1
|
Sun Y, Lei C, Qiao R, Li C. Recent advances in carrier-free natural small molecule self-assembly for drug delivery. Biomater Sci 2024; 12:6237-6252. [PMID: 39513256 DOI: 10.1039/d4bm01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Natural small-molecule drugs have been used for thousands of years for the prevention and treatment of human diseases. Most of the natural products available on the market have been modified into various polymer materials for improving the solubility, stability, and targeted delivery of drugs. However, these nanomedicines formed based on polymer carriers would produce severe problems such as systemic toxicity and kidney metabolic stress. In contrast, the carrier-free nanomedicines formed by their self-assembly in water have inherent advantages such as low toxicity, good biocompatibility, and biodegradability. This review summarizes the assembly process and application of natural small-molecule products, which are mainly driven by multiple non-covalent interactions, and includes single-molecule assembly, bimolecular assembly, drug-modified assembly, and organogels. Meanwhile, the molecular mechanism involved in different self-assembly processes is also discussed. Self-assembly simulation and structural modification of natural small-molecule products or traditional Chinese medicine molecules using molecular dynamics simulation and computer-assisted methods are proposed, which will lead to the discovery of more carrier-free nanomedicine drug delivery systems. Overall, this review provides an important understanding and strategy to study single-molecule and multi-molecule carrier-free nanomedicines.
Collapse
Affiliation(s)
- Yehua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Changyang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
2
|
Kaspute G, Bareikiene E, Prentice U, Uzieliene I, Ramasauskaite D, Ivaskiene T. A Comprehensive Review of Advanced Diagnostic Techniques for Endometriosis: New Approaches to Improving Women's Well-Being. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1866. [PMID: 39597051 PMCID: PMC11596456 DOI: 10.3390/medicina60111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
According to the World Health Organization (WHO), endometriosis affects roughly 10% (190 million) of reproductive-age women and girls in the world (2023). The diagnostic challenge in endometriosis lies in the limited value of clinical tools, making it crucial to address diagnostic complexities in patients with suggestive symptoms and inconclusive clinical or imaging findings. Saliva micro ribonucleic acid (miRNA) signature, nanotechnologies, and artificial intelligence (AI) have opened up new perspectives on endometriosis diagnosis. The aim of this article is to review innovations at the intersection of new technology and AI when diagnosing endometriosis. Aberrant epigenetic regulation, such as DNA methylation in endometriotic cells (ECs), is associated with the pathogenesis and development of endometriosis. By leveraging nano-sized sensors, biomarkers specific to endometriosis can be detected with high sensitivity and specificity. A chemotherapeutic agent with an LDL-like nano-emulsion targets rapidly dividing cells in patients with endometriosis. The developed sensor demonstrated effective carbohydrate antigen 19-9 detection within the normal physiological range. Researchers have developed magnetic iron oxide nanoparticles composed of iron oxide. As novel methods continue to emerge at the forefront of endometriosis diagnostic research, it becomes imperative to explore the impact of nanotechnology and AI on the development of innovative diagnostic solutions.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (G.K.); (U.P.)
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| | - Egle Bareikiene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (G.K.); (U.P.)
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Ilona Uzieliene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| | - Diana Ramasauskaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21/27, LT-03101 Vilnius, Lithuania;
| | - Tatjana Ivaskiene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| |
Collapse
|
3
|
Schawlochow K, Samartzis N, Burla L, Eberhard M, Kalaitzopoulos DR, Leeners B. Adenomyosis Localized in Both the Anterior and Posterior Myometrium Is Associated with Deep Rectal Endometriosis: A Retrospective Study. Biomedicines 2024; 12:2527. [PMID: 39595092 PMCID: PMC11591734 DOI: 10.3390/biomedicines12112527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Endometriosis and adenomyosis are two closely related, estrogen-dependent, benign gynecological diseases. The available evidence on their common pathogenesis and association is limited and often does not address the heterogeneity of both entities. The aim of our study is to investigate the association between different types and localizations of adenomyosis and endometriosis phenotypes, using magnetic resonance imaging (MRI) and laparoscopic findings. METHODS We performed a retrospective observational study involving premenopausal women over 18 years old who underwent laparoscopic surgery for endometriosis and were pre-operatively diagnosed with adenomyosis through MRI examination at the Cantonal Hospital of Schaffhausen, Switzerland between 2011 and 2022. RESULTS Of 130 patients with adenomyosis, 23 (17.7%) women had adenomyosis only in the anterior wall (group 1), 38 (29.2%) only in the posterior wall (group 2), and 69 (53.1%) in both the anterior and posterior wall (group 3). Women in group 1 experienced significantly more dysuria compared to the two other groups (p = 0.018), while the prevalence of other pain symptoms (dysmenorrhea, dyspareunia, dyschesia) was comparable between the groups. Women in group 3 had significantly thicker anterior and posterior myometrium compared to groups 1 and 2 (p < 0.001). Co-existence of deep rectal endometriosis was more frequent in women from group 3 compared to groups 1 and 2 (p = 0.039) and in women with adenomyosis in the outer (extrinsic) compared to adenomyosis in the inner myometrium (intrinsic) (p < 0.001). CONCLUSIONS This study provides evidence of an association between the localization of adenomyosis and the distribution of concomitant endometriosis. Specifically, adenomyosis localized in both the anterior and posterior wall appears to be more proliferative compared to adenomyosis found only in the anterior or posterior wall. This is indicated by its association with higher uterine volume, thicker posterior junctional zone, and greater myometrial thickness and with a higher co-existence with deep rectal endometriosis. These findings support an association between the development of specific subtypes of both entities, which represents a valuable resource for the identification of future targets for the treatment and clinical management of adenomyosis and endometriosis.
Collapse
Affiliation(s)
- Konstantin Schawlochow
- Department of Radiology, Cantonal Hospital of Schaffhausen, Geissbergstrasse 81, 8208 Schaffhausen, Switzerland;
| | - Nicolas Samartzis
- Department of Obstetrics and Gynecology, Cantonal Hospital of Schaffhausen, Geissbergstrasse 81, 8208 Schaffhausen, Switzerland; (N.S.); (L.B.); (M.E.)
| | - Laurin Burla
- Department of Obstetrics and Gynecology, Cantonal Hospital of Schaffhausen, Geissbergstrasse 81, 8208 Schaffhausen, Switzerland; (N.S.); (L.B.); (M.E.)
| | - Markus Eberhard
- Department of Obstetrics and Gynecology, Cantonal Hospital of Schaffhausen, Geissbergstrasse 81, 8208 Schaffhausen, Switzerland; (N.S.); (L.B.); (M.E.)
| | - Dimitrios Rafail Kalaitzopoulos
- Department of Obstetrics and Gynecology, Cantonal Hospital of Schaffhausen, Geissbergstrasse 81, 8208 Schaffhausen, Switzerland; (N.S.); (L.B.); (M.E.)
