechanisms of ORR/OER, the performance of bifunctional electrocatalysts, and the preparation strategies employed for electrocatalysts based on first-row transition metals in alkaline media for zinc-air batteries. The paper concludes by proposing several challenges and highlighting emerging research trends for the future development of bifunctional electrocatalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Pei
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Yayu Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Manhui Wei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuo Shang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Daiyuan Zhong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pucheng Pei
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zhao J, Tan H, Zi Z, Song L, Hu H, Zhang H, Wu M. Synchronous coupling of defects and a heteroatom-doped carbon constraint layer on cobalt sulfides toward boosted oxide electrolysis activities for highly energy-efficient micro-zinc-air batteries. NANOSCALE 2023; 15:5927-5937. [PMID: 36877572 DOI: 10.1039/d3nr00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sluggish kinetics of oxygen electrocatalysis reactions on cathodes significantly suppresses the energy efficiency of zinc-air batteries (ZABs). Herein, by coupling in situ generated CoS nanoparticles rich in cobalt vacancies (VCo) with a dual-heteroatom-doped layered carbon framework, a hybrid Co-based catalyst (Co1-xS@N/S-C) is designed and synthesized from Co-MOF precursor. Experimental analyses, together with density functional theory (DFT)-based calculations, demonstrate that the facilitated ion diffusion enabled by the introduced VCo, together with the enhanced electron transport benefiting from the well-designed dual-heteroatom-doped laminated carbon framework, synergistically boost the bifunctional electrocatalytic activity of Co1-xS@N/S-C (ΔE = 0.76 V), which is much superior to that of CoS@N/S-C without VCo (ΔE = 0.89 V), CoS without VCo (ΔE = 1.23 V), and the dual-heteroatom-doped laminated carbon framework. As expected, the further assembled ZAB employing Co1-xS@N/S-C as the cathode electrocatalyst exhibits enhanced energy efficiency in terms of better cycling stability (510 cycles/170 hours) and a higher specific capacity (807 mA h g-1). Finally, a flexible/stretched solid state micro-ZAB (F/SmZAB) with Co1-xS@N/S-C as the cathode electrocatalyst and a wave-shaped GaIn-Ni-based liquid metal as the electronic circuit is further designed, which can display excellent electrical properties and long elongation. This work provides a new defect and structure coupling strategy for boosting the oxide electrolysis activities of Co-based catalysts. Furthermore, F/SmZAB represents a promising solution for a compatible micropower source in wearable microelectronics.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei 230601, China.
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zhenfa Zi
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Haibo Hu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei 230601, China.
| | - Haijun Zhang
- School of Safety Science and Engineering, Civil Aviation University of China, Tianjin, 300300, P. R. China.
| | - Mingzai Wu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Zhou H, Fan F, Yu H, Xu Y, Yuan C, Wang Y. Flower‐like Mesoporous Carbon with Cobalt Sulfide Nanocrystalline as Efficient Bifunctional Electrocatalysts for Zn‐Air Batteries. ChemCatChem 2022. [DOI: 10.1002/cctc.202101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haoran Zhou
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Fei Fan
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Hailin Yu
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Yuanhao Xu
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Chengyun Yuan
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Yinghan Wang
- Sichuan University College of Polymer Science and Engineering No.24 South Section 1, Yihuan Road, Chengdu , China 610065 Chengdu CHINA
| |
Collapse
|
5
|
Chen C, Wang XT, Zhong JH, Liu J, Waterhouse GIN, Liu ZQ. Epitaxially Grown Heterostructured SrMn 3 O 6-x -SrMnO 3 with High-Valence Mn 3+/4+ for Improved Oxygen Reduction Catalysis. Angew Chem Int Ed Engl 2021; 60:22043-22050. [PMID: 34374478 DOI: 10.1002/anie.202109207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Heterostructured catalysts show outstanding performance in electrochemical reactions owing to their beneficial interfacial properties. However, the rational design of heterostructured catalysts with the desired interfacial properties and charge-transfer characteristics is challenging. Herein, we developed a SrMn3 O6-x -SrMnO3 (SMOx -SMO) heterostructure through epitaxial growth, which demonstrated excellent electrocatalyst performance for the oxygen reduction reaction (ORR). The formation of high-valence Mn3+/4+ is beneficial for promoting a positive shift in the position of the d-band center, thereby optimizing the adsorption and desorption of ORR intermediates on the heterojunction surface and resulting in improved catalytic activity. When SMOx -SMO was applied as an air-electrode catalyst in a rechargeable zinc-air battery, a high output voltage and power density was achieved, with performance comparable to a battery prepared with Pt/C-IrO2 air-electrode catalysts, albeit with much better cycling stability.
Collapse
Affiliation(s)
- Cheng Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Xiao-Tong Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jia-Huan Zhong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jinlong Liu
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | | | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Chen C, Wang X, Zhong J, Liu J, Waterhouse GIN, Liu Z. Epitaxially Grown Heterostructured SrMn
3
O
6−
x
‐SrMnO
3
with High‐Valence Mn
3+/4+
for Improved Oxygen Reduction Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cheng Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Xiao‐Tong Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Jia‐Huan Zhong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Jinlong Liu
- School of Chemical Sciences The University of Auckland Auckland 1142 New Zealand
| | | | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials Guangzhou University No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| |
Collapse
|
7
|
|