1
|
Cao B, Wang K, Xie L, Zhang J, Zhao Y, Wang B, Zheng P. PELMI: Realize robust DNA image storage under general errors via parity encoding and local mean iteration. Brief Bioinform 2024; 25:bbae463. [PMID: 39288232 PMCID: PMC11407442 DOI: 10.1093/bib/bbae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
DNA molecules as storage media are characterized by high encoding density and low energy consumption, making DNA storage a highly promising storage method. However, DNA storage has shortcomings, especially when storing multimedia data, wherein image reconstruction fails when address errors occur, resulting in complete data loss. Therefore, we propose a parity encoding and local mean iteration (PELMI) scheme to achieve robust DNA storage of images. The proposed parity encoding scheme satisfies the common biochemical constraints of DNA sequences and the undesired motif content. It addresses varying pixel weights at different positions for binary data, thus optimizing the utilization of Reed-Solomon error correction. Then, through lost and erroneous sequences, data supplementation and local mean iteration are employed to enhance the robustness. The encoding results show that the undesired motif content is reduced by 23%-50% compared with the representative schemes, which improves the sequence stability. PELMI achieves image reconstruction under general errors (insertion, deletion, substitution) and enhances the DNA sequences quality. Especially under 1% error, compared with other advanced encoding schemes, the peak signal-to-noise ratio and the multiscale structure similarity address metric were increased by 10%-13% and 46.8%-122%, respectively, and the mean squared error decreased by 113%-127%. This demonstrates that the reconstructed images had better clarity, fidelity, and similarity in structure, texture, and detail. In summary, PELMI ensures robustness and stability of image storage in DNA and achieves relatively high-quality image reconstruction under general errors.
Collapse
Affiliation(s)
- Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Kun Wang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, No. 10 Xuefu Street, Dalian Economic-Technological Development Zone, Dalian, Liaoning 116622, China
| | - Lei Xie
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, No. 10 Xuefu Street, Dalian Economic-Technological Development Zone, Dalian, Liaoning 116622, China
| | - Jianxia Zhang
- School of Intelligent Engineering, Henan Institute of Technology, No. 90, East Hualan Avenue, Hongqi District, Xinxiang, Henan 451191, China
| | - Yunzhu Zhao
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, No. 10 Xuefu Street, Dalian Economic-Technological Development Zone, Dalian, Liaoning 116622, China
| | - Bin Wang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, No. 10 Xuefu Street, Dalian Economic-Technological Development Zone, Dalian, Liaoning 116622, China
| | - Pan Zheng
- Department of Accounting and Information Systems, University of Canterbury, Upper Riccarton, Christchurch 8140, New Zealand
| |
Collapse
|
2
|
Wang H, Tang H, Qiu X, Li Y. Solid-State Glass Nanopipettes: Functionalization and Applications. Chemistry 2024; 30:e202400281. [PMID: 38507278 DOI: 10.1002/chem.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
3
|
Voorspoels A, Gevers J, Santermans S, Akkan N, Martens K, Willems K, Van Dorpe P, Verhulst AS. Design Principles of DNA-Barcodes for Nanopore-FET Readout, Based on Molecular Dynamics and TCAD Simulations. J Phys Chem A 2024. [PMID: 38712508 DOI: 10.1021/acs.jpca.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nanopore field-effect transistor (NP-FET) devices hold great promise as sensitive single-molecule sensors, which provide CMOS-based on-chip readout and are also highly amenable to parallelization. A plethora of applications will therefore benefit from NP-FET technology, such as large-scale molecular analysis (e.g., proteomics). Due to its potential for parallelization, the NP-FET looks particularly well-suited for the high-throughput readout of DNA-based barcodes. However, to date, no study exists that unravels the bit-rate capabilities of NP-FET devices. In this paper, we design DNA-based barcodes by labeling a piece of double-stranded DNA with dumbbell-like DNA structures. We explore the impact of both the size of the dumbbells and their spacing on achievable bit-rates. The conformational fluctuations of this DNA-origami, as observed by molecular dynamics (MD) simulation, are accounted for when selecting label sizes. An experimentally informed 3D continuum nanofluidic-nanoelectronic device model subsequently predicts both the ionic current and FET signals. We present a barcode design for a conceptually generic NP-FET, with a 14 nm diameter pore, operating in conditions corresponding to experiments. By adjusting the spacing between the labels to half the length of the pore, we show that a bit-rate of 78 kbit·s-1 is achievable. This lies well beyond the state-of-the-art of ≈40 kbit·s-1, with significant headroom for further optimizations. We also highlight the advantages of NP-FET readout based on the larger signal size and sinusoidal signal shape.
