1
|
Sordo L, Esteves E, Valente JFA, Aníbal J, Duarte C, Alves N, Baptista T, Gaspar MB. Ocean acidification will not affect the shell strength of juveniles of the commercial clam species Chamelea gallina: Implications of the local alkalinization of seawater. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106746. [PMID: 39299140 DOI: 10.1016/j.marenvres.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ocean acidification (OA) is expected to decrease the strength of bivalves' shells, especially during the early stages of development, with negative consequences to the resilience of natural populations and the economy. The objectives of the present study were to assess the long-term effect of increasing pCO2 after 217 days of exposure under controlled conditions of pH of ∼8.2, 8.0, and 7.7 on the strength and integrity of shells of juveniles of the commercial striped venus clam Chamelea gallina. Shell strength was estimated through compression tests and integrity through scanning electron microscopy (SEM) and dispersive X-ray analyses (EDX). The results showed that under increasing pCO2 the shell strength of juveniles is unaffected, which could be related to the locally elevated total alkalinity of seawater with respect to other parts of the coastal lagoon. However, despite this, it was also observed that the juvenile clams exposed to elevated pCO2 decreased their shell thickness and increased the porosity of their prismatic layer. Under future OA conditions, these changes could eventually compromise the integrity of the shells, becoming more vulnerable to the attack of predators and breakable during fishing operations. Future studies should address the plasticity of the organisms and the effect of the alkalinization of seawater on the resilience of shellfish juveniles under global change conditions.
Collapse
Affiliation(s)
- Laura Sordo
- Instituto Português Do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro S/n, 8700-305, Olhão, Portugal; Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Eduardo Esteves
- Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Departamento de Engenharia Alimentar, Instituto Superior de Engenharia, Universidade Do Algarve, 8005-139, Faro, Portugal
| | - Joana F A Valente
- Centro para o Desenvolvimento Rápido e Sustentado Do Produto, Instituto Politécnico de Leiria, 2430-028, Marinha Grande, Portugal
| | - Jaime Aníbal
- Departamento de Engenharia Alimentar, Instituto Superior de Engenharia, Universidade Do Algarve, 8005-139, Faro, Portugal; CIMA - Centro de Investigação Marinha e Ambiental & ARNET, Universidade Do Algarve, 8005-139, Faro, Portugal
| | - Catarina Duarte
- Instituto Português Do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro S/n, 8700-305, Olhão, Portugal
| | - Nuno Alves
- Centro para o Desenvolvimento Rápido e Sustentado Do Produto, Instituto Politécnico de Leiria, 2430-028, Marinha Grande, Portugal
| | - Teresa Baptista
- Escola Superior de Turismo e Tecnologia Do Mar, Instituto Politécnico de Leiria, Campus 4, Rua Do Conhecimento No. 4, 2520-614, Peniche, Portugal
| | - Miguel B Gaspar
- Instituto Português Do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro S/n, 8700-305, Olhão, Portugal; Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
2
|
Marshall DJ, Tsikouras B. Compensatory shell thickening in corrosive environments varies between related rocky-shore and estuarine gastropods. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106536. [PMID: 38704934 DOI: 10.1016/j.marenvres.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Few studies have considered the capabilities of gastropods living in minerally-deficient acidified coastal waters to compensate for outer shell corrosion or compromised growing edge shell production. We compared inner shell thickening between pristine shells (control) and corroded shells (experiment) of two related intertidal neritid gastropod species from reduced salinity and acidified environments. We predicted that the rocky-shore, Nerita chamaeleon, which has greater access to shell building biomineralization substrates, should better control shell thickness than the estuarine, Neripteron violaceum. Accordingly, N. chameleon was found to compensate perfectly for variation in the thickness of the outer calcitic blocky layer (BL). Optimal shell thickness (OST) was maintained by selective reabsorption of the aperture ridge of the distal shell (aragonitic crossed-lamellar layer, CL) and by increased internal deposition of proximal (older) shell (aragonitic protocrossed lamellar, PCL). Despite greater exposure to acidification and hyposalinity, N. violaceum showed no significant compensatory shell thickening. These findings reveal that shell thickening capability may vary greatly among intertidal gastropods and that this may be constrained by environmental biomineralization substrate availability. Such environmentally-related responses carry implications for predicted future reductions in coastal water pH and salinity.
