1
|
Li S, Yang M, Wu Y, Asghar W, Lu X, Zhang H, Cui E, Fang Z, Shang J, Liu Y, Li RW. A flexible dual-mode sensor with decoupled strain and temperature sensing for smart robots. MATERIALS HORIZONS 2024; 11:6361-6370. [PMID: 39364564 DOI: 10.1039/d4mh00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Flexible dual mode strain-temperature sensors that mimic human skin functions are highly desired for wearable devices and intelligent robots. However, integrating dual sensing characteristics into a single sensor for simultaneous and decoupled strain-temperature detection still remains a challenge. Herein, we report a flexible dual-modal sensor that uses a "neutral surface" structural design technique to integrate an independently prepared temperature sensing layer (TSL) and strain sensing layer (SSL), for simultaneous monitoring of strain and temperature, in a decoupled manner. The TSL consists of a PDMS/BaTiO3 based dielectric layer whose dielectric constant and thickness change in response to temperature fluctuations. The SSL consists of a resistive type Ni80Cr20 film whose resistance changes in response to external strain. After optimizing the temperature and strain sensing characteristics of the TSL and SSL, the obtained dual-modal flexible sensor has shown a broad temperature sensing range (30 to 200 °C), with high temperature sensitivity (-160.90 fF °C-1), excellent linearity (0.998), and highly discernible temperature resolution (0.1 °C). Additionally, the sensor has also exhibited a wide strain monitoring range (20 to 1000 με), good strain resolution (20 με or 0.002%), and a fast strain response time (54 ms). When practically demonstrated, our sensor has successfully shown independent perception of strain and temperature, which highlights its promising application potential in the fields of smart robotics and intelligent prosthetics.
Collapse
Affiliation(s)
- Shiying Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Mengyu Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Waqas Asghar
- Mechanical Engineering Department, University of Engineering and Technology Taxila, 47050, Taxila, Pakistan
| | - Xingjian Lu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haifeng Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Enhong Cui
- Shandong Aluminum Valley Testing Center, Shandong Aluminum Valley Industrial Technology Institute, Bingzhou, 256200, P. R. China
| | - Zaojun Fang
- Zhejiang Key Laboratory of Robots and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
He X, Wu Z, Lu J, Liu J, Li B, Liu X, Tao W, Li Z. A Sunlight-Driven Self-Cleaning CuCo-MOF Composite Membrane for Highly Efficient Emulsion Separation and Water Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402589. [PMID: 38881318 DOI: 10.1002/smll.202402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The fouling phenomenon of membranes has hindered the rapid development of separation technology in wastewater treatment. The integration of materials into membranes with both excellent separation performance and self-cleaning properties still pose challenges. Here, a self-assembled composite membrane with solar-driven self-cleaning performance is reported for the treatment of complex oil-water emulsions. The mechanical robustness of the composite membrane is enhanced by the electrostatic attraction between chitosan and metal-organic frameworks (MOF) CuCo-HHTP as well as the crosslinking effect of glutaraldehyde. Molecular dynamics (MD) simulations also revealed the hydrogen bonding interaction between chitosan and CuCo-HHTP. The composite membrane of CuCo-HHTP-5@CS/MPVDF exhibits a high flux ranging from 700.6 to 2350.6 L∙m-2∙h-1∙bar-1 and excellent separation efficiency (>99.0%) for various oil-water emulsions, including crude oil, kerosene, and other light oils. The addition of CuCo-HHTP shows remarkable photothermal effects, thus demonstrating excellent solar-driven self-cleaning capability and antibacterial performance (with an efficiency of ≈100%). Furthermore, CuCo-HHTP-5@CS/MPVDF can activate peroxomonosulfate (PMS) under sunlight, quickly removing oil-fouling and dyes. Density functional theory (DFT) calculations indicate that the bimetallic sites of Cu and Co in CuCo-HHTP effectively promoted the activation of PMS. This study provides distinctive insights into the multifaceted applications of MOFs-derived photothermal anti-fouling composite membranes.