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, Frauenklinikstr. 10, 8091 Zurich, Switzerland;
| |
Collapse
|
4
|
Liu H, Dai X, Li N, Zhang L, Wang Z, Ren K, Li Y, Sun X, Wan J. Injectable Magnetic Hydrogel Incorporated with Anti-Inflammatory Peptide for Efficient Magnetothermal Treatment of Endometriosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409778. [PMID: 39373358 PMCID: PMC11600196 DOI: 10.1002/advs.202409778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Endometriosis is a prevalent gynecological condition characterized by chronic pelvic pain, dysmenorrhea, and infertility, affecting ≈176 million women of reproductive age worldwide. Current treatments, including pharmacological and surgical interventions, are often associated with significant side effects and high recurrence rates. Consequently, there is an urgent need for innovative and safer therapeutic approaches. In this study, an injectable magnetic hydrogel nanosystem is developed designed for the dual-purpose magnetothermal and anti-inflammatory treatment of endometriosis. This hydrogel incorporates Fe3O4 nanoparticles alongside an anti-inflammatory peptide. Upon magnetic activation, the Fe3O4 nanoparticles induce a localized hyperthermic response, raising the temperature of endometriotic lesions to 63.3 °C, effectively destroying endometriotic cells. Concurrently, the thermally responsive hydrogel facilitates the controlled release of the anti-inflammatory peptide, thus modulating the inflammatory milieu. The biocompatibility and complete in vivo degradability of the hydrogel further enhance its therapeutic potential. The in vivo studies demonstrated that this injectable magnetic hydrogel system achieved a 90% reduction in the volume of endometriotic lesions and significantly decreased inflammatory markers, offering a promising non-invasive treatment modality for endometriosis. By integrating precise lesion ablation with the modulation of the inflammatory microenvironment, this system represents a novel approach to the clinical management of endometriosis.
Collapse
Affiliation(s)
- Huaichao Liu
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Xiaohui Dai
- School of Chemistry and Pharmaceutical EngineeringMedical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinan250000China
| | - Na Li
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Le Zhang
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Zihan Wang
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Ke Ren
- School of Chemistry and Pharmaceutical EngineeringMedical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinan250000China
| | - Yulei Li
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Xiao Sun
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Jipeng Wan
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| |
Collapse
|
5
|
Zhang M, Ye Y, Chen Z, Wu X, Chen Y, Zhao P, Zhao M, Zheng C. Targeting delivery of mifepristone to endometrial dysfunctional macrophages for endometriosis therapy. Acta Biomater 2024; 189:505-518. [PMID: 39341437 DOI: 10.1016/j.actbio.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Endometriosis seriously affects 6-10 % of reproductive women globally and poses significant clinical challenges. The process of ectopic endometrial cell colonization shares similarities with cancer, and a dysfunctional immune microenvironment, characterized by non-classically polarized macrophages, plays a critical role in the progression of endometriosis. In this study, a targeted nano delivery system (BSA@Mif NPs) was developed using bovine serum albumin (BSA) as the carrier of mifepristone. The BSA@Mif NPs were utilized to selectively target M2 macrophages highly enriched in ectopic endometrial tissue via the SPARC receptor. This targeting strategy increases drug concentration at ectopic lesions while minimizing its distribution to normal tissue, thereby reducing side effects. In vitro studies demonstrated that BSA@Mif NPs not only enhanced the cellular uptake of M2-type macrophages and ectopic endometrial cells but also improved the cytotoxic effect of mifepristone on ectopic endometrial cells. Furthermore, the BSA@Mif NPs effectively induced immunogenic cell death (ICD) in ectopic endometrial cells and repolarized M2-type macrophages toward the M1 phenotype, resulting in a synergistic inhibition of ectopic endometrial cell growth. In vivo experiments revealed that BSA@Mif NPs exhibited significant therapeutic efficacy in endometriosis-bearing mice by increasing drug accumulation in the endometriotic tissues and modulating the immune microenvironment. This targeted biomimetic delivery strategy presents a promising approach for the development of endometriosis-specific therapies based on existing drugs. STATEMENT OF SIGNIFICANCE: Macrophages play an essential role in immune dysfunctional microenvironment promoting the occurrence and progression of endometriosis and can be a crucial target for developing immune microenvironment regulation strategies for the unmet long-term management of endometriosis. The albumin nanoparticles constructed based on SPARC overexpression in macrophages and endometrial cells and albumin biosafety can achieve the targeted therapy of endometriosis by increasing the passive- and active-mediated drug accumulation in ectopic endometrium and remodeling the immune microenvironment based on macrophage regulation. This study has the following implications: i) overcoming the inherent shortcomings of clinical drugs by nanotechnology is an alternative way of developing medication; ii) developing microenvironment modulation strategies based on macrophage regulation for endometriosis management is feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhengyun Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaodong Wu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Pengfei Zhao
- Clinical Pharmacology Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
6
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
7
|
Azeze GG, Wu L, Alemu BK, Lee WF, Fung LWY, Cheung ECW, Zhang T, Wang CC. Proteomics approach to discovering non-invasive diagnostic biomarkers and understanding the pathogenesis of endometriosis: a systematic review and meta-analysis. J Transl Med 2024; 22:685. [PMID: 39061077 PMCID: PMC11282838 DOI: 10.1186/s12967-024-05474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Endometriosis is one of the most common gynaecological diseases, yet it lacks efficient biomarkers for early detection and unravels disease mechanisms. Proteomic profiling has revealed diverse patterns of protein changes in various clinical samples. Integrating and systematically analysing proteomics data can facilitate the development of biomarkers, expediting diagnosis and providing insights for potential clinical and therapeutic applications. Hence, this systematic review and meta-analysis aimed to explore potential non-invasive diagnostic biomarkers in various biological samples and therapeutic targets for endometriosis. METHODS Online databases, including Scopus, PubMed, Web of Science, MEDLINE, Embase via Ovid, and Google Scholar, were searched using MeSH terms. Two independent authors screened the articles, extracted the data, and assessed the methodological quality of the included studies. GO and KEGG analyses were performed to identify the pathways that were significantly enriched. Protein‑protein interaction and hub gene selection analyses were also conducted to identify biomarker networks for endometriosis. RESULTS Twenty-six observational studies with a total of 2,486 participants were included. A total of 644 differentially expressed proteins (180 upregulated and 464 downregulated) were identified from 9 studies. Proteins in peripheral blood exhibited a sensitivity and specificity of 38-100% and 59-99%, respectively, for detecting endometriosis, while proteins in urine had a sensitivity of 58-91% and specificity of 76-93%. Alpha-1-antitrypsin, albumin, and vitamin D binding proteins were significantly DEPs in both serum and urine. Complement C3 is commonly expressed in serum, menstrual blood, and cervical mucus. Additionally, S100-A8 is commonly expressed in both menstrual blood and cervical mucus. Haptoglobin is commonly detected in both serum and plasma, whereas cathepsin G is found in urine, serum, and plasma. GO and KEGG enrichment analyses revealed that proteoglycans in cancer pathways, which regulate cell-to-cell interactions, modulate the extracellular matrix, and promote the proliferation and invasion of endometrial cells, are commonly enriched in serum and urine. CONCLUSION This comprehensive study revealed potential proteomes that were significantly differentially expressed in women with endometriosis utilizing various non-invasive clinical samples. Exploring common differentially expressed proteins in various biological samples provides insights into the diagnosis and pathophysiology of endometriosis, as well as potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Getnet Gedefaw Azeze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Ling Wu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Wing Fong Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Linda Wen Ying Fung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Eva Chun Wai Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
- School of Biomedical Sciences; Li Ka Shing Institute of Health Sciences; Chinese University of Hong Kong - Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
| |
Collapse
|
8
|
Slayden O, Luo F, Park Y, Moses AS, Demessie AA, Singh P, Korzun T, Taratula O, Taratula O. Targeted nanoparticles for imaging and therapy of endometriosis†. Biol Reprod 2024; 110:1191-1200. [PMID: 38738758 PMCID: PMC11180615 DOI: 10.1093/biolre/ioae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.
