1
|
Wang Y, Chen Z, Jiang K, Shen Z, Passerini S, Chen M. Accelerating the Development of LLZO in Solid-State Batteries Toward Commercialization: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402035. [PMID: 38770746 DOI: 10.1002/smll.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Solid-state batteries (SSBs) are under development as high-priority technologies for safe and energy-dense next-generation electrochemical energy storage systems operating over a wide temperature range. Solid-state electrolytes (SSEs) exhibit high thermal stability and, in some cases, the ability to prevent dendrite growth through a physical barrier, and compatibility with the "holy grail" metallic lithium. These unique advantages of SSEs have spurred significant research interests during the last decade. Garnet-type SSEs, that is, Li7La3Zr2O12 (LLZO), are intensively investigated due to their high Li-ion conductivity and exceptional chemical and electrochemical stability against lithium metal anodes. However, poor interfacial contact with cathode materials, undesirable lithium plating along grain boundaries, and moisture-induced chemical degradation greatly hinder the practical implementation of LLZO-based SSEs for SSBs. In this review, the recent advances in synthesis methods, modification strategies, corresponding mechanisms, and applications of garnet-based SSEs in SSBs are critically summarized. Furthermore, a comprehensive evaluation of the challenges and development trends of LLZO-based electrolytes in practical applications is presented to accelerate their development for high-performance SSBs.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| | - Zhen Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| | - Kai Jiang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
- State Key Laboratory of Advanced Electromagnetic Engineering, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zexiang Shen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021, Karlsruhe, Germany
- Sapienza University of Rome, Chemistry Department, P. Aldo Moro 5, Rome, 00185, Italy
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| |
Collapse
|
2
|
Zhang Z, Zhang M, Wu J, Hu X, Fu B, Zhang X, Luo B, Khan K, Fang Z, Xu Z, Wu M. Interfacial Plasticization Strategy Enabling a Long-Cycle-Life Solid-State Lithium Metal Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304234. [PMID: 37994291 DOI: 10.1002/smll.202304234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/03/2023] [Indexed: 11/24/2023]
Abstract
The limited ionic conductivity and unstable interface due to poor solid-solid interface pose significant challenges to the stable cycling of solid-state batteries (SSBs). Herein, an interfacial plasticization strategy is proposed by introducing a succinonitrile (SN)-based plastic curing agent into the polyacrylonitrile (PAN)-based composite polymer electrolytes (CPE) interface. The SN at the interface strongly plasticizes the PAN in the CPE, which reduces the crystallinity of the PAN drastically and enables the CPE to obtain a low modulus surface, but it still maintains a high modulus internally. The reduced crystallinity of PAN provides more amorphous regions, which are favorable for Li+ transport. The gradient modulus structure not only ensures intimate interfacial contact but also favors the suppression of Li dendrites growth. Consequently, the interfacial plasticized CPE (SF-CPE) obtains a high ionic conductivity of 4.8 × 10-4 S cm-1 as well as a high Li+ transference number of 0.61. The Li-Li symmetric cell with SF-CPE can cycle for 1000 h at 0.1 mA cm-2, the LiFeO4 (LFP)-Li full-cell demonstrates a high capacity retention of 86.1% after 1000 cycles at 1 C, and the LiCoO2 (LCO)-Li system also exhibits an excellent cycling performance. This work provides a novel strategy for long-life solid-state batteries.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Ming Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Jintian Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Xin Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Bowen Fu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Xingwei Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Bin Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Kashif Khan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Zixuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Ziqiang Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Yangtze Delta Region Institute (HuZhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Mengqiang Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Yangtze Delta Region Institute (HuZhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| |
Collapse
|
3
|
Cui Y, Chen W, Xin W, Ling H, Hu Y, Zhang Z, He X, Zhao Y, Kong XY, Wen L, Jiang L. Gradient Quasi-Solid Electrolyte Enables Selective and Fast Ion Transport for Robust Aqueous Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308639. [PMID: 37923399 DOI: 10.1002/adma.202308639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The quasi-solid electrolytes (QSEs) attract extensive attention due to their improved ion transport properties and high stability, which is synergistically based on tunable functional groups and confined solvent molecules among the polymetric networks. However, the trade-off effect between the polymer content and ionic conductivity exists in QSEs, limiting their rate performance. In this work, the epitaxial polymerization strategy is used to build the gradient hydrogel networks (GHNs) covalently fixed on zinc anode. Then, it is revealed that the asymmetric distribution of negative charges benefits GHNs with fast and selective ionic transport properties, realizing a higher Zn2+ transference number of 0.65 than that (0.52) for homogeneous hydrogel networks (HHNs) with the same polymer content. Meanwhile, the high-density networks formed at Zn/GHNs interface can efficiently immobilize free water molecules and homogenize the Zn2+ flux, greatly inhibiting the water-involved parasitic reactions and dendrite growth. Thus, the GHNs enable dendrite-free stripping/plating over 1000 h at 8 mA cm-2 and 1 mAh cm-2 in a Zn||Zn symmetric cell, as well as the evidently prolonged cycles in various full cells. This work will shed light on asymmetric engineering of ion transport channels in advanced quasi-solid battery systems to achieve high energy and safety.