Collapse
Affiliation(s)
- Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zixuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jihan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
3
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Han Y, Chao M, Luo C, Yan L. Self-assembled B-doped flower-like graphitic carbon nitride with high specific surface area for enhanced photocatalytic performance. J Colloid Interface Sci 2024; 657:309-319. [PMID: 38043232 DOI: 10.1016/j.jcis.2023.11.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a promising nonmetallic photocatalyst. In this manuscript, B-doped 3D flower-like g-C3N4 mesoporous nanospheres (BMNS) were successfully prepared by self-assembly method. The doping of B element promotes the internal growth of hollow flower-like g-C3N4 without changing the surface roughness structure, resulting in a porous floc structure, which enhances the light absorption and light reflection ability, thereby improving the light utilization rate. In addition, B element provides lower band gap, which stimulates the carrier movement and increases the activity of photogenerated carriers. The photocatalytic mechanism and process of BMNS were investigated in depth by structural characterization and performance testing. BMNS-10 % shows good degradation for four different pollutants, among which the degradation effect on Rhodamine B (RhB) reaches 97 % in 30 min. The apparent rate constant of RhB degradation by BMNS-10 % is 0.125 min-1, which is 46 times faster compared to bulk g-C3N4 (BCN). And the photocatalyst also exhibits excellent H2O2 production rate under visible light. Under λ > 420 nm, the H2O2 yield of BMNS-10 % (779.9 μM) in 1 h is 15.9 times higher than that of BCN (48.98 μM). Finally, the photocatalytic mechanism is proposed from the results of free radical trapping experiments.
Collapse
Affiliation(s)
- Yi Han
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China
| | - Min Chao
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China.
| | - Chunjia Luo
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China.
| |
Collapse
|
5
|
Ran B, Ran L, Wang Z, Liao J, Li D, Chen K, Cai W, Hou J, Peng X. Photocatalytic Antimicrobials: Principles, Design Strategies, and Applications. Chem Rev 2023; 123:12371-12430. [PMID: 37615679 DOI: 10.1021/acs.chemrev.3c00326] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.
Collapse
Affiliation(s)
- Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Liao
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Dandan Li
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Keda Chen
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
6
|
Rego RM, Ajeya KV, Jung HY, Kabiri S, Jafarian M, Kurkuri MD, Kigga M. Nanoarchitectonics of Bimetallic MOF@Lab-Grade Flexible Filter Papers: An Approach Towards Real-Time Water Decontamination and Circular Economy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302692. [PMID: 37469019 DOI: 10.1002/smll.202302692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/21/2023]
Abstract
This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, SA, 5005, Australia
| | - Mehdi Jafarian
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
7
|
Lu M, Zhang H, Tian Y, Yao W, Wang J, Wang Y. Photocatalytic hydrogel film assisted forward osmosis (PFO) for water treatment: Sustainable performance and contaminant control. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132364. [PMID: 37634380 DOI: 10.1016/j.jhazmat.2023.132364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The integration of catalytic oxidation with forward osmosis (FO) holds promising potential to address two crucial challenges encountered by FO: fouling and unsustainable performance, but suitable approaches are still rare. Herein, we have successfully developed a photocatalysis-assisted forward osmosis (PFO) system. In the PFO, a self-made porous carbon nitride doped functional carbon nanotube photocatalytic hydrogel film (PCN@CNTM) was engaged in the FO process in an inventive way by simply sticking to the commercial FO membrane surface, preventing damage to the membrane from the catalyst's direct insertion and delaying the assault from the oxidation groups. PFO allowed organic pollutants to decompose in the feed solution (90%) and on the membrane surface, regulating the water chemical potential and giving the FO membrane antifouling properties. This resulted in sustainable water flux (11.8 LMH) with no significant membrane fouling in PFO, whereas in FO alone there was a significant fouling and flux drop (from 12.73 to 7.23 LMH in 4 h). Moreover, the expensive FO membrane was protected while the hydrogel film can be replaced on demand. The PFO exemplifies the concept of synergistic technology integration, presenting a new perspective on harnessing the strengths of distinct technologies in a mutually beneficial manner.