Collapse
Affiliation(s)
- Ov Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| |
Collapse
|
9
|
Talukdar S, Singh SK, Mishra MK, Singh R. Emerging Trends in Nanotechnology for Endometriosis: Diagnosis to Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:976. [PMID: 38869601 PMCID: PMC11173792 DOI: 10.3390/nano14110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Endometriosis, an incurable gynecological disease that causes abnormal growth of uterine-like tissue outside the uterine cavity, leads to pelvic pain and infertility in millions of individuals. Endometriosis can be treated with medicine and surgery, but recurrence and comorbidities impair quality of life. In recent years, nanoparticle (NP)-based therapy has drawn global attention, notably in medicine. Studies have shown that NPs could revolutionize conventional therapeutics and imaging. Researchers aim to enhance the prognosis of endometriosis patients with less invasive and more effective NP-based treatments. This study evaluates this potential paradigm shift in endometriosis management, exploring NP-based systems for improved treatments and diagnostics. Insights into nanotechnology applications, including gene therapy, photothermal therapy, immunotherapy, and magnetic hyperthermia, offering a theoretical reference for the clinical use of nanotechnology in endometriosis treatment, are discussed in this review.
Collapse
Affiliation(s)
- Souvanik Talukdar
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Santosh K. Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
10
|
Lv Q, Song W, Chu J, Li G, Han Y, Marfavi Z, Zhang G, Wu Y, Lin Y, Sun K, Xu H, Tao K. An Indocyanine Green-Based Nanocluster for Imaging Orthodox Endometriosis Lesions with Negative Contrast. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25909-25922. [PMID: 38716677 DOI: 10.1021/acsami.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Indocyanine green (ICG), as the sole near-infrared dye FDA-approved, is limited in biomedical applications because of its poor photostability, lack of targeting, and rapid removal in vivo. Herein, we presented a nanoformulation of poly-l-lysine-indocyanine green-hyaluronic acid (PIH) and demonstrated that it can image orthodox endometriosis (EM) lesions with a negative contrast. The PIH nanocluster, with an average diameter of approximately 200 nm, exhibited improved fluorescence photostability and antioxidant ability compared to free ICG. In the in vivo imaging, EM lesions were visualized, featuring apparent voids and clear boundaries. After colocalizing with the green fluorescent protein, we concluded that the contrast provided by PIH peaked at 4 h postinjection and was observable for at least 8 h. The negative contrast, clear boundaries, and enhanced observable time might be due to the low permeation of PIH to lesions and the enhanced retention on the surfaces of lesions. Thus, our findings suggest an ICG-based nanoprobe with the potential to diagnose abdominal diseases.
Collapse
Affiliation(s)
- Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Weizhou Song
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Guojing Li
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Gengxin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yongjie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P.R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Li R, Tran DN, Lessey BA, Young SL, Kim TH, Jeong JW. Transcriptomic changes in eutopic endometrium and ectopic lesions during endometriosis progression in a mouse model. F&S SCIENCE 2024; 5:182-194. [PMID: 38342342 PMCID: PMC11116064 DOI: 10.1016/j.xfss.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE To identify the transcriptomic changes of ectopic lesions and eutopic endometrial tissues during the progression of endometriosis, we performed transcriptomic analysis in the eutopic endometrium and ectopic lesions. DESIGN Laboratory study. SETTING Academic medical center. ANIMALS Four fertile and 4 subfertile Pgrcre/+Rosa26mTmG/+ mice with endometriosis, and 4 sham mice for each group of endometriosis mice as control. These mice underwent either surgery to induce endometriosis or sham surgery. Fertile sham and mice with endometriosis were used 1 month after surgery, whereas subfertile ones were used 3 months after surgery. INTERVENTIONS Early and chronic effects of endometriosis on transcriptomics of ectopic lesions and eutopic endometrium. MAIN OUTCOME MEASURES RNA-sequencing analysis and identification of differentially expressed genes and pathways in the ectopic lesions and eutopic uteri from mice with endometriosis and sham mice at day 3.5 of pregnancy. RESULTS Our mouse model recapitulates the transcriptomic changes of ectopic lesions in humans. RNA-sequencing analysis was performed in ectopic lesions and eutopic uteri from mice with or without endometriosis during the progression of the disease. Estrogen activity, inflammation, angiogenesis, and fibrosis pathways were consistently elevated in all the ectopic lesions compared with eutopic endometrium. Cholesterol/glucose synthesis and stem cell pluripotency pathways were more enhanced in ectopic lesions from subfertile mice compared with their eutopic endometrium. Dysregulation of infiltration of macrophage, dendritic, T and B cells was validated with the use of immunohistochemistry in ectopic lesions. Multiple ligand-receptor pairs between the ectopic and eutopic endometrium were altered compared with the sham endometrium. Suppressed WNT and EGF pathways were only found in the eutopic endometrium from subfertile not fertile mice compared with sham. CONCLUSIONS Our mouse endometriosis model recapitulates the transcriptomics of ectopic lesions in humans. Our transcriptomic analysis during endometriosis progression in our mouse model will help us understand the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Rong Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Steven L Young
- Department of Obstetrics, Gynecology and Women's Health, Duke University, Durham, North Carolina
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri.
| |
Collapse
|
12
|
Lulseged BA, Ramaiyer MS, Michel R, Saad EE, Ozpolat B, Borahay MA. The Role of Nanomedicine in Benign Gynecologic Disorders. Molecules 2024; 29:2095. [PMID: 38731586 PMCID: PMC11085148 DOI: 10.3390/molecules29092095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Nanomedicine has revolutionized drug delivery in the last two decades. Nanoparticles appear to be a promising drug delivery platform in the treatment of various gynecological disorders including uterine leiomyoma, endometriosis, polycystic ovarian syndrome (PCOS), and menopause. Nanoparticles are tiny (mean size < 1000 nm), biodegradable, biocompatible, non-toxic, safe, and relatively inexpensive materials commonly used in imaging and the drug delivery of various therapeutics, such as chemotherapeutics, small molecule inhibitors, immune mediators, protein peptides and non-coding RNA. We performed a literature review of published studies to examine the role of nanoparticles in treating uterine leiomyoma, endometriosis, PCOS, and menopause. In uterine leiomyoma, nanoparticles containing 2-methoxyestradiole and simvastatin, promising uterine fibroid treatments, have been effective in significantly inhibiting tumor growth compared to controls in in vivo mouse models with patient-derived leiomyoma xenografts. Nanoparticles have also shown efficacy in delivering magnetic hyperthermia to ablate endometriotic tissue. Moreover, nanoparticles can be used to deliver hormones and have shown efficacy as a mechanism for transdermal hormone replacement therapy in individuals with menopause. In this review, we aim to summarize research findings and report the efficacy of nanoparticles and nanotherapeutics in the treatment of various benign gynecologic conditions.