Collapse
Affiliation(s)
- Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Cai D, Zhang J, Li F, Han X, Zhong Y, Wang X, Tu J. LLZTO Nanoparticle- and Cellulose Mesh-Coreinforced Flexible Composite Electrolyte for Stable Li Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37884-37892. [PMID: 37523717 DOI: 10.1021/acsami.3c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Composite electrolytes have been regarded as the most prospective electrolytes for commercial application because they acquire the advantages of both polymer and inorganic electrolytes, commonly exhibiting appreciated flexibility and suitable ionic conductivity. Nevertheless, the conventional solution-casting method with toxic solvent and poor interfacial contact still hamper their commercialization process. Moreover, electrolytes with higher ionic conductivity and transference number are urgently needed for satisfying fast-charging batteries. Herein, a novel composite electrolyte (LZEC) reinforced by mechanically robust LLZTO nanoparticles and flexible cellulose mesh was fabricated by a simple and advanced in situ thermal polymerization method, with adding of highly ion-conductive liquid plasticizer. Consequently, the rationally designed LZEC composite electrolyte exhibits superior flexibility and remarkable electrochemical properties in the form of high ionic conductivity, wide electrochemical stability window, and high Li+ transference number. Importantly, the in situ synthesis method is expected to help construct an enhanced electrolyte/electrode interface inside the battery, and the LZEC composite electrolyte is capable of suppressing Li dendrite growth effectively, as evidenced by the prolonged stable cycling of the Li/Li symmetric cell. Therefore, the LFP/LZEC/Li full cell exhibits superior rate performance and long cyclic life. These attractive properties make LZEC a potential composite electrolyte for boosting the practical application of safe and long-life Li metal batteries.
Collapse
Affiliation(s)
- Dan Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fanqun Li
- Wanxiang A123 Systems Corp., Hangzhou 311215, China
| | - Xiao Han
- Wanxiang A123 Systems Corp., Hangzhou 311215, China
| | - Yu Zhong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiuli Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiangping Tu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Kmiec S, Ruoff E, Darga J, Bodratti A, Manthiram A. Scalable Glass-Fiber-Polymer Composite Solid Electrolytes for Solid-State Sodium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20946-20957. [PMID: 37078742 DOI: 10.1021/acsami.3c00240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, we report a method for producing a thin (<50 μm), mechanically robust, sodium-ion conducting composite solid electrolyte (CSE) by infiltrating the monomers of polyethylene glycol diacrylate (PEGDA) and polyethylene glycol (PEG) and either NaClO4 or NaFSI salt into a silica-based glass-fiber matrix, followed by an UV-initiated in situ polymerization. The glass fiber matrix provided mechanical strength to the CSE and enabled a robust, self-supporting separator. This strategy enabled the development of CSEs with high loadings of PEG as a plasticizer to enhance the ionic conductivity. The fabrication of these CSEs was done under ambient conditions, which was highly scalable and can be easily implemented in roll-to-roll processing. While NaClO4 was found to be unstable with the sodium-metal anode, the use of a NaFSI salt was found to promote stable stripping and plating in a symmetric cell, reaching current densities of as high as 0.67 mA cm-2 at 60 °C. The PEGDA + PEG + NaFSI separators were then used to form solid-state full cells with a cobalt-free, low-nickel layered Na2/3Ni1/3Mn2/3O2 cathode and a sodium-metal anode, achieving a full capacity utilization exhibiting 70% capacity retention after 50 cycles at a cycling rate of C/5 at 60 °C.