Collapse
Affiliation(s)
- Mengyang Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
8
|
Cheng X, Qin X, Su Z, Gou X, Yang Z, Wang H. Research on the Antibacterial Properties of MXene-Based 2D-2D Composite Materials Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2121. [PMID: 37513132 PMCID: PMC10383113 DOI: 10.3390/nano13142121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Novel MXene-based two-dimensional (2D) membranes are widely used for water purification due to their highly controllable structure and antibacterial properties. However, in the process of membrane separation, the problems of membrane fouling, especially biological fouling, limits the further application of MXene-based membranes. In this study, in order to improve the antibacterial and separation properties of membranes, three kinds of MXene-based 2D-2D composite membranes (M2~M4) were prepared using polyethersulfone (PES) as the substrate, which were GO@MXene, O-g-C3N4@MXene and BiOCl@MXene composite membranes respectively. The results showed that the antibacterial activity of M2~M4 against Escherichia coli and Staphylococcus aureus was further improved, especially the antibacterial ratio of M4 against Escherichia coli and Staphylococcus aureus was up to 50% and 82.4%, respectively. By comparing the surface morphology of MXene membrane and modified membrane treated bacteria through scanning electron microscopy (SEM), it was found that the cell density on modified membrane was significantly lower than that of pure MXene membrane.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xiaojian Qin
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhenglun Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xun Gou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhaomei Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
9
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
10
|
Che H, Wang J, Wang P, Ao Y, Chen J, Gao X, Zhu F, Liu B. Simultaneously Achieving Fast Intramolecular Charge Transfer and Mass Transport in Holey D-π-A Organic Conjugated Polymers for Highly Efficient Photocatalytic Pollutant Degradation. JACS AU 2023; 3:1424-1434. [PMID: 37234118 PMCID: PMC10206595 DOI: 10.1021/jacsau.3c00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Simultaneously realizing efficient intramolecular charge transfer and mass transport in metal-free polymer photocatalysts is critical but challenging for environmental remediation. Herein, we develop a simple strategy to construct holey polymeric carbon nitride (PCN)-based donor-π-acceptor organic conjugated polymers via copolymerizing urea with 5-bromo-2-thiophenecarboxaldehyde (PCN-5B2T D-π-A OCPs). The resultant PCN-5B2T D-π-A OCPs extended the π-conjugate structure and introduced abundant micro-, meso-, and macro-pores, which greatly promoted intramolecular charge transfer, light absorption, and mass transport and thus significantly enhanced the photocatalytic performance in pollutant degradation. The apparent rate constant of the optimized PCN-5B2T D-π-A OCP for 2-mercaptobenzothiazole (2-MBT) removal is ∼10 times higher than that of the pure PCN. Density functional theory calculations reveal that the photogenerated electrons in PCN-5B2T D-π-A OCPs are much easier to transfer from the donor tertiary amine group to the benzene π-bridge and then to the acceptor imine group, while 2-MBT is more easily adsorbed on π-bridge and reacts with the photogenerated holes. A Fukui function calculation on the intermediates of 2-MBT predicted the real-time changing of actual reaction sites during the entire degradation process. Additionally, computational fluid dynamics further verified the rapid mass transport in holey PCN-5B2T D-π-A OCPs. These results demonstrate a novel concept toward highly efficient photocatalysis for environmental remediation by improving both intramolecular charge transfer and mass transport.