Collapse
Affiliation(s)
- Bethlehem A. Lulseged
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.L.); (M.S.R.)
| | - Malini S. Ramaiyer
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.L.); (M.S.R.)
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Eslam E. Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA;
| |
Collapse
|
13
|
Luo X, Jia K, Xing J, Yi J. The utilization of nanotechnology in the female reproductive system and related disorders. Heliyon 2024; 10:e25477. [PMID: 38333849 PMCID: PMC10850912 DOI: 10.1016/j.heliyon.2024.e25477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The health of the reproductive system is intricately linked to female fertility and quality of life. There has been a growing prevalence of reproductive system disorders among women, particularly in younger age groups, resulting in significant adverse effects on their reproductive health. Consequently, there is an urgent need for effective treatment modalities. Nanotechnology, as an advanced discipline, provides innovative avenues for managing and treating diseases of the female reproductive system by enabling precise manipulation and regulation of biological molecules and cells. By utilizing nanodelivery systems, drugs can be administered with pinpoint accuracy, leading to reduced side effects and improved therapeutic efficacy. Moreover, nanomaterial imaging techniques enhance diagnostic precision and sensitivity, aiding in the assessment of disease severity and progression. Furthermore, the implementation of nanobiosensors facilitates early detection and prevention of ailments. This comprehensive review aims to summarize recent applications of nanotechnology in the treatment of female reproductive system diseases. The latest advancements in drug delivery, diagnosis, and treatment approaches will be discussed, with an emphasis on the potential of nanotechnology to improve treatment outcomes and overall quality of life.
Collapse
Affiliation(s)
- Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
14
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Mondal SK, Fazleabas A, Moore A. Imaging of Endometriotic Lesions Using cRGD-MN Probe in a Mouse Model of Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:319. [PMID: 38334590 PMCID: PMC10856945 DOI: 10.3390/nano14030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Approximately 10% of women suffer from endometriosis during their reproductive years. This disease is a chronic debilitating condition whose etiology for lesion implantation and survival heavily relies on adhesion and angiogenic factors. Currently, there are no clinically approved agents for its detection. In this study, we evaluated cRGD-peptide-conjugated nanoparticles (RGD-Cy5.5-MN) to detect lesions using magnetic resonance imaging (MRI) in a mouse model of endometriosis. We utilized a luciferase-expressing murine suture model of endometriosis. Imaging was performed before and after 24 h following the intravenous injection of RGD-Cy5.5-MN or control nanoparticles (Cy5.5-MN). Next, we performed biodistribution of RGD-Cy5.5-MN and correlative fluorescence microscopy of lesions stained for CD34. Tissue iron content was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Our results demonstrated that targeting endometriotic lesions with RGD-Cy5.5-MN resulted in a significantly higher delta T2* upon its accumulation compared to Cy5.5-MN. ICP-OES showed significantly higher iron content in the lesions of the animals in the experimental group compared to the lesions of the animals in the control group. Histology showed colocalization of Cy5.5 signal from RGD-Cy5.5-MN with CD34 in the lesions pointing to the targeted nature of the probe. This work offers initial proof-of-concept for targeting angiogenesis in endometriosis which can be useful for potential clinical diagnostic and therapeutic approaches for treating this disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - M. Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
- Department of Animal Science, Michigan State University, 474 S Shaw Ln #1290, East Lansing, MI 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Christiane L. Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48824, USA
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| |
Collapse
|
15
|
Park Y, Korzun T, Moses AS, Singh P, Levasseur PR, Demessie AA, Sharma KS, Morgan T, Raitmayr CJ, Avila U, Sabei FY, Taratula OR, Marks DL, Taratula O. Targeted Nanocarriers for Systemic Delivery of IRAK4 Inhibitors to Inflamed Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306270. [PMID: 37702136 PMCID: PMC10840923 DOI: 10.1002/smll.202306270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.
Collapse
Affiliation(s)
- Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code L481, Portland, Oregon, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code L481, Portland, Oregon, 97239, USA
| | - Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Kongbrailatpam Shitaljit Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Terry Morgan
- Department of Pathology and Laboratory Medicine, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Constanze J Raitmayr
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Uriel Avila
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Fahad Y Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Al Maarefah Rd, Jazan, 88723, Kingdom of Saudi Arabia
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code L481, Portland, Oregon, 97239, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
16
|
Sun Q, Chen J, Yang M, Ding X, Zhang H, Huang Z, Huang Q, Chen Q. Macrophage membrane-decorated MnO 2 nanozyme catalyzed the scavenging of estradiol for endometriosis treatment. Colloids Surf B Biointerfaces 2024; 233:113633. [PMID: 37995632 DOI: 10.1016/j.colsurfb.2023.113633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Endometriosis (EMs) is an inflammatory, estrogen-dependent disease characterized by the growth of endometrial-like tissue outside the uterus. Despite many efforts to develop effective treatment regimens, the overall response to halting EMs progression so far remains unsatisfactory. Herein, we explored and synthesized a biomimic macrophage membrane-decorated MnO2 nanosheet (MM-NS) as a nanozyme capable of scavenging estrogen for EMs treatment. This nanosystem exhibited good solubility and potent estradiol scavenging activities. As expected, MM-NS effectively inhibited cell proliferation and inflammation in an estradiol scavenging-dependent way. In vivo MM-NS targeted to ectopic lesions and effectively suppressed lesion growth in endometriosis mice model, which could be attributed to the inhibition of tissue proliferation and the lower levels of inflammatory factors in peritoneal fluid. Taken together, this study not only revealed a new application scenario for nanozyme but also developed a novel endometriosis treatment strategy by catalyzing the scavenging of estrogen.
Collapse
Affiliation(s)
- Qinkun Sun
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Jiahao Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Mengjie Yang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Xinyu Ding
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Huaying Zhang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Zhixiong Huang
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qionghua Chen
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China.
| |
Collapse
|
17
|
Lv Q, Zhang Y, Yang R, Dai Y, Lin Y, Sun K, Xu H, Tao K. Photoacoustic Imaging Endometriosis Lesions with Nanoparticulate Polydopamine as a Contrast Agent. Adv Healthc Mater 2024; 13:e2302175. [PMID: 37742067 DOI: 10.1002/adhm.202302175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Endometriosis (EM) is a prevalent and debilitating gynecological disorder primarily affecting women of reproductive age. The diagnosis of EM is historically hampered by delays, owing to the absence of reliable diagnostic and monitoring techniques. Herein, it is reported that photoacoustic imaging can be a noninvasive modality for deep-seated EM by employing a hyaluronic-acid-modified polydopamine (PDA@HA) nanoparticle as the contrast agent. The PDA@HA nanoparticles exhibit inherent absorption and photothermal effects when exposed to near-infrared light, proficiently converting thermal energy into sound waves. Leveraging the targeting properties of HA, distinct photoacoustic signals emanating from the periphery of orthotopic EM lesions are observed. These findings are corroborated through anatomical observations and in vivo experiments involving mice with green fluorescent protein-labeled EM lesions. Moreover, the changes in photoacoustic intensity over a 24 h period reflect the dynamic evolution of PDA@HA nanoparticle biodistribution. Through the utilization of a photoacoustic ultrasound modality, in vivo assessments of EM lesion volumes are conducted. This innovative approach not only facilitates real-time monitoring of the therapeutic kinetics of candidate drugs but also obviates the need for the sacrifice of experimental mice. As such, this study presents a promising avenue for enhancing the diagnosis and drug-screening processes of EM.