Collapse
Affiliation(s)
- David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| | - Basilios Tsikouras
- Geosciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
3
|
Seo H, Cho B, Joo S, Ahn IY, Kim T. Archival records of the Antarctic clam shells from Marian Cove, King George Island suggest a protective mechanism against ocean acidification. MARINE POLLUTION BULLETIN 2024; 200:116052. [PMID: 38290361 DOI: 10.1016/j.marpolbul.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
Continuous emissions of anthropogenic CO2 are changing the atmospheric and oceanic environment. Although some species may have compensatory mechanisms to acclimatize or adapt to the changing environment, most marine organisms are negatively influenced by climate change. In this study, we aimed to understand the compensatory mechanisms of the Antarctic clam, Laternula elliptica, to climate-related stressors by using archived shells from 1995 to 2018. Principal component analysis revealed that seawater pCO2 and salinity in the Antarctic Ocean, which have increased since the 2000's, are the most influential factors on the characteristics of the shell. The periostracum thickness ratio and nitrogen on the outermost surface have increased, and the dissolution area (%) has decreased. Furthermore, the calcium content and mechanical properties of the shells have not changed. The results suggest that L. elliptica retains the mechanism of protecting the shell from high pCO2 by thickening the periostracum as a phenotype plasticity.
Collapse
Affiliation(s)
- Hyein Seo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Boongho Cho
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Soobin Joo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - In-Young Ahn
- Korea Polar Research Institute, 26 songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Taewon Kim
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
4
|
Paredes-Molina FJ, Chaparro OR, Navarro JM, Cubillos VM, Paschke K, Márquez F, Averbuj A, Zabala MS, Bökenhans V, Pechenik JA. Upwelling as a stressor event during embryonic development: Consequences for encapsulated and early juvenile stages of the marine gastropod Acanthina monodon. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106270. [PMID: 38011827 DOI: 10.1016/j.marenvres.2023.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Upwelling phenomena alter the physical and chemical parameters of the sea's subsurface waters, producing low levels of temperature, pH and dissolved oxygen, which can seriously impact the early developmental stages of marine organisms. To understand how upwelling can affect the encapsulated development of the gastropod Acanthina monodon, capsules containing embryos at different stages of development (initial, intermediate and advanced) were exposed to upwelling conditions (pH = 7.6; O2 = 3 mg L-1; T° = 9 °C) for a period of 7 days. Effects of treatment were determined by estimating parameters such as time to hatching, number of hatchlings per capsule, percentage of individuals with incomplete development, and shell parameters such as shell shape and size, shell strength, and the percentage of the organic/inorganic content. We found no significant impacts on hatching time, number of hatchlings per capsule, or percentage of incomplete development in either the presence or absence of upwelling, regardless of developmental stage. On the other hand, latent effects on encapsulated stages of A. monodon were detected in embryos that had been exposed to upwelling stress in the initial embryonic stage. The juveniles from this treatment hatched at smaller sizes and with higher organic content in their shells, resulting in a higher resistance to cracking 30 days after hatching, due to greater elasticity. Geometric morphometric analysis showed that exposure to upwelling condition induced a change in the morphology of shell growth in all post-hatching juveniles (0-30 days), regardless of embryonic developmental stage at the time of exposure. Thus, more elongated shells (siphonal canal and posterior region) and more globular shells were observed in newly hatched juveniles that had been exposed to the upwelling condition. The neutral or even positive upwelling exposure results suggests that exposure to upwelling events during the encapsulated embryonic phase of A. monodon development might not have major impacts on the future juvenile stages. However, this should be taken with caution in consideration of the increased frequency and intensity of upwelling events predicted for the coming decades.