Collapse
Affiliation(s)
- Huinan Che
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Jian Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yanhui Ao
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Juan Chen
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Xin Gao
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Fangyuan Zhu
- Shanghai
Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bin Liu
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong-SAR 999077, China
| |
Collapse
|
11
|
Xie H, Du Y, Zhou W, Xu W, Zhang C, Niu R, Wu T, Qu J. Efficient Fabrication of Micro/Nanostructured Polyethylene/Carbon Nanotubes Foam with Robust Superhydrophobicity, Excellent Photothermality, and Sufficient Adaptability for All-Weather Freshwater Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300915. [PMID: 36970813 DOI: 10.1002/smll.202300915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The integration of fog collection and solar-driven evaporation has great significance in addressing the challenge of the global freshwater crisis. Herein, a micro/nanostructured polyethylene/carbon nanotubes foam with interconnected open-cell structure (MN-PCG) is fabricated using an industrialized micro extrusion compression molding technology. The 3D surface micro/nanostructure provides sufficient nucleation points for tiny water droplets to harvest moisture from humid air and a fog harvesting efficiency of 1451 mg cm-2 h-1 is achieved at night. The homogeneously dispersed carbon nanotubes and the graphite oxide@carbon nanotubes coating endow the MN-PCG foam with excellent photothermal properties. Benefitting from the excellent photothermal property and sufficient steam escape channels, the MN-PCG foam attains a superior evaporation rate of 2.42 kg m-2 h-1 under 1 Sun illumination. Consequently, a daily yield of ≈35 kg m-2 is realized by the integration of fog collection and solar-driven evaporation. Moreover, the robust superhydrophobicity, acid/alkali tolerance, thermal resistance, and passive/active de-icing properties provide a guarantee for the long-term work of the MN-PCG foam during practical outdoor applications. The large-scale fabrication method for an all-weather freshwater harvester offers an excellent solution to address the global water scarcity.
Collapse
Affiliation(s)
- Heng Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weilong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenhua Xu
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Congyuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
12
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Li Y, Wang Q, Qu X, Zhang Q, Zhang X. A metalloporphyrin and hydantoin functionalized nanozyme with synergistically enhanced bacterial inhibition. Biomater Sci 2023; 11:1785-1796. [PMID: 36648752 DOI: 10.1039/d2bm01337a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An elaborate design of multimodal antibacterial agents has been revealed to be a promising strategy to address bacterial resistance, originating from the abuse of antibiotics. In this work, we have developed a positively charged and porous material, FePPOPHydantoin, as a disinfectant via introducing 1,3-dibromo-5,5-dimethylhydantoin (Hydantoin) and porphyrin iron units into a polymer framework. The extended π conjugated networks of FePPOPHydantoin endowed the material with strong near-infrared (NIR) absorption, high density of surface catalytic active centers, superior stability, and reproducibility. FePPOPHydantoin exhibits high peroxidase mimetic and photo-Fenton activity, which can catalyze the biologically allowable maximum concentrations of hydrogen peroxide (100 μM) to produce a vast amount of hydroxyl radicals. Simultaneously, the effective electrostatic interaction between the positively charged FePPOPHydantoin and the negatively charged bacteria facilitates the binding of FePPOPHydantoin on the bacterial membrane, restricting bacteria within the destruction range of hydroxyl radicals and thus making the bacteria more vulnerable. Finally, further close contact between bacteria and Hydantoin units in FePPOPHydantoin gave the material an antibacterial efficiency of over 99.999%. Compared with chemical therapy, photo-Fenton therapy, or peroxidase catalytic therapy alone, FePPOPHydantoin had a noteworthy multi-amplified antibacterial efficiency. Furthermore, FePPOPHydantoin exhibited good biocompatibility and negligible cytotoxicity. The in vivo antibacterial therapy on the Staphylococcus aureus (S. aureus) infected mouse wound model clearly proved the effectiveness of FePPOPHydantoin for fighting bacterial infections. This work highlights opportunities for the design of nanozymes with enhanced bacteriostatic activity, providing a new avenue for the construction of novel antibiotics.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
14
|
Lu T, Cao W, Liang H, Deng Y, Zhang Y, Zhu M, Ma W, Xiong R, Huang C. Blow-Spun Nanofibrous Membrane for Simultaneous Treatment of Emulsified Oil/Water Mixtures, Dyes, and Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15729-15739. [PMID: 36495271 DOI: 10.1021/acs.langmuir.2c02620] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane separation is of great significance due to its unique performance in treating wastewater. However, the simultaneous treatment of oily emulsions and other complex pollutants in water remains challenging. Herein, we have proposed a simple strategy to prepare a multifunctional titanium dioxide/silver nanoparticles/polyacrylonitrile (TiO2/AgNPs/PAN) nanofibrous membrane. The experimental results showed that the combination of the hierarchical structure composed of PAN nanofibers and Ag/TiO2 nanoprotrusions contributed to the superhydrophilicity and superoleophobicity (UOCA = 153.3 ± 2.0°). Further, the nanofibrous membrane exhibited a rapid gravity-driven permeate flux (>1829.37 ± 83.51 L m-2 h-1) and an ultrahigh separation efficiency (>99.9%) for the surfactant-stabilized oil/water emulsions. Moreover, due to the synergistic effect between the PAN fibers and TiO2/Ag heterojunction, Rhodamine B dye in water can be removed quickly and efficiently (up to 97.67% in 90 min). More importantly, the obtained nanofibrous membrane exhibited ultrahigh stability in different harsh environments. The design of superoleophobic nanofiber membrane with a high separation efficiency and high photocatalytic activity has great potential for practical applications in the purification of oily wastewater.