Collapse
Affiliation(s)
- Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingfan Dai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
18
|
Ling X, Liu L, Jiang A, Shi X, Liu L, Wang X, Lu C, Ren C, Yu Z. PFKFB3 promotes endometriosis cell proliferation via enhancing the protein stability of β-catenin. Mol Cell Endocrinol 2024; 579:112083. [PMID: 37820851 DOI: 10.1016/j.mce.2023.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Endometriosis is a common inflammatory disease in women of reproductive age and is highly associated with infertility. However, the molecular mechanism of endometriosis remains unclear. 6-Phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is a key enzyme in glycolysis and plays an important regulatory role in the development of cancer. Here we found that PFKFB3 is highly expressed in endometriotic tissues. PFKFB3 promotes the proliferation and growth of endometriosis cells. Meanwhile, PFKFB3 promotes glycolysis in endometriosis cells. Furthermore, PFKFB3 promotes migration and invasion of endometriosis cells. On this basis, we found that PFKFB3 promotes epithelial-mesenchymal transition (EMT) in endometriosis cells. PFKFB3 interacts with the essential factor of EMT, β-catenin, and promotes the protein stability of β-catenin. In addition, the PFKFB3 inhibitor PFK-015 inhibites the growth of endometriosis cells and the development of endometrial tissue. In conclusion, our study shows that PFKFB3 plays an important role in the development of endometriosis and provides new ideas for the clinical diagnosis or treatment of endometriosis.
Collapse
Affiliation(s)
- Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Xiaodan Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Xiaoyun Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
19
|
Egorova A, Maretina M, Krylova I, Kiselev A. Polycondensed Peptide-Based Polymers for Targeted Delivery of Anti-Angiogenic siRNA to Treat Endometriosis. Int J Mol Sci 2023; 25:13. [PMID: 38203184 PMCID: PMC10778610 DOI: 10.3390/ijms25010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Endometriosis (EM) is a prevalent gynecological disease characterized by the abnormal growth of tissue similar to the endometrium outside of the uterus. This condition is accompanied by the development of new blood vessels in endometriotic lesions. While surgical intervention is effective in removing endometriotic lesions, some patients require multiple surgeries. Therefore, finding non-surgical treatments for EM is of great interest. One of the promising approaches is anti-angiogenic therapy using siRNA-therapeutics to target the expression of the VEGFA gene. Peptide-based polymers have shown promise as siRNA delivery systems due to their biocompatibility and ease of modification. We conducted a study to evaluate the effectiveness of the R6p-cRGD peptide carrier as a non-viral vehicle for delivering siRNA to endothelial cells in vitro and endometrial implants in vivo. We investigated the physicochemical properties of the siRNA-complexes, assessed cellular toxicity, and examined the efficiency of GFP and VEGFA genes silencing. Furthermore, we tested the anti-angiogenic effects of these complexes in cellular and animal models. The transfection with siRNA complexes led to a significant increase in VEGFA gene knockdown efficiency and a decrease in the migration of endothelial cells. For the animal model, we induced endometriosis in rats by transplanting endometrial tissue subcutaneously. We evaluated the efficiency of anti-angiogenic therapy for EM in vivo using anti-VEGF siRNA/R6p-RGD complexes. During this assessment, we measured the volume of the implants, analyzed VEGFA gene expression, and conducted CD34 immunohistochemical staining. The results showed a significant decrease in the growth of endometriotic implants and in VEGFA gene expression. Overall, our findings demonstrate the potential of the R6p-cRGD peptide carrier as a delivery system for anti-angiogenic therapy of EM.
Collapse
Affiliation(s)
- Anna Egorova
- Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.)
| | - Marianna Maretina
- Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.)
| | - Iuliia Krylova
- Department of Pathology, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo Street 6-8, 197022 Saint-Petersburg, Russia;
| | - Anton Kiselev
- Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.)
| |
Collapse
|
20
|
Nadeem A, Habte A, Ahsan A, Tariq R, Basaria AAA. Deep Infiltrating Endometriosis: A Pictorial Essay. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2897-2904. [PMID: 37578280 DOI: 10.1002/jum.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Deep infiltrating endometriosis (DIE) is a subperitoneal intrusion of endometrial tissue. Resulting endometrial nodules may develop on the uterosacral ligament, urinary tract, rectovaginal, and retrocervical areas, and less commonly in the urinary bladder, thoracic, and neural regions. Genetics, age, and environmental factors determine the progression of the disease. DIE manifests with numerous symptoms, which are similar to unrelated diseases, namely dysmenorrhea, dyspareunia, urinary tract infections, and infertility. Transvaginal ultrasound, magnetic resonance imaging, computed tomography, and physical examination may detect and differentiate endometriosis lesions from other diseases. Its clinical management typically involves laparoscopic surgery and hormonal therapy. These are designed to improve the quality of life and to address individual reproductive goals. This pictorial essay aims to provide clinical cases to highlight the characteristic radiological findings in each diagnostic modality and in addition to elucidate the current clinical management of DIE.
Collapse
Affiliation(s)
- Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Alexander Habte
- Department of Surgery, Assab Military Hospital, Assab, Eritrea
| | - Areeba Ahsan
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Rabeea Tariq
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
21
|
Sahni M, Day ES. Nanotechnologies for the detection and treatment of endometriosis. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1279358. [PMID: 38994324 PMCID: PMC11238427 DOI: 10.3389/fbiom.2023.1279358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Endometriosis is an incurable gynecologic disease characterized by endometrial-like tissue growth outside of the uterine cavity. It affects approximately 10% of reproductive age women, who endure pelvic pain during periods and/or sexual intercourse and who suffer from reduced fertility and diminished quality of life due to the side effects of current treatments. To improve the management and prognosis of endometriosis patients, researchers have recently begun to develop nanoparticle-based diagnostics and treatments that are more effective and less invasive than existing approaches. This review discusses the current state of the field and highlights considerations for the continued development of nanotechnologies for the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Maneesha Sahni
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States
| |
Collapse
|
22
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
23
|
Barroso PAA, Nascimento DR, Lima Neto MFD, De Assis EIT, Figueira CS, Silva JRV. Therapeutic potential of nanotechnology in reproduction disorders and possible limitations. ZYGOTE 2023; 31:433-440. [PMID: 37537957 DOI: 10.1017/s0967199423000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.