Collapse
Affiliation(s)
- F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - V M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - K Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Chile
| | - F Márquez
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina; Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina
| | - A Averbuj
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - M S Zabala
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - V Bökenhans
- Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM)-IBIOMAR, CCT, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - J A Pechenik
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
5
|
Guo X, Huang M, Luo X, You W, Ke C. Impact of ocean acidification on shells of the abalone species Haliotis diversicolor and Haliotis discus hannai. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106183. [PMID: 37820478 DOI: 10.1016/j.marenvres.2023.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Ocean acidification (OA) results from the absorption of anthropogenic CO2 emissions by the ocean and threatens the survival of many marine calcareous organisms including molluscs. We studied OA effects on adult shells of the abalone species Haliotis diversicolor and Haliotis discus hannai that were exposed to three pCO2 conditions (ambient, ∼880, and ∼1600 μatm) for 1 year. Shell periostracum corrosion under OA was observed for both species. OA reduced shell hardness and altered the nacre ultrastructure in H. diversicolor, making its shells more vulnerable to crushing force. OA exposure did not reduce the shell hardness of H. discus hannai and did not alter nacre ultrastructure. However, the reduced calcification also decreased its resistance to crushing force. Sr/Ca in the shell increased with rising calcification rate. Mg/Ca increased upon OA exposure could be due to a complimentary mechanism of preventing shell hardness further reduced. The Na/Ca distribution between the aragonite and calcite of abalone shells was also changed by OA. In general, both abalone species are at a greater risk in a more acidified ocean. Their shells may not provide sufficient protection from predators or to transportation stress in aquaculture.
Collapse
Affiliation(s)
- Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, PR China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Miaoqin Huang
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Weiwei You
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Caihuan Ke
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
6
|
Zhao L, Harvey BP, Higuchi T, Agostini S, Tanaka K, Murakami-Sugihara N, Morgan H, Baker P, Hall-Spencer JM, Shirai K. Ocean acidification stunts molluscan growth at CO 2 seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162293. [PMID: 36813205 DOI: 10.1016/j.scitotenv.2023.162293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification can severely affect bivalve molluscs, especially their shell calcification. Assessing the fate of this vulnerable group in a rapidly acidifying ocean is therefore a pressing challenge. Volcanic CO2 seeps are natural analogues of future ocean conditions that offer unique insights into the scope of marine bivalves to cope with acidification. Here, we used a 2-month reciprocal transplantation of the coastal mussel Septifer bilocularis collected from reference and elevated pCO2 habitats to explore how they calcify and grow at CO2 seeps on the Pacific coast of Japan. We found significant decreases in condition index (an indication of tissue energy reserves) and shell growth of mussels living under elevated pCO2 conditions. These negative responses in their physiological performance under acidified conditions were closely associated with changes in their food sources (shown by changes to the soft tissue δ13C and δ15N ratios) and changes in their calcifying fluid carbonate chemistry (based on shell carbonate isotopic and elemental signatures). The reduced shell growth rate during the transplantation experiment was further supported by shell δ13C records along their incremental growth layers, as well as their smaller shell size despite being of comparable ontogenetic ages (5-7 years old, based on shell δ18O records). Taken together, these findings demonstrate how ocean acidification at CO2 seeps affects mussel growth and reveal that lowered shell growth helps them survive stressful conditions.
Collapse
Affiliation(s)
- Liqiang Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan.