Collapse
Affiliation(s)
- Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenxuan Cao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Hebin Liang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
15
|
Sheng Z, Hou F, Zou L, Li Y, Li J, Li J, Ai L, Wei W, Wei A. Highly efficient and photo-triggered elimination of Aspergillus fumigatus spores by Zn-Ti layered double hydroxide. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Mousa HM, Fahmy HS, Ali GAM, Abdelhamid HN, Ateia M. Membranes for Oil/Water Separation: A Review. ADVANCED MATERIALS INTERFACES 2022; 9:10.1002/admi.202200557. [PMID: 37593153 PMCID: PMC10428143 DOI: 10.1002/admi.202200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 08/19/2023]
Abstract
Recent advancements in separation and membrane technologies have shown a great potential in removing oil from wastewaters effectively. In addition, the capabilities have improved to fabricate membranes with tunable properties in terms of their wettability, permeability, antifouling, and mechanical properties that govern the treatment of oily wastewaters. Herein, authors have critically reviewed the literature on membrane technology for oil/water separation with a specific focus on: 1) membrane properties and characterization, 2) development of various materials (e.g., organic, inorganic, and hybrid membranes, and innovative materials), 3) membranes design (e.g., mixed matrix nanocomposite and multilayers), and 4) membrane fabrication techniques and surface modification techniques. The current challenges and future research directions in materials and fabrication techniques for membrane technology applications in oil/water separation are also highlighted. Thus, this review provides helpful guidance toward finding more effective, practical, and scalable solutions to tackle environmental pollution by oils.
Collapse
Affiliation(s)
- Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Hanan S Fahmy
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
| |
Collapse
|
17
|
Zhang T, Guo R, Ying G, Lu Z, Peng C, Shen M, Zhang J. Absolute film separation of dyes/salts and emulsions with a superhigh water permeance through graded nanofluidic channels. MATERIALS HORIZONS 2022; 9:1536-1542. [PMID: 35348168 DOI: 10.1039/d2mh00046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of multifunctional films with a high permeability has been of great concern for effective separation of complex aqueous contaminants, especially in the face of zero or near-zero release regulations. Inspired by the natural structure of sandy soils, polydopamine-wrapped/connected polypyrrole sub-micron spheres (PPSM) were closely packed onto a polypyrrole-coated bacterial cellulose (PBC) support, by which a new two-layered PBC/PPSM composite film formed with graded nanofluidic channels. Interestingly, after being soaked in complex water environments of ethanol, acids, bases, heat, cold and high salinity, or else bended/folded for more than 10 times, the structure and performance of this film still stayed the same, validating its high structural stability and flexibility. Even in a high salinity environment over seawater, this PBC/PPSM film exhibits a dye-separation capacity of almost 100% with a surprisingly superhigh water permeance over one thousand L h-1 m-2 bar-1, one or two magnitudes higher than that of the related films reported in the literature. Meanwhile, the ability for effective oil-water-separation was also validated. Besides the superhydrophilicity and underwater superoleophobicity, the synapse-like-structure-induced graded nanofluidic channels are also proposed to play a key role for rendering such an outstandingly comprehensive performance of the film by greatly overcoming fluid resistance and reducing permeation viscosity.