Collapse
Affiliation(s)
- Aderik Voorspoels
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Juliette Gevers
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Nihat Akkan
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Martens
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Pol Van Dorpe
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Anne S Verhulst
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| |
Collapse
|
4
|
Cao B, Zheng Y, Shao Q, Liu Z, Xie L, Zhao Y, Wang B, Zhang Q, Wei X. Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Rep 2024; 43:113699. [PMID: 38517891 DOI: 10.1016/j.celrep.2024.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024] Open
Abstract
Over the past decade, the rapid development of DNA synthesis and sequencing technologies has enabled preliminary use of DNA molecules for digital data storage, overcoming the capacity and persistence bottlenecks of silicon-based storage media. DNA storage has now been fully accomplished in the laboratory through existing biotechnology, which again demonstrates the viability of carbon-based storage media. However, the high cost and latency of data reconstruction pose challenges that hinder the practical implementation of DNA storage beyond the laboratory. In this article, we review existing advanced DNA storage methods, analyze the characteristics and performance of biotechnological approaches at various stages of data writing and reading, and discuss potential factors influencing DNA storage from the perspective of data reconstruction.
Collapse
Affiliation(s)
- Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China; Centre for Frontier AI Research, Agency for Science, Technology, and Research (A(∗)STAR), 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| | - Qi Shao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Zhenlu Liu
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Lei Xie
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Yunzhu Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China.
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| |
Collapse
|
5
|
Li Y, Yu C, Wang Y, Yu J, Wang H, Li B. Nanopore sensitization based on a double loop hybridization chain reaction and G-quadruplex. Chem Commun (Camb) 2024; 60:4487-4490. [PMID: 38567405 DOI: 10.1039/d4cc00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The widespread implementation of solid-state nanopores faces challenges such as lower resolution and increased electrical noise when compared to biological nanopores. Incorporating specific nucleic acid reactions can enhance resolution. In this study, we've developed a nucleic acid amplifier to enhance the sensitivity of solid-state nanopores, utilizing a G-rich sequence and hybridization chain reaction. This amplifier improves target concentration and volume amplification, showing promise in nanopore sensitivity tests.
Collapse
Affiliation(s)
- Yanru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huaning Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Sandler SE, Weckman NE, Yorke S, Das A, Chen K, Gutierrez R, Keyser UF. Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 via barcoded DNA nanostructures in solid-state nanopores. Nat Biomed Eng 2024; 8:325-334. [PMID: 37550424 DOI: 10.1038/s41551-023-01078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/30/2023] [Indexed: 08/09/2023]
Abstract
Single-molecule quantification of the strength and sequence specificity of interactions between proteins and nucleic acids would facilitate the probing of protein-DNA binding. Here we show that binding events between the catalytically inactive Cas9 ribonucleoprotein and any pre-defined short sequence of double-stranded DNA can be identified by sensing changes in ionic current as suitably designed barcoded linear DNA nanostructures with Cas9-binding double-stranded DNA overhangs translocate through solid-state nanopores. We designed barcoded DNA nanostructures to study the relationships between DNA sequence and the DNA-binding specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 at the single-nucleotide level. Nanopore-based sensing of DNA-barcoded nanostructures may help to improve the design of efficient and specific ribonucleoproteins for biomedical applications, and could be developed into sensitive protein-sensing assays.