| | - Tomihiko Higuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kentaro Tanaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | | | - Holly Morgan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Phoebe Baker
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
7
|
Marshall DJ, Tsikouras B. Clay-shielded estuarine gastropods are better protected against environmental acidification than unshielded individuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161367. [PMID: 36610628 DOI: 10.1016/j.scitotenv.2022.161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The effects of progressive global acidification on the shells of marine organisms is a topic of much current interest. Most studies on molluscan shell resistance to dissolution consider the carbonate mineral component, with less known about the protective role of the outer organic periostracum. Outer-shell resistance would seem especially important to gastropods living in carbonate-undersaturated and calcium-deficient estuarine waters that threaten shell dissolution and constrain CaCO3 production. We tested this prediction using gastropods from an acidified estuarine population (Neripteron violaceum) that form a clay shield outside the periostracum. Specifically, we aimed to show that the carbonate shell component lacks integrity, that the formation of the clay shield is directed by the organism, and that the clay shield functions to protect against shell dissolution. We found no evidence for any specific carbonate dissolution resistance strategy in the thin, predominantly aragonitic shells of these gastropods. Shield formation was directed by an ornamented periostracum which strongly bonded illite elements (e.g., Fe, Al and S), that become available through suspension in the water column. In unshielded individuals, CaCO3 erosion was initiated randomly across the shell (not age-related) and progressed rapidly when the periostracum was breached. A light reflectance technique showed qualitatively that shield consolidation is negatively-related to shell erosion. These findings support a conceptual framework for gastropod outer-shell responses to acidification that considers both environmental and evolutionary constraints on shell construction. We describe a novel strategy for shell protection against dissolution, highlighting the diversity of mechanisms available to gastropods facing extreme coastal acidification.
Collapse
Affiliation(s)
- David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam.
| | - Basilios Tsikouras
- Geosciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
8
|
Chandra Rajan K, Li Y, Dang X, Lim YK, Suzuki M, Lee SW, Vengatesen T. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification. Proc Biol Sci 2023; 290:20221216. [PMID: 36651043 PMCID: PMC9979777 DOI: 10.1098/rspb.2022.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yang Li
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xin Dang
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yong Kian Lim
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Centre for Aquaculture and Veterinary Science & School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Seung Woo Lee
- Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of South Korea
| | - Thiyagarajan Vengatesen
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
9
|
Nagelkerken I, Connell SD. Ocean acidification drives global reshuffling of ecological communities. GLOBAL CHANGE BIOLOGY 2022; 28:7038-7048. [PMID: 36172974 PMCID: PMC9828364 DOI: 10.1111/gcb.16410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The paradigm that climate change will alter global marine biodiversity is one of the most widely accepted. Yet, its predictions remain difficult to test because laboratory systems are inadequate at incorporating ecological complexity, and common biodiversity metrics have varying sensitivity to detect change. Here, we test for the prevalence of global responses in biodiversity and community-level change to future climate (acidification and warming) from studies at volcanic CO2 vents across four major global coastal ecosystems and studies in laboratory mesocosms. We detected globally replicable patterns of species replacements and community reshuffling under ocean acidification in major natural ecosystems, yet species diversity and other common biodiversity metrics were often insensitive to detect such community change, even under significant habitat loss. Where there was a lack of consistent patterns of biodiversity change, these were a function of similar numbers of studies observing negative versus positive species responses to climate stress. Laboratory studies showed weaker sensitivity to detect species replacements and community reshuffling in general. We conclude that common biodiversity metrics can be insensitive in revealing the anticipated effects of climate stress on biodiversity-even under significant biogenic habitat loss-and can mask widespread reshuffling of ecological communities in a future ocean. Although the influence of ocean acidification on community restructuring can be less evident than species loss, such changes can drive the dynamics of ecosystem stability or their functional change. Importantly, species identity matters, representing a substantial influence of future oceans.
Collapse
Affiliation(s)
- Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sean D. Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
10
|
Leung JYS, Zhang S, Connell SD. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107407. [PMID: 35934837 DOI: 10.1002/smll.202107407] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sam Zhang
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
11
|
Huang X, Leung JYS, Hu M, Xu EG, Wang Y. Microplastics can aggravate the impact of ocean acidification on the health of mussels: Insights from physiological performance, immunity and byssus properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119701. [PMID: 35779660 DOI: 10.1016/j.envpol.2022.119701] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification may increase the risk of disease outbreaks that would challenge the future persistence of marine organisms if their immune system and capacity to produce vital structures for survival (e.g., byssus threads produced by bivalves) are compromised by acidified seawater. These potential adverse effects may be exacerbated by microplastic pollution, which is forecast to co-occur with ocean acidification in the future. Thus, we evaluated the impact of ocean acidification and microplastics on the health of a mussel species (Mytilus coruscus) by assessing its physiological performance, immunity and byssus properties. We found that ocean acidification and microplastics not only reduced hemocyte concentration and viability due to elevated oxidative stress, but also undermined phagocytic activity of hemocytes due to lowered energy budget of mussels, which was in turn caused by the reduced feeding performance and energy assimilation. Byssus quality (strength and extensibility) and production were also reduced by ocean acidification and microplastics. To increase the chance of survival with these stressors, the mussels prioritized the synthesis of some byssus proteins (Mfp-4 and Mfp-5) to help maintain adhesion to substrata. Nevertheless, our findings suggest that co-occurrence of ocean acidification and microplastic pollution would increase the susceptibility of bivalves to infectious diseases and dislodgement risk, thereby threatening their survival and undermining their ecological contributions to the community.