Collapse
Affiliation(s)
- Tianmeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China
| | - Ruyong Guo
- College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China
| | - Guobing Ying
- College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China
| | - Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China
| | - Chao Peng
- Productivity Centre of Jiangsu Province, Nanjing 210042, China
| | - Mingxia Shen
- College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China
| | - Jianfeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China
| |
Collapse
|
18
|
Xie H, Xu WH, Du Y, Gong J, Niu R, Wu T, Qu JP. Cost-Effective Fabrication of Micro-Nanostructured Superhydrophobic Polyethylene/Graphene Foam with Self-Floating, Optical Trapping, Acid-/Alkali Resistance for Efficient Photothermal Deicing and Interfacial Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200175. [PMID: 35307967 DOI: 10.1002/smll.202200175] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m-2 h-1 under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.
Collapse
Affiliation(s)
- Heng Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wen-Hua Xu
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jin-Ping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
19
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
20
|
Yang Y, Zhou X, Chan YK, Wang Z, Li L, Li J, Liang K, Deng Y. Photo-Activated Nanofibrous Membrane with Self-Rechargeable Antibacterial Function for Stubborn Infected Cutaneous Regeneration. SMALL 2022; 18:e2105988. [PMID: 35088512 DOI: 10.1002/smll.202105988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Indexed: 02/05/2023]
Abstract
For quick disinfection treatment, phototherapy, including photothermal therapy and photodynamic therapy, has emerged as a promising alternative to conventional methods. However, the bactericidal effect of phototherapy, which only works upon light, is short-lived. The remaining bacteria in situ may repopulate when the irradiation of light is withdrawn. To address this refractory concern, an antibacterial fibrous membrane consisting of electrospun poly (polycaprolactone) scaffolds and polydopamine (pDA) coated MXene/Ag3 PO4 bioheterojunctions (MX@AgP bio-HJs) is devised and developed. Upon near-infrared (NIR) illumination, the MX@AgP nanoparticle (NP) in nanofibrous electrospun membranes exert the excellent bactericidal effect of phototherapy and release Ag+ ions which stop the remaining bacteria from multiplying in the dark state. When removing NIR light, pDA in situ reduces Ag+ ions to Ag0 NPs to realize the self-rechargeability of Ag+ ions and provides enough Ag+ ions for the second phototherapy. In vivo results show that photoactivated nanofibrous membranes can re-shape an infected wound microenvironment to the regenerative microenvironment through killing bacteria, ceasing bleeding, increasing epithelialization, and collagen deposition on the wound bed, as well as promoting angiogenesis. As predicted, the proposal work offers potential prospects for nanofibrous membranes with NIR-assisted "self-rechargeable" antibacterial properties to treat bacteria-infected full-thickness wounds.
Collapse
Affiliation(s)
- Yingming Yang
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiong Zhou
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Ziyou Wang
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Limei Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jiyao Li
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kunneng Liang
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
21
|
Min F, Wei Z, Yu Z, Xiao Y, Guo S, Song R, Li J. Construction of a hierarchical ZnIn 2S 4/C 3N 4 heterojunction for the enhanced photocatalytic degradation of tetracycline. Dalton Trans 2022; 51:2323-2330. [PMID: 35043131 DOI: 10.1039/d1dt03716a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Efficient charge separation and sufficiently exposed active sites are both critical limiting factors for solar-driven organic contaminant degradation. Herein, we describe a hierarchical heterojunction photocatalyst fabricated by the in situ growth of ZnIn2S4 nanosheets on micro-tubular C3N4 (denoted as ZIS/TCN). This ZIS/TCN heterojunction photocatalyst can take advantage of the hollow structure with stronger light absorption capacity and more active sites, and its heterostructure can accelerate the separation and transfer of photogenerated charge carriers. The optimized ZIS/TCN-3 exhibits superb photocatalytic efficiency for the degradation of tetracycline (86.1%, 60 min), maintains excellent stability and recyclability, and provides a facile strategy for the synthesis of efficient heterojuction photocatalysts towards wastewater treatment. In addition, the plausible photocatalytic degradation pathway of tetracycline is proposed according to the intermediates identified by LC-mass analysis.
Collapse
Affiliation(s)
- Feng Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhengqing Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhen Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Renjie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jinheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China.
| |
Collapse
|
22
|
Wang J, Yu Z, Zhu X, Xiao X, Pang Y, Tan Q, Liu Y. A super-hydrophilic NH 2-MIL-125 composite film with dopamine-modified graphene oxide is used for water treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is always concerning about how to remove oil–water emulsions and dyes simultaneously and how to find a suitable separation film.
Collapse
Affiliation(s)
- Juan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| | - Ximei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Xuehan Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yao Pang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - QiuYue Tan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| |
Collapse
|
23
|
Pan J, Yu X, Dong J, Zhao L, Liu L, Liu J, Zhao X, Liu L. Diatom-Inspired TiO 2-PANi-Decorated Bilayer Photothermal Foam for Solar-Driven Clean Water Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58124-58133. [PMID: 34797974 DOI: 10.1021/acsami.1c16603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interfacial solar-driven evaporation provides one of the most promising green and sustainable technologies to deal with the knotty water crisis by extracting vapor from a variety of water sources powered by solar energy. Advanced photothermal materials play critical roles in interfacial solar-driven evaporation by photothermal conversion and heat localization. Herein, inspired by the unique hierarchical structure and light-harvesting function of diatoms, we propose a novel photothermal material with a diatom-like hierarchical nanostructure derived from TiO2-PANi-decorated bilayer melamine foam (TiO2-PANi@MF) for solar-driven clean water generation. The diatom-like hierarchical nanostructured TiO2-PANi@MF can realize full-spectrum light absorption and photothermal conversion by enhancing multiple light reflection and light scattering. Thanks to the diatom-like hierarchical nanostructure, TiO2-PANi@MF not only impressively achieves an evaporation rate of 2.12 kg m-2 h-1 under 1 sun irradiation but also shows a high solar steam conversion efficiency up to 88.9%. Notably, the TiO2-PANi composite also endows TiO2-PANi@MF with photocatalytic degradation capability. Apart from the excellent steam generation capability, optimized TiO2-PANi@MF also provides the high photocatalytic efficiency of dye degradation and maintains a high evaporation rate of more than 2 kg m-2 h-1. We believe that the proposed photothermal material with a diatom-like hierarchical nanostructure can envision promising practical applications in seawater desalination and sewage purification.
Collapse
Affiliation(s)
- Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Anhui University, Hefei 230601, P. R. China
| | - Xiaohong Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiajing Dong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lei Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lingling Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jialin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
24
|
Gu J, Ji L, Xiao P, Zhang C, Li J, Yan L, Chen T. Recent Progress in Superhydrophilic Carbon-Based Composite Membranes for Oil/Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36679-36696. [PMID: 34337938 DOI: 10.1021/acsami.1c07737] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purification of stabilized oil/water emulsions is essential to meet the ever increasing demand for monitoring water in the environment, which has been addressed with superwetting carbon-based separation membranes. These include superhydrophilic carbon-based membranes whose progress in recent years and perspectives are reviewed in this paper. The membrane construction strategy is organized into four parts, vacuum-assisted self-assembly, sol-gel process, electrospinning, and vacuum-assisted filtration. In each section, the design strategies and their responding disadvantages have been comprehensively discussed. The challenges and prospects concerning the superhydrophilic carbon-based separation membranes for oily wastewater purification are also summarized to arouse researchers to carry out more studies.
Collapse
Affiliation(s)
- Jincui Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
- University of Chinese Academy of Science, School of Chemical Sciences, Beijing 100049, China
| | - Lingtong Ji
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Chang Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
- University of Chinese Academy of Science, School of Chemical Sciences, Beijing 100049, China
| | - Jian Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
- University of Chinese Academy of Science, School of Chemical Sciences, Beijing 100049, China
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|