Collapse
Affiliation(s)
- Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ernando Igo T De Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Material Engineering and Simulation of Sobral (LEMSS), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| |
Collapse
|
24
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Fazleabas A, Moore A. Detection of Endometriosis Lesions Using Gd-Based Collagen I Targeting Probe in Murine Models of Endometriosis. Mol Imaging Biol 2023; 25:833-843. [PMID: 37418136 PMCID: PMC10598151 DOI: 10.1007/s11307-023-01833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Endometriosis is a chronic condition characterized by high fibrotic content and affecting about 10% of women during their reproductive years. Yet, no clinically approved agents are available for non-invasive endometriosis detection. The purpose of this study was to investigate the utility of a gadolinium-based collagen type I targeting probe (EP-3533) to non-invasively detect endometriotic lesions using magnetic resonance imaging (MRI). Previously, this probe has been used for detection and staging of fibrotic lesions in the liver, lung, heart, and cancer. In this study we evaluate the potential of EP-3533 for detecting endometriosis in two murine models and compare it with a non-binding isomer (EP-3612). PROCEDURES For imaging, we utilized two GFP-expressing murine models of endometriosis (suture model and injection model) injected intravenously with EP3533 or EP-33612. Mice were imaged before and after bolus injection of the probes. The dynamic signal enhancement of MR T1 FLASH images was analyzed, normalized, and quantified, and the relative location of lesions was validated through ex vivo fluorescence imaging. Subsequently, the harvested lesions were stained for collagen, and their gadolinium content was quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS We showed that EP-3533 probe increased the signal intensity in T1-weighted images of endometriotic lesions in both models of endometriosis. Such enhancement was not detected in the muscles of the same groups or in endometriotic lesions of mice injected with EP-3612 probe. Consequentially, control tissues had significantly lower gadolinium content, compared to the lesions in experimental groups. Probe accumulation was similar in endometriotic lesions of either model. CONCLUSIONS This study provides evidence for feasibility of targeting collagen type I in the endometriotic lesions using EP3533 probe. Our future work includes investigation of the utility of this probe for therapeutic delivery in endometriosis to inhibit signaling pathways that cause the disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Maria Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Christiane L Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Egorova A, Petrosyan M, Maretina M, Bazian E, Krylova I, Baranov V, Kiselev A. iRGD-Targeted Peptide Nanoparticles for Anti-Angiogenic RNAi-Based Therapy of Endometriosis. Pharmaceutics 2023; 15:2108. [PMID: 37631322 PMCID: PMC10459007 DOI: 10.3390/pharmaceutics15082108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Anti-angiogenic RNAi-based therapy can be considered as a possible strategy for the treatment of endometriosis (EM), which is the most common gynecological disease. Targeted delivery of siRNA therapeutics is a prerequisite for successful treatment without adverse effects. Here we evaluated the RGD1-R6 peptide carrier as a non-viral vehicle for targeted siRNA delivery to endothelial cells in vitro and endometrial implants in vivo. The physicochemical properties of the siRNA complexes, cellular toxicity, and GFP and VEGFA gene silencing efficiency were studied, and anti-angiogenic effects were proved in cellular and animal models. The modification of siRNA complexes with iRGD ligand resulted in a two-fold increase in gene knockdown efficiency and three-fold decrease in endothelial cells' migration in vitro. Modeling of EM in rats with the autotransplantation of endometrial tissue subcutaneously was carried out. Efficiency of anti-angiogenic EM therapy in vivo by anti-VEGF siRNA/RGD1-R6 complexes was evaluated by the implants' volume measurement, CD34 immunohistochemical staining, and VEGFA gene expression analysis. We observed a two-fold decrease in endometriotic implants growth and a two-fold decrease in VEGFA gene expression in comparison with saline-treated implants. RNAi-mediated therapeutic effects were comparable with Dienogest treatment efficiency in a rat EM model. Taken together, these findings demonstrate the advantages of RGD1-R6 peptide carrier as a delivery system for RNAi-based therapy of EM.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.)
| | - Mariya Petrosyan
- Pharmacology Group, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.)
| | - Elena Bazian
- Pharmacology Group, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Iuliia Krylova
- Department of Pathology, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo Street 6-8, 197022 Saint-Petersburg, Russia
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.)
| |
Collapse
|
26
|
Yuxue J, Ran S, Minghui F, Minjia S. Applications of nanomaterials in endometriosis treatment. Front Bioeng Biotechnol 2023; 11:1184155. [PMID: 37229500 PMCID: PMC10203239 DOI: 10.3389/fbioe.2023.1184155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Endometriosis is a common disease of the reproductive system in women of childbearing age with an unclear pathogenesis. Endometriosis mainly manifests as dysmenorrhea, abdominal pain, and infertility. Currently, medical therapy and surgical treatment are usually used for endometriosis treatment. However, due to the high recurrence rate and many complications, it has greatly affected patients' quality of life. Nanotechnology is a new technology that mainly investigates the characteristics and applications of nanomaterials. To date, nanotechnology has received widespread attention in the field of biomedicine. Nanomaterials can not only be used as drugs to treat endometriosis directly, but also enhance the therapeutic effect of endometriosis by delivering drugs, siRNA, antibodies, vesicles, etc. This review comprehensively discusses nanomaterial-based therapies for endometriosis treatment, such as nanomaterial-based gene therapy, photothermal therapy, immunotherapy, and magnetic hyperthermia, which provides a theoretical reference for the clinical application of nanotechnology in the treatment of endometriosis.
Collapse
|
27
|
Zhu S, Zhang J, Xue N, Zhu X, Li F, Dai Q, Qing X, Chen D, Liu X, Wei Z, Cao Y. Highly specific neutrophil-mediated delivery of albumin nanoparticles to ectopic lesion for endometriosis therapy. J Nanobiotechnology 2023; 21:81. [PMID: 36890521 PMCID: PMC9996962 DOI: 10.1186/s12951-023-01831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory disease. Hormonal and surgical treatments are the most commonly used clinical therapies, but they have many sides effects or are traumatic to the body. Therefore, specific drugs for endometriosis treatment are urgently needed to develop. In this study, we identified two features of endometriosis, namely the continuous recruitment of neutrophils into the ectopic lesions and the higher uptake of glucose by ectopic cells. For the above features, we designed a glucose oxidase-loaded bovine serum albumin nanoparticle (BSA-GOx-NPs) that is inexpensive and facilitates large-scale production. After injection, BSA-GOx-NPs were high specifically delivered to ectopic lesions in a neutrophil-dependent manner. Furthermore, BSA-GOx-NPs deplete glucose and induce apoptosis in the ectopic lesions. Whereupon BSA-GOx-NPs produced excellent anti-endometriosis effects when administrated in both acute and chronic inflammatory phases. These results reveal for the first time that the neutrophil hitchhiking strategy is effective in chronic inflammatory disease and provide a non-hormonal and easy-to-achieve approach for endometriosis treatment.
Collapse
Affiliation(s)
- Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Nairui Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230032, Anhui, China
| | - Qingqing Dai
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xin Qing
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
28
|
Taratula O, Taratula OR. Novel Nanoparticle-Based Treatment and Imaging Modalities. Pharmaceutics 2023; 15:244. [PMID: 36678873 PMCID: PMC9861272 DOI: 10.3390/pharmaceutics15010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Over the last twenty years, nanomaterials have been widely used in cancer research [...].