Collapse
Affiliation(s)
- Xizhi Huang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; Institute of Geosciences, University of Mainz, Mainz, 55128, Germany
| | - Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
12
|
Barbosa M, Schwaner C, Pales Espinosa E, Allam B. A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification. Genes (Basel) 2022; 13:1529. [PMID: 36140697 PMCID: PMC9498863 DOI: 10.3390/genes13091529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.
Collapse
Affiliation(s)
| | | | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Sony Brook University, Stony Brook, NY 11790, USA
| |
Collapse
|
13
|
Leung JYS, Nagelkerken I, Pistevos JCA, Xie Z, Zhang S, Connell SD. Shark teeth can resist ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:2286-2295. [PMID: 35023266 DOI: 10.1111/gcb.16052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification can cause dissolution of calcium carbonate minerals in biological structures of many marine organisms, which can be exacerbated by warming. However, it is still unclear whether this also affects organisms that have body parts made of calcium phosphate minerals (e.g. shark teeth), which may also be impacted by the 'corrosive' effect of acidified seawater. Thus, we examined the effect of ocean acidification and warming on the mechanical properties of shark teeth (Port Jackson shark, Heterodontus portusjacksoni), and assessed whether their mineralogical properties can be modified in response to predicted near-future seawater pH (-0.3 units) and temperature (+3°C) changes. We found that warming resulted in the production of more brittle teeth (higher elastic modulus and lower mechanical resilience) that were more vulnerable to physical damage. Yet, when combined with ocean acidification, the durability of teeth increased (i.e. less prone to physical damage due to the production of more elastic teeth) so that they did not differ from those raised under ambient conditions. The teeth were chiefly made of fluorapatite (Ca5 (PO4 )3 F), with increased fluoride content under ocean acidification that was associated with increased crystallinity. The increased precipitation of this highly insoluble mineral under ocean acidification suggests that the sharks could modulate and enhance biomineralization to produce teeth which are more resistant to corrosion. This adaptive mineralogical adjustment could allow some shark species to maintain durability and functionality of their teeth, which underpins a fundamental component of predation and sustenance of the trophic dynamics of future oceans.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Jennifer C A Pistevos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- PSL Research University EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, French Polynesia
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, South Australia, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Chatzinikolaou E, Keklikoglou K, Grigoriou P, Arvanitidis C. Micro-CT image gallery visually presenting the effects of ocean warming and acidification on marine gastropod shells. Biodivers Data J 2021; 9:e75358. [PMID: 34916868 PMCID: PMC8671708 DOI: 10.3897/bdj.9.e75358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Digitisation of specimens (e.g. zoological, botanical) can provide access to advanced morphological and anatomical information and promote new research opportunities. The micro-CT technology may support the development of "virtual museums" or "virtual laboratories" where digital 3D imaging data are shared widely and freely. There is currently a lack of universal standards concerning the publication and curation of micro-CT datasets. New information The aim of the current project was to create a virtual gallery with micro-CT scans of individuals of the marine gastropod Hexaplextrunculus, which were maintained under a combination of increased temperature and low pH conditions, thus simulating future climate change scenarios. The 3D volume-rendering models created were used to visualise the structure properties of the gastropods shells. Finally, the 3D analysis performed on the micro-CT scans was used to investigate potential changes in the shell properties of the gastropods. The derived micro-CT 3D images were annotated with detailed metadata and can be interactively displayed and manipulated using online tools through the micro-CT virtual laboratory, which was developed under the LifeWatchGreece Research Infrastructure for the dissemination of virtual image galleries collection supporting the principles of FAIR data.