Collapse
Affiliation(s)
- Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Nicole E Weckman
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Institute for Studies in Transdisciplinary Engineering Education & Practice, Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada
| | - Sarah Yorke
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, Cambridge, UK
| | - Akashaditya Das
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wang S, Mao X, Wang F, Zuo X, Fan C. Data Storage Using DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307499. [PMID: 37800877 DOI: 10.1002/adma.202307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.
Collapse
Affiliation(s)
- Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Zheng F, Alawami M, Zhu J, Platnich CM, Sha J, Keyser UF, Chen K. DNA Carrier-Assisted Molecular Ping-Pong in an Asymmetric Nanopore. NANO LETTERS 2023; 23:11145-11151. [PMID: 38033205 PMCID: PMC10722531 DOI: 10.1021/acs.nanolett.3c03605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Nanopore analysis relies on ensemble averaging of translocation signals obtained from numerous molecules, requiring a relatively high sample concentration and a long turnaround time from the sample to results. The recapture and subsequent re-reading of the same molecule is a promising alternative that enriches the signal information from a single molecule. Here, we describe how an asymmetric nanopore improves molecular ping-pong by promoting the recapture of the molecule in the trans reservoir. We also demonstrate that the molecular recapture could be improved by linking the target molecule to a long DNA carrier to reduce the diffusion, thereby achieving over 100 recapture events. Using this ping-pong methodology, we demonstrate its use in accurately resolving nanostructure motifs along a DNA scaffold through repeated detection. Our method offers novel insights into the control of DNA polymer dynamics within nanopore confinement and opens avenues for the development of a high-fidelity DNA detection platform.
Collapse
Affiliation(s)
- Fei Zheng
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Mohammed Alawami
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Casey M Platnich
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
10
|
Zhang X, Song J, Li Z, Zheng YW, Zhao WW, Chen HY, Xu JJ. θ-Nanopipette for Single-Cell Resistive-Pulse Profiling of DNA Repair Proteins Accompanied by Drug Evaluation. NANO LETTERS 2023; 23:8249-8255. [PMID: 37642327 DOI: 10.1021/acs.nanolett.3c02423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Single-cell analysis of the DNA repair protein is important but remains unachieved. Exploration of nanopipettte technologies in single-cell electroanalysis has recently seen rapid growth, while the θ-nanopipette represents an emerging technological frontier with its potential largely veiled. Here a θ-nanopipette is first applied for single-cell resistive-pulse sensing (RPS) of the important DNA repair protein O6-alkylguanine DNA alkyltransferase (hAGT). The removal of alkyl mutations by hAGT could restore the damaged aptamer linking with a structural DNA carrier, allowing the selective binding of the aptamer to thrombin with precisely matched size to produce distinct RPS signals when passing through the orifice. Kinetic analysis of hAGT repair was studied. Meanwhile, the device shows the simultaneous on-demand infusion of inhibitors to inactivate the hAGT activity, indicative of its potential in drug screening for enhanced chemotherapy. This work provides a new paradigm for θ-nanopipette-based single-cell RPS of a DNA repair protein accompanied by drug evaluation.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Juan Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P.R. China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - You-Wei Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
11
|
He L, Charron M, Mensing P, Briggs K, Adams J, de Haan H, Tabard-Cossa V. DNA origami characterized via a solid-state nanopore: insights into nanostructure dimensions, rigidity and yield. NANOSCALE 2023; 15:14043-14054. [PMID: 37580994 DOI: 10.1039/d3nr01873c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Due to their programmability via specific base pairing, self-assembled DNA origami structures have proven to be useful for a wide variety of applications, including diagnostics, molecular computation, drug delivery, and therapeutics. Measuring and characterizing these structures is therefore of great interest and an important part of quality control. Here, we show the extent to which DNA nanostructures can be characterized by a solid-state