Collapse
Affiliation(s)
- Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| |
Collapse
|
29
|
Sun Q, Lei Y, Zhang H, Ding X, Yang M, Zhang T, Chen J, Huang Z, Wang L, Lan J, Huang Q, Chen Q. A Multifunctional Nanoparticle for Efferocytosis and Pro-Resolving-Mediated Endometriosis Therapy. Colloids Surf B Biointerfaces 2022; 220:112893. [DOI: 10.1016/j.colsurfb.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 10/14/2022]
|
30
|
Ellis K, Munro D, Wood R. The experiences of endometriosis patients with diagnosis and treatment in New Zealand. Front Glob Womens Health 2022; 3:991045. [PMID: 36118149 PMCID: PMC9471549 DOI: 10.3389/fgwh.2022.991045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a chronically painful, invasive, inflammatory disease, with limited treatment options and long delays to diagnosis, which impacts 10% of females in New Zealand. Introduction As part of a larger group discussion study, this paper covers three themes associated with endometriosis patient experiences: intensity of pain, diagnostic tool shortcomings and perspectives of treatment options. Materials and methods The goal of this research was the inclusion of patient voices to guide research priorities. In early 2022, 50 New Zealand endometriosis patients participated in anonymous, asynchronous, text-based group discussions on the VisionsLive platform. The patients ranged in age from 18-48. The patients answered 50 questions, 23 text-based and 27 quantitative, and then took part in online group discussions. Results and discussion The average age of symptom onset was 15.3 years, while the average delay from symptom onset to a working or surgically confirmed diagnosis was 7.91 years. The top five reported symptoms within the cohort were pain-based, and the participants discussed the many impacts of this pain on their work and education. The four main diagnostic tools employed on this cohort were abdominal ultrasound (72%), transvaginal ultrasound (68%), laparoscopy (82%) and sharing their symptom history with a medical practitioner (88%). The most common emotions patients experienced following receiving a diagnosis of endometriosis were relief (86%), feeling overwhelmed (54%), and anger (32%). The main treatments offered to this cohort were pain relief (96%), laparoscopic surgery (84%) and the combined oral contraceptive pill (80%). Of these three treatments, only laparoscopic surgery was viewed positively by the majority of users, with 67% considering laparoscopy an effective treatment, compared to 46% of users for pain relief, and 25% of users for the combined oral contraceptive pill. Conclusions Gathering the voice of patients revealed that long delays to diagnosis and dismissal by medical practitioners frequently manifests as a reaction of relief by patients once diagnosed. Results also showed treatment options such as pain relief and hormonal medications were often considered ineffective, but were routinely offered as the first, or only, options for patients. It is therefore important that both quicker routes to diagnosis and more effective treatment options be developed.
Collapse
Affiliation(s)
- Katherine Ellis
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Deborah Munro
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
- The Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Rachael Wood
- The Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
31
|
Park Y, Demessie AA, Luo A, Taratula OR, Moses AS, Do P, Campos L, Jahangiri Y, Wyatt CR, Albarqi HA, Farsad K, Slayden OD, Taratula O. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107808. [PMID: 35434932 PMCID: PMC9232988 DOI: 10.1002/smll.202107808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.
Collapse
Affiliation(s)
- Youngrong Park
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Addie Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Olena R Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter Do
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
- Advanced Imaging Research Center, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, King Abdulaziz Road, Najran, 55461, Saudi Arabia
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
32
|
Marquardt RM, Nafiujjaman M, Kim TH, Chung SJ, Hadrick K, Kim T, Jeong JW. A Mouse Model of Endometriosis with Nanoparticle Labeling for In Vivo Photoacoustic Imaging. Reprod Sci 2022; 29:2947-2959. [PMID: 35641854 DOI: 10.1007/s43032-022-00980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Endometriosis is a condition of the female reproductive tract characterized by endometrium-like tissue growing outside the uterus. Though it is a common cause of pelvic pain and infertility, there is currently no reliable noninvasive method to diagnose the presence of endometriosis without surgery, and the pathophysiological mechanisms that lead to the occurrence of symptoms require further inquiry. Due to patient heterogeneity and delayed diagnosis, animal models are commonly used to study the development of endometriosis, but these are costly due to the large number of animals needed to test various treatments and experimental conditions at multiple endpoints. Here, we describe a method for synthesis of multimodal imaging gold-fluorescein isothiocyanate (FITC) nanoparticles with preclinical application via induction of nanoparticle-labeled endometriosis-like lesions in mice. Labeling donor endometrial tissue fragments with gold-FITC nanoparticles prior to induction of endometriosis in recipients enables in vivo detection of the gold-labeled lesions with photoacoustic imaging. The same imaging method can be used to visualize embryos noninvasively in pregnant mice. Furthermore, the conjugated FITC dye on the gold nanoparticles allows easy isolation of labeled lesion tissue under a fluorescence dissection microscope. After dissection, the presence of gold-FITC nanoparticles and endometrium-like histology of lesions can be verified through fluorescence imaging, gold enhancement, and immunostaining. This method for in vivo imaging of endometriosis-like lesions and fluorescence-guided dissection will permit new experimental possibilities for the longitudinal study of endometriosis development and progression as well as endometriosis-related infertility.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, College of Natural Science, East Lansing, MI, USA
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Seock-Jin Chung
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kay Hadrick
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
33
|
Ellis K, Munro D, Clarke J. Endometriosis Is Undervalued: A Call to Action. Front Glob Womens Health 2022; 3:902371. [PMID: 35620300 PMCID: PMC9127440 DOI: 10.3389/fgwh.2022.902371] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023] Open
Abstract
Endometriosis is an inflammatory chronic pain condition caused by uterine tissue growing outside of the uterus that afflicts at least 11% of women (and people assigned female at birth) worldwide. This condition results in a substantial burden to these women, and society at large. Although endometriosis was first identified over 160 years ago, substantial knowledge gaps remain, including confirmation of the disease's etiology. Research funding for endometriosis is limited, with funding from bodies like the National Institutes of Health (NIH) constituting only 0.038% of the 2022 health budget—for a condition that affects 6.5 million women in the US alone and over 190 million worldwide. A major issue is that diagnosis of endometriosis is frequently delayed because surgery is required to histologically confirm the diagnosis. This delay increases symptom intensity, the risk of central and peripheral sensitization and the costs of the disease for the patient and their nation. Current conservative treatments of presumed endometriosis are pain management and birth control. Both of these methods are flawed and can be entirely ineffective for the reduction of patient suffering or improving ability to work, and neither addresses the severe infertility issues or higher risk of certain cancers. Endometriosis research deserves the funding and attention that befits a disease with its substantial prevalence, effects, and economic costs. This funding could improve patient outcomes by introducing less invasive and more timely methods for diagnosis and treatment, including options such as novel biomarkers, nanomedicine, and microbiome alterations.