Collapse
Affiliation(s)
- Eva Chatzinikolaou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) Heraklion, Crete Greece
| | - Kleoniki Keklikoglou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) Heraklion, Crete Greece.,Biology Department, University of Crete, Heraklion,Crete, Greece Biology Department, University of Crete Heraklion,Crete Greece
| | - Panagiotis Grigoriou
- Cretaquarium, Hellenic Centre for Marine Research, Heraklion, Crete, Greece Cretaquarium, Hellenic Centre for Marine Research Heraklion, Crete Greece
| | | |
Collapse
|
15
|
Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions. Sci Rep 2021; 11:24201. [PMID: 34921187 PMCID: PMC8683433 DOI: 10.1038/s41598-021-03532-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022] Open
Abstract
The exposure to environmental variations in pH and temperature has proven impacts on benthic ectotherms calcifiers, as evidenced by tradeoffs between physiological processes. However, how these stressors affect structure and functionality of mollusk shells has received less attention. Episodic events of upwelling of deep cold and low pH waters are well documented in eastern boundary systems and may be stressful to mollusks, impairing both physiological and biomechanical performance. These events are projected to become more intense, and extensive in time with ongoing global warming. In this study, we evaluate the independent and interactive effects of temperature and pH on the biomineral and biomechanical properties of Argopecten purpuratus scallop shells. Total organic matter in the shell mineral increased under reduced pH (~ 7.7) and control conditions (pH ~ 8.0). The periostracum layer coating the outer shell surface showed increased protein content under low pH conditions but decreasing sulfate and polysaccharides content. Reduced pH negatively impacts shell density and increases the disorder in the orientation of calcite crystals. At elevated temperatures (18 °C), shell microhardness increased. Other biomechanical properties were not affected by pH/temperature treatments. Thus, under a reduction of 0.3 pH units and low temperature, the response of A. purpuratus was a tradeoff among organic compounds (biopolymer plasticity), density, and crystal organization (mineral plasticity) to maintain shell biomechanical performance, while increased temperature ameliorated the impacts on shell hardness. Biopolymer plasticity was associated with ecophysiological performance, indicating that, under the influence of natural fluctuations in pH and temperature, energetic constraints might be critical in modulating the long-term sustainability of this compensatory mechanism.
Collapse
|
16
|
Wall-Palmer D, Mekkes L, Ramos-Silva P, Dämmer LK, Goetze E, Bakker K, Duijm E, Peijnenburg KTCA. The impacts of past, present and future ocean chemistry on predatory planktonic snails. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202265. [PMID: 34386247 PMCID: PMC8334855 DOI: 10.1098/rsos.202265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The atlantid heteropods represent the only predatory, aragonite shelled zooplankton. Atlantid shell production is likely to be sensitive to ocean acidification (OA), and yet we know little about their mechanisms of calcification, or their response to changing ocean chemistry. Here, we present the first study into calcification and gene expression effects of short-term OA exposure on juvenile atlantids across three pH scenarios: mid-1960s, ambient and 2050 conditions. Calcification and gene expression indicate a distinct response to each treatment. Shell extension and shell volume were reduced from the mid-1960s to ambient conditions, suggesting that calcification is already limited in today's South Atlantic. However, shell extension increased from ambient to 2050 conditions. Genes involved in protein synthesis were consistently upregulated, whereas genes involved in organismal development were downregulated with decreasing pH. Biomineralization genes were upregulated in the mid-1960s and 2050 conditions, suggesting that any deviation from ambient carbonate chemistry causes stress, resulting in rapid shell growth. We conclude that atlantid calcification is likely to be negatively affected by future OA. However, we also found that plentiful food increased shell extension and shell thickness, and so synergistic factors are likely to impact the resilience of atlantids in an acidifying ocean.