nanopore; a non-destructive, label-free, single-molecule sensor capable of electrically detecting and characterizing charged biomolecules. We demonstrate that in addition to geometrical dimensions, nanopore sensing can provide information on the mechanical properties, assembly yield, and stability of DNA nanostructures. For this work, we use a model structure consisting of a 3 helix-bundle (3HB), i.e. three interconnected DNA double helices using a M13 scaffold folded twice on itself by short DNA staple strands, and translocate it through solid-state nanopores fabricated by controlled breakdown. We present detailed analysis of the passage characteristics of 3HB structures through nanopores under different experimental conditions which suggest that segments of locally higher flexibility are present along the nanostructure contour that allow for the otherwise rigid 3HB to fold inside nanopores. By characterizing partially melted 3HB structures, we find that locally flexible segments are likely due to short staple oligomers missing from the fully assembled structure. The 3HB used herein is a prototypical example to establish nanopores as a sensitive, non-destructive, and label-free alternative to conventional techniques such as gel electrophoresis with which to characterize DNA nanostructures.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Philipp Mensing
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Jonathan Adams
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Hendrick de Haan
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | | |
Collapse
|
12
|
Roelen Z, Tabard-Cossa V. Synthesis of length-tunable DNA carriers for nanopore sensing. PLoS One 2023; 18:e0290559. [PMID: 37611030 PMCID: PMC10446168 DOI: 10.1371/journal.pone.0290559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Molecular carriers represent an increasingly common strategy in the field of nanopore sensing to use secondary molecules to selectively report on the presence of target analytes in solution, allowing for sensitive assays of otherwise hard-to-detect molecules such as small, weakly-charged proteins. However, existing carrier designs can often introduce drawbacks to nanopore experiments including higher levels of cost/complexity and carrier-pore interactions that lead to ambiguous signals and elevated clogging rates. In this work, we present a simple method of carrier production based on sticky-ended DNA molecules that emphasizes ease-of-synthesis and compatibility with nanopore sensing and analysis. In particular, our method incorporates the ability to flexibly control the length of the DNA carriers produced, enhancing the multiplexing potential of this carrier system through the separable nanopore signals they could generate for distinct targets. A proof-of-concept nanopore experiment is also presented, involving carriers produced by our method with multiple lengths and attached to DNA nanostructure targets, in order to validate the capabilities of the system. As the breadth of applications for nanopore sensors continues to expand, the availability of tools such as those presented here to help translate the outcomes of these applications into robust nanopore signals will be of major importance.
Collapse
Affiliation(s)
- Zachary Roelen
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
13
|
Li Y, Sandler SE, Keyser UF, Zhu J. DNA Volume, Topology, and Flexibility Dictate Nanopore Current Signals. NANO LETTERS 2023; 23:7054-7061. [PMID: 37487050 PMCID: PMC10416563 DOI: 10.1021/acs.nanolett.3c01823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Nanopores have developed into powerful single-molecule sensors capable of identifying and characterizing small polymers, such as DNA, by electrophoretically driving them through a nanoscale pore and monitoring temporary blockades in the ionic pore current. However, the relationship between nanopore signals and the physical properties of DNA remains only partly understood. Herein, we introduce a programmable DNA carrier platform to capture carefully designed DNA nanostructures. Controlled translocation experiments through our glass nanopores allowed us to disentangle this relationship. We vary DNA topology by changing the length, strand duplications, sequence, unpaired nucleotides, and rigidity of the analyte DNA and find that the ionic current drop is mainly determined by the volume and flexibility of the DNA nanostructure in the nanopore. Finally, we use our understanding of the role of DNA topology to discriminate circular single-stranded DNA molecules from linear ones with the same number of nucleotides using the nanopore signal.