Collapse
Affiliation(s)
- Steven Kmiec
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Erick Ruoff
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joe Darga
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Bodratti
- Research and Development, Alkegen, 600 Riverwalk Parkway, Suite 120, Tonawanda, New York 14150, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Mittal N, Tien S, Lizundia E, Niederberger M. Hierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107183. [PMID: 35224853 DOI: 10.1002/smll.202107183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Sodium ion batteries (NIBs) based on earth-abundant materials offer efficient, safe, and environmentally sustainable solutions for a decarbonized society. However, to compete with mature energy storage technologies such as lithium ion batteries, further progress is needed, particularly regarding the energy density and operational lifetime. Considering these aspects as well as a circular economy perspective, the authors use biodegradable cellulose nanoparticles for the preparation of a gel polymer electrolyte that offers a high liquid electrolyte uptake of 2985%, an ionic conductivity of 2.32 mS cm-1 , and a Na+ transference number of 0.637. A balanced ratio of mechanically rigid cellulose nanocrystals and flexible cellulose nanofibers results in a mesoporous hierarchical structure that ensures close contact with metallic Na. This architecture offers stable Na plating/stripping at current densities up to ±500 µA cm-2 , outperforming conventional fossil-based NIBs containing separator-liquid electrolytes. Paired with an environmentally sustainable and economically attractive Na2 Fe2 (SO4 )3 cathode, the battery reaches an energy density of 240 Wh kg-1 , delivering 69.7 mAh g-1 after 50 cycles at a rate of 1C. In comparison, Celgard in liquid electrolyte delivers only 0.6 mAh g-1 at C/4. Such gel polymer electrolytes may open up new opportunities for sustainable energy storage systems beyond lithium ion batteries.
Collapse
Affiliation(s)
- Neeru Mittal
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Sean Tien
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| |
Collapse
|
7
|
Gao X, Yuan W, Yang Y, Wu Y, Wang C, Wu X, Zhang X, Yuan Y, Tang Y, Chen Y, Yang C, Zhao B. High-Performance and Highly Safe Solvate Ionic Liquid-Based Gel Polymer Electrolyte by Rapid UV-Curing for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43397-43406. [PMID: 36102960 DOI: 10.1021/acsami.2c13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Utilizing ionic liquids (ILs) with low flammability as the precursor component for a gel polymer electrolyte is a smart strategy out of safety concerns. Solvate ionic liquids (SILs) consist of equimolar lithium bis(trifluoromethylsulfonyl)imide and tetraglyme, alleviating the main problems of high viscosity and low Li+ conductivity of conventional ILs. In this study, within a very short time of 30 s, a SIL turns immobile using efficient and controllable UV-curing with an ethoxylated trimethylolpropane triacrylate (ETPTA) network, forming a homogeneous SIL-based gel polymer electrolyte (SGPE) with enhanced thermal stability (216 °C), robust mechanical strength (compression modulus: 1.701 MPa), and high ionic conductivity (0.63 mS cm-1 at room temperature). A Li|SGPE|LiFePO4 cell demonstrates high charge/discharge reversibility and cycling stability with a capacity retention rate of 99.7% after 750 cycles and an average Coulombic efficiency of 99.7%, owing to its excellent electrochemical compatibility with Li-metal. A close-contact electrode/electrolyte interface is formed by in situ curing of the electrolyte on the electrode surface, which enables the pouch full cell to work stably under the conditions of cutting/bending. In view of the excellent mechanical, thermal, and electrochemical performances of SGPE, it is believed to be a promising gel polymer electrolyte for constructing high-safety lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Xinzhu Gao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Yuan
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Yang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yaopeng Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuyang Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqing Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuhang Yuan
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yong Tang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chenghao Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bote Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
A high power density solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wu J, Ju Z, Zhang X, Marschilok AC, Takeuchi KJ, Wang H, Takeuchi ES, Yu G. Gradient Design for High-Energy and High-Power Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202780. [PMID: 35644837 DOI: 10.1002/adma.202202780] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Charge transport is a key process that dominates battery performance, and the microstructures of the cathode, anode, and electrolyte play a central role in guiding ion and/or electron transport inside the battery. Rational design of key battery components with varying microstructure along the charge-transport direction to realize optimal local charge-transport dynamics can compensate for reaction polarization, which accelerates electrochemical reaction kinetics. Here, the principles of charge-transport mechanisms and their decisive role in battery performance are presented, followed by a discussion of the correlation between charge-transport regulation and battery microstructure design. The design strategies of the gradient cathodes, lithium-metal anodes, and solid-state electrolytes are summarized. Future directions and perspectives of gradient design are provided at the end to enable practically accessible high-energy and high-power-density batteries.
Collapse
Affiliation(s)
- Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiao Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Amy C Marschilok
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Esther S Takeuchi
- Department of Chemistry, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Interdisciplinary Science Department, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|