Collapse
Affiliation(s)
- Deborah Wall-Palmer
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Lisette Mekkes
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Paula Ramos-Silva
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Linda K. Dämmer
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands
- Environmental Geology, Department of Geology, Institute of Geosciences, University of Bonn, Bonn, Germany
| | - Erica Goetze
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Karel Bakker
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands
| | - Elza Duijm
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Katja T. C. A. Peijnenburg
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Petit‐Marty N, Nagelkerken I, Connell SD, Schunter C. Natural CO 2 seeps reveal adaptive potential to ocean acidification in fish. Evol Appl 2021; 14:1794-1806. [PMID: 34295364 PMCID: PMC8288007 DOI: 10.1111/eva.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Volcanic CO2 seeps are natural laboratories that can provide insights into the adaptation of species to ocean acidification. While many species are challenged by reduced-pH levels, some species benefit from the altered environment and thrive. Here, we explore the molecular mechanisms of adaptation to ocean acidification in a population of a temperate fish species that experiences increased population sizes under elevated CO2. Fish from CO2 seeps exhibited an overall increased gene expression in gonad tissue compared with those from ambient CO2 sites. Up-regulated genes at CO2 seeps are possible targets of adaptive selection as they can directly influence the physiological performance of fishes exposed to ocean acidification. Most of the up-regulated genes at seeps were functionally involved in the maintenance of pH homeostasis and increased metabolism, and presented a deviation from neutral evolution expectations in their patterns of DNA polymorphisms, providing evidence for adaptive selection to ocean acidification. The targets of this adaptive selection are likely regulatory sequences responsible for the increased expression of these genes, which would allow a fine-tuned physiological regulation to maintain homeostasis and thrive at CO2 seeps. Our findings reveal that standing genetic variation in DNA sequences regulating the expression of genes in response to a reduced-pH environment could provide for adaptive potential to near-future ocean acidification in fishes. Moreover, with this study we provide a forthright methodology combining transcriptomics and genomics, which can be applied to infer the adaptive potential to different environmental conditions in wild marine populations.
Collapse
Affiliation(s)
- Natalia Petit‐Marty
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SAR
| | - Ivan Nagelkerken
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences and the Environment InstituteDX 650 418The University of AdelaideAdelaideSAAustralia
| | - Sean D. Connell
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences and the Environment InstituteDX 650 418The University of AdelaideAdelaideSAAustralia
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SAR
| |
Collapse
|
18
|
Leung JYS, Russell BD, Coleman MA, Kelaher BP, Connell SD. Long-term thermal acclimation drives adaptive physiological adjustments of a marine gastropod to reduce sensitivity to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145208. [PMID: 33548706 DOI: 10.1016/j.scitotenv.2021.145208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Ocean warming is predicted to challenge the persistence of a variety of marine organisms, especially when combined with ocean acidification. While temperature affects virtually all physiological processes, the extent to which thermal history mediates the adaptive capacity of marine organisms to climate change has been largely overlooked. Using populations of a marine gastropod (Turbo undulatus) with different thermal histories (cool vs. warm), we compared their physiological adjustments following exposure (8-week) to ocean acidification and warming. Compared to cool-acclimated counterparts, we found that warm-acclimated individuals had a higher thermal threshold (i.e. increased CTmax by 2 °C), which was unaffected by the exposure to ocean acidification and warming. Thermal history also strongly mediated physiological effects, where warm-acclimated individuals adjusted to warming by conserving energy, suggested by lower respiration and ingestion rates, energy budget (i.e. scope for growth) and O:N ratio. After exposure to warming, warm-acclimated individuals had higher metabolic rates and greater energy budget due to boosted ingestion rates, but such compensatory feeding disappeared when combined with ocean acidification. Overall, we suggest that thermal history can be a critical mediator of physiological performance under future climatic conditions. Given the relatively gradual rate of global warming, marine organisms may be better able to adaptively adjust their physiology to future climate than what short-term experiments currently convey.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Melinda A Coleman
- New South Wales Department of Primary Industries, Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|