Collapse
Affiliation(s)
- Yunxuan Li
- Cavendish
Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Sarah E. Sandler
- Cavendish
Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jinbo Zhu
- Cavendish
Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
- School
of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
14
|
Roelen Z, Briggs K, Tabard-Cossa V. Analysis of Nanopore Data: Classification Strategies for an Unbiased Curation of Single-Molecule Events from DNA Nanostructures. ACS Sens 2023; 8:2809-2823. [PMID: 37436112 PMCID: PMC10913896 DOI: 10.1021/acssensors.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Nanopores are versatile single-molecule sensors that are being used to sense increasingly complex mixtures of structured molecules with applications in molecular data storage and disease biomarker detection. However, increased molecular complexity presents additional challenges to the analysis of nanopore data, including more translocation events being rejected for not matching an expected signal structure and a greater risk of selection bias entering this event curation process. To highlight these challenges, here, we present the analysis of a model molecular system consisting of a nanostructured DNA molecule attached to a linear DNA carrier. We make use of recent advances in the event segmentation capabilities of Nanolyzer, a graphical analysis tool provided for nanopore event fitting, and describe approaches to the event substructure analysis. In the process, we identify and discuss important sources of selection bias that emerge in the analysis of this molecular system and consider the complicating effects of molecular conformation and variable experimental conditions (e.g., pore diameter). We then present additional refinements to existing analysis techniques, allowing for improved separation of multiplexed samples, fewer translocation events rejected as false negatives, and a wider range of experimental conditions for which accurate molecular information can be extracted. Increasing the coverage of analyzed events within nanopore data is not only important for characterizing complex molecular samples with high fidelity but is also becoming essential to the generation of accurate, unbiased training data as machine-learning approaches to data analysis and event identification continue to increase in prevalence.
Collapse
Affiliation(s)
- Zachary Roelen
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
15
|
Zhu J, Tivony R, Bošković F, Pereira-Dias J, Sandler SE, Baker S, Keyser UF. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches. J Am Chem Soc 2023. [PMID: 37220424 DOI: 10.1021/jacs.3c01649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multiplexed nucleic acid sensing methods with high specificity are vital for clinical diagnostics and infectious disease control, especially in the postpandemic era. Nanopore sensing techniques have developed in the past two decades, offering versatile tools for biosensing while enabling highly sensitive analyte measurements at the single-molecule level. Here, we establish a nanopore sensor based on DNA dumbbell nanoswitches for multiplexed nucleic acid detection and bacterial identification. The DNA nanotechnology-based sensor switches from an "open" into a "closed" state when a target strand hybridizes to two sequence-specific sensing overhangs. The loop in the DNA pulls two groups of dumbbells together. The change in topology results in an easily recognized peak in the current trace. Simultaneous detection of four different sequences was achieved by assembling four DNA dumbbell nanoswitches on one carrier. The high specificity of the dumbbell nanoswitch was verified by distinguishing single base variants in DNA and RNA targets using four barcoded carriers in multiplexed measurements. By combining multiple dumbbell nanoswitches with barcoded DNA carriers, we identified different bacterial species even with high sequence similarity by detecting strain specific 16S ribosomal RNA (rRNA) fragments.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
16
|
Bošković F, Zhu J, Tivony R, Ohmann A, Chen K, Alawami MF, Đorđević M, Ermann N, Pereira-Dias J, Fairhead M, Howarth M, Baker S, Keyser UF. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. NATURE NANOTECHNOLOGY 2023; 18:290-298. [PMID: 36646828 PMCID: PMC10020084 DOI: 10.1038/s41565-022-01287-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/07/2022] [Indexed: 05/31/2023]
Abstract
Respiratory infections are the major cause of death from infectious disease worldwide. Multiplexed diagnostic approaches are essential as many respiratory viruses have indistinguishable symptoms. We created self-assembled DNA nanobait that can simultaneously identify multiple short RNA targets. The nanobait approach relies on specific target selection via toehold-mediated strand displacement and rapid readout via nanopore sensing. Here we show that this platform can concurrently identify several common respiratory viruses, detecting a panel of short targets of viral nucleic acids from multiple viruses. Our nanobait can be easily reprogrammed to discriminate viral variants with single-nucleotide resolution, as we demonstrated for several key SARS-CoV-2 variants. Last, we show that the nanobait discriminates between samples extracted from oropharyngeal swabs from negative- and positive-SARS-CoV-2 patients without preamplification. Our system allows for the multiplexed identification of native RNA molecules, providing a new scalable approach for the diagnostics of multiple respiratory viruses in a single assay.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Milan Đorđević
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Niklas Ermann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Joana Pereira-Dias
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | | | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Wang Y, Zhu Z, Yu C, Wu R, Zhu J, Li B. Lego-Like Catalytic Hairpin Assembly Enables Controllable DNA-Oligomer Formation and Spatiotemporal Amplification in Single Molecular Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206283. [PMID: 36436946 DOI: 10.1002/smll.202206283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.
Collapse
Affiliation(s)
- Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhentong Zhu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinbo Zhu
- Cavendish Lab, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
18
|
FMG: An observable DNA storage coding method based on frequency matrix game graphs. Comput Biol Med 2022; 151:106269. [PMID: 36356390 DOI: 10.1016/j.compbiomed.2022.106269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Using complex biomolecules for storage is a new carbon-based storage method. For example, DNA has the potential to be a good method for archival long-term data storage. Reasonable and efficient coding is the first and most important step in DNA storage. However, current coding methods, such as altruism algorithm, have the problem of low coding efficiency and high complexity, and coding constraints and sets make it difficult to see the coding results visually. In this study, a new DNA storage coding method based on frequency matrix game graph (FMG) is proposed to generate DNA storage coding satisfying combinatorial constraints. Compared with the randomness of the heuristic algorithm that satisfies the constraints, the coding method based on the FMG is deterministic and can clearly explain the coding process. In addition, the constraints and coding results have observable characteristics and are better than the previously published results for the size of the coding set. For example, when length of the code n = 10, hamming distance d = 4, the results obtained by proposed approach combining chaos game and graph are 24% better than the previous results. The proposed coding scheme successfully constructs high-quality coding sets with less complexity, which effectively promotes the development of carbon-based storage coding.
Collapse
|
19
|
Doricchi A, Platnich CM, Gimpel A, Horn F, Earle M, Lanzavecchia G, Cortajarena AL, Liz-Marzán LM, Liu N, Heckel R, Grass RN, Krahne R, Keyser UF, Garoli D. Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS NANO 2022; 16:17552-17571. [PMID: 36256971 PMCID: PMC9706676 DOI: 10.1021/acsnano.2c06748] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 × 1014 GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 103 GB/mm3. As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies.
Collapse
Affiliation(s)
- Andrea Doricchi
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, via Dodecaneso
31, 16146 Genova, Italy
| | - Casey M. Platnich
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Andreas Gimpel
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Friederikee Horn
- Technical
University of Munich, Department of Electrical
and Computer Engineering Munchen, Bayern, DE 80333, Germany
| | - Max Earle
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - German Lanzavecchia
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Dipartimento
di Fisica, Università di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Aitziber L. Cortajarena
- Center
for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11.