Collapse
Affiliation(s)
- Katherine Ellis
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Deborah Munro
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
- *Correspondence: Deborah Munro
| | - Jennifer Clarke
- Faculty of Health, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
34
|
Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Dis 2022; 8:151. [PMID: 35368023 PMCID: PMC8976844 DOI: 10.1038/s41420-022-00941-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
Endometriosis (EMs) is a benign gynecological disorder showing some tumor-like migratory and invasive phenotypes. This study intended to investigate the role of microRNA-30c (miR-30c) in EMs, which is involved with B-cell lymphoma 9 (BCL9), an activator of the Wnt/β-catenin signaling pathway. EMs specimens were clinically collected for determination of miR-30c and BCL9 expression. Exosomes were isolated from endometrial epithelial cells (EECs), and the uptake of exosomes by ectopic EECs (ecto-EECs) was characterized using fluorescence staining and confocal microscopy. The binding of miR-30c to BCL9 was validated by dual-luciferase reporter assay. Artificial modulation (up- and down-regulation) of the miR-30c/BCL9/Wnt/CD44 regulatory cascade was performed to evaluate its effect on ecto-EEC invasion and migration, as detected by Transwell and wound healing assays. A mouse model of EMs was further established for in vivo substantiation. Reduced miR-30c expression and elevated BCL9 expression was revealed in EMs ectopic tissues and ecto-EECs. Normal EECs-derived exosomes delivered miR-30c to ecto-EECs to suppress their invasive and migratory potentials. Then, miR-30c was observed to inhibit biological behaviors of ecto-EECs by targeting BCL9, and the miR-30c-induced inhibitory effect was reversed by BCL9 overexpression. Further, miR-30c diminished the invasion and migration of ecto-EECs by blocking the BCL9/Wnt/CD44 axis. Moreover, miR-30c-loaded exosomes attenuated the metastasis of ecto-EEC ectopic nodules. miR-30c delivered by EECs-derived exosomes repressed BCL9 expression to block the Wnt/β-catenin signaling pathway, thus attenuating the tumor-like behaviors of ecto-EECs in EMs.
Collapse
|
35
|
Huang H, Gong W, Wang X, He W, Hou Y, Hu J. Self-Assembly of Naturally Small Molecules into Supramolecular Fibrillar Networks for Wound Healing. Adv Healthc Mater 2022; 11:e2102476. [PMID: 35306757 DOI: 10.1002/adhm.202102476] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Self-assemblies of bioactively natural compounds into supramolecular hydrogels without structural modifications are of interest to improve their sustained releases and bioavailabilities in vivo. However, it is still a formidable challenge to dig out such a naturally small molecule with a meticulous structure which can be self-assembled to form a hydrogel for biomedical applications. Here, a new hydrogel consisting only of gallic acid (GA) via π-π stacking and hydrogen bond interactions, whereas none of GA analogues can form the similar supramolecular hydrogels, is reported. This interesting phenomenon is intriguing to further investigate the potential applications of GA hydrogels in wound healing. Notably, this GA hydrogel has rod-like structures with lengths varying from 10 to 100 µm. The biocompatibility and antibacterial tests prove that this well-assembled GA hydrogel has no cytotoxicity and excellent antibacterial activities against Escherichia coli and Staphylococcus aureus. Moreover, the GA hydrogel can significantly accelerate the process of wound healing with or without bacterial infections by mediation of inflammation signaling pathways. It is believed that the current study may shed a new light on the design of a supramolecular hydrogel based on self-assemblies of naturally small molecules to improve their bioavailabilities and diversify their uses in biomedical applications.
Collapse
Affiliation(s)
- Haibo Huang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Wei Gong
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| | - Xinchuang Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Wanying He
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yiyang Hou
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Jiangning Hu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
36
|
Simón-Gracia L, Kiisholts K, Petrikaitė V, Tobi A, Saare M, Lingasamy P, Peters M, Salumets A, Teesalu T. Homing Peptide-Based Targeting of Tenascin-C and Fibronectin in Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3257. [PMID: 34947606 PMCID: PMC8708492 DOI: 10.3390/nano11123257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for precision delivery of diagnostic and therapeutic compounds to endometriotic lesions. First, we audited a panel of peptide phages for the binding to the cultured immortalized endometriotic epithelial 12Z and eutopic stromal HESC cell lines. The bacteriophages displaying PL1 peptide that engages with angiogenic extracellular matrix overexpressed in solid tumors showed the strongest binding to both cell lines. The receptors of PL1 peptide, tenascin C domain C (TNC-C) and fibronectin Extra Domain-B (Fn-EDB), were expressed in both cells. Silver nanoparticles functionalized with synthetic PL1 peptide showed specific internalization in 12Z and HESC cells. Treatment with PL1-nanoparticles loaded with the potent antimitotic drug monomethyl auristatin E decreased the viability of endometriotic cells in 2D and 3D cultures. Finally, PL1-nanoparticless bound to the cryosections of clinical peritoneal endometriotic lesions in the areas positive for TNC-C and Fn-EDB immunoreactivities and not to sections of normal endometrium. Our findings suggest potential applications for PL1-guided nanoparticles in precision diagnosis and therapy of endometriosis.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Kristina Kiisholts
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
| | - Vilma Petrikaitė
- Laboratory of Drug Target Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania
| | - Allan Tobi
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Merli Saare
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Prakash Lingasamy
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Maire Peters
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
- Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
37
|
Patel SK, Valicherla GR, Micklo AC, Rohan LC. Drug delivery strategies for management of women's health issues in the upper genital tract. Adv Drug Deliv Rev 2021; 177:113955. [PMID: 34481034 DOI: 10.1016/j.addr.2021.113955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The female upper genital tract (UGT) hosts important reproductive organs including the cervix, uterus, fallopian tubes, and ovaries. Several pathologies affect these organ systems such as infections, reproductive issues, structural abnormalities, cancer, and inflammatory diseases that could have significant impact on women's overall health. Effective disease management is constrained by the multifaceted nature of the UGT, complex anatomy and a dynamic physiological environment. Development of drug delivery strategies that can overcome mucosal and safety barriers are needed for effective disease management. This review introduces the anatomy, physiology, and mucosal properties of the UGT and describes drug delivery barriers, advances in drug delivery technologies, and opportunities available for new technologies that target the UGT.
Collapse
|
38
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
39
|
Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Mol Biol Rep 2021; 48:6525-6538. [PMID: 34379286 DOI: 10.1007/s11033-021-06635-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) or matrixins, are members of a zinc-dependent endopeptidase family. They cause remodeling of the extracellular matrix (ECM) leading to numerous diseases. MMPs subfamilies possess: collagenases, gelatinases, stromelysins and membrane-type MMPs (MT-MMP). They consist of several domains; pro-peptide, catalytic, linker peptide and the hemopexin (Hpx) domains. MMPs are involved in initiation, proliferation and metastasis of cancer through the breakdown of ECM physical barriers. Overexpression of MMPs is associated with poor prognosis of cancer. This review will discuss both types of MMPs and current inhibitors, which target them in different aspects, including, biosynthesis, activation, secretion and catalytic activity. Several synthetic and natural inhibitors of MMPs (MMPIs) that can bind the catalytic domain of MMPs have been designed including; peptidomimetic, non-peptidomimetic, tetracycline derivatives, off-target MMPI, natural products, microRNAs and monoclonal antibodies.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|