Planta 0, 28029 Madrid, Spain
| | - Na Liu
- Second
Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Reinhard Heckel
- Technical
University of Munich, Department of Electrical
and Computer Engineering Munchen, Bayern, DE 80333, Germany
| | - Robert N. Grass
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
20
|
Zhu J, Kong J, Keyser UF, Wang E. Parallel DNA circuits by autocatalytic strand displacement and nanopore readout. NANOSCALE 2022; 14:15507-15515. [PMID: 36227155 DOI: 10.1039/d2nr04048d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA nanotechnology provides a unique opportunity for molecular computation, with strand displacement reactions enabling controllable reorganization of nanostructures. Additional DNA strand exchange strategies with high selectivity for input will enable novel complex systems including biosensing applications. Herein, we propose an autocatalytic strand displacement (ACSD) circuit: initiated by DNA breathing and accelerated by a seesaw catalytic reaction, ACSD ensures that only the correct base sequence starts the catalytic cycle. Analogous to an electronic circuit with a variable resistor, two ACSD reactions with different rates are connected in parallel to mimic a parallel circuit containing branches with different resistances. Finally, we introduce a multiplexed nanopore sensing platform to report the output results of a parallel path selection system at the single-molecule level. By combining the ACSD strategy with fast and sensitive single-molecule nanopore readout, a new generation of DNA-based computing tools is established.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Jinglin Kong
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
21
|
Zhang X, Luo D, Zheng YW, Li XQ, Song J, Zhao WW, Chen HY, Xu JJ. Translocation of Specific DNA Nanocarrier through an Ultrasmall Nanopipette: Toward Single-Protein-Molecule Detection with Superior Signal-to-Noise Ratio. ACS NANO 2022; 16:15108-15114. [PMID: 36047811 DOI: 10.1021/acsnano.2c06303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of functional DNA nanostructures as carriers to ship proteins through solid-state nanopores has recently seen substantial growth in single-protein-molecule detection (SPMD), driven by the potential of this methodology and implementations that it may enable. Ultrasmall nanopores have exhibited obvious advantages in spatiotemporal biological detection due to the appropriate nanoconfined spaces and unique properties. Herein, a 6.8 nm DNA tetrahedron (TDN) with a target-specific DNA aptamer (TDN-apt) was engineered to carry the representative target of acetylcholinesterase (AChE) through an ultrasmall nanopipet with a 30 nm orifice, underpinning the advanced SPMD of AChE with good performance in terms of high selectivity, low detection limit (0.1 fM), and especially superior signal-to-noise ratio (SNR). The kinetic interaction between TDN-apt and AChE was studied and the practical applicability of the as-developed SPMD toward real samples was validated using serum samples from patients with Alzheimer's disease. This work not only presented a feasible SPMD solution toward low-abundance proteins in complex samples and but also was envisioned to inspire more interest in the design and implementation of synergized DNA nanostructure-ultrasmall nanopore systems for future SPMD development.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - You-Wei Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
22
|
Adaptive coding for DNA storage with high storage density and low coverage. NPJ Syst Biol Appl 2022; 8:23. [PMID: 35788589 PMCID: PMC9253015 DOI: 10.1038/s41540-022-00233-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The rapid development of information technology has generated substantial data, which urgently requires new storage media and storage methods. DNA, as a storage medium with high density, high durability, and ultra-long storage time characteristics, is promising as a potential solution. However, DNA storage is still in its infancy and suffers from low space utilization of DNA strands, high read coverage, and poor coding coupling. Therefore, in this work, an adaptive coding DNA storage system is proposed to use different coding schemes for different coding region locations, and the method of adaptively generating coding constraint thresholds is used to optimize at the system level to ensure the efficient operation of each link. Images, videos, and PDF files of size 698 KB were stored in DNA using adaptive coding algorithms. The data were sequenced and losslessly decoded into raw data. Compared with previous work, the DNA storage system implemented by adaptive coding proposed in this paper has high storage density and low read coverage, which promotes the development of carbon-based storage systems.
Collapse
|
23
|
Zhang Y, Ren Y, Liu Y, Wang F, Zhang H, Liu K. Preservation and Encryption in DNA Digital Data Storage. Chempluschem 2022; 87:e202200183. [PMID: 35856827 DOI: 10.1002/cplu.202200183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Indexed: 11/08/2022]
Abstract
The exponential growth of the total amount of global data presents a huge challenge to mainstream storage media. The emergence of molecular digital storage inspires the development of the new-generation higher-density digital data storage. In particular, DNA with high storage density, reproducibility, and long recoverable lifetime behaves the ideal representative of molecular digital storage media. With the development of DNA synthesis and sequencing technologies and the reduction of cost, DNA digital storage has attracted more and more attention and achieved significant breakthroughs. Herein, this Review briefly describes the workflow of DNA storage, and highlights the storage step of DNA digital data storage. Then, according to different information storage forms, the current DNA information encryption methods are emphatically expounded. Finally, the brief perspectives on the current challenges and optimizing proposals in DNA information preservation and encryption are presented.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Zhu J, Bošković F, Keyser UF. Split G-Quadruplexes Enhance Nanopore Signals for Simultaneous Identification of Multiple Nucleic Acids. NANO LETTERS 2022; 22:4993-4998. [PMID: 35730196 PMCID: PMC9228402 DOI: 10.1021/acs.nanolett.2c01764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Assembly of DNA structures based on hybridization like split G-quadruplex (GQ) have great potential for the base-pair specific identification of nucleic acid targets. Herein, we combine multiple split G-quadruplex (GQ) assemblies on designed DNA nanostructures (carrier) with a solid-state nanopore sensing platform. The split GQ probes recognize various nucleic acid sequences in a parallel assay that is based on glass nanopore analysis of molecular structures. Specifically, we split a GQ into two asymmetric parts extended with sequences complementary to the target. The longer G-segment is in solution, and the shorter one is on a DNA carrier. If the target is present, the two separate GQ parts will be brought together to facilitate the split GQ formation and enhance the nanopore signal. We demonstrated detection of multiple target sequences from different viruses with low crosstalk. Given the programmability of this DNA based nanopore sensing platform, it is promising in biosensing.
Collapse
|
25
|
Rand A, Zimny P, Nagel R, Telang C, Mollison J, Bruns A, Leff E, Reisner WW, Dunbar WB. Electronic Mapping of a Bacterial Genome with Dual Solid-State Nanopores and Active Single-Molecule Control. ACS NANO 2022; 16:5258-5273. [PMID: 35302746 PMCID: PMC9048701 DOI: 10.1021/acsnano.1c09575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
We present an electronic mapping of a bacterial genome using solid-state nanopore technology. A dual-nanopore architecture and active control logic are used to produce single-molecule data that enables estimation of distances between physical tags installed at sequence motifs within double-stranded DNA. Previously developed "DNA flossing" control logic generates multiple scans of each captured DNA. We extended this logic in two ways: first, to automate "zooming out" on each molecule to progressively increase the number of tags scanned during flossing, and second, to automate recapture of a molecule that exited flossing to enable interrogation of the same and/or different regions of the molecule. Custom analysis methods were developed to produce consensus alignments from each multiscan event. The combined multiscanning and multicapture method was applied to the challenge of mapping from a heterogeneous mixture of single-molecule fragments that make up the Escherichia coli (E. coli) chromosome. Coverage of 3.1× across 2355 resolvable sites of the E. coli genome was achieved after 5.6 h of recording time. The recapture method showed a 38% increase in the merged-event alignment length compared to single-scan alignments. The observed intertag resolution was 150 bp in engineered DNA molecules and 166 bp natively within fragments of E. coli DNA, with detection of 133 intersite intervals shorter than 200 bp in the E. coli reference map. We present results on estimating distances in repetitive regions of the E. coli genome. With an appropriately designed array, higher throughput implementations could enable human-sized genome and epigenome mapping applications.
Collapse
Affiliation(s)
- Arthur Rand
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Philip Zimny
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Roland Nagel
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Chaitra Telang
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Justin Mollison
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Aaron Bruns
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Emily Leff
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Walter W. Reisner
- Department
of Physics, McGill University, 3600 Rue University, Montreal, QC, Canada H3A 2T8
| | - William B. Dunbar
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| |
Collapse
|
26
|
Zhang J, Zhou S, Tan S, Yi K, Jin M, Shi Q, Wu F, Liu N. Highly Sensitive Glass Nanopipette Sensor Using Composite Probes of DNA-Functionalized Metal-Organic Frameworks. Anal Chem 2022; 94:3701-3707. [PMID: 35166108 DOI: 10.1021/acs.analchem.1c05571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore structure-based analytical techniques have great potential applications for the detection of biological molecules. However, the sophistication of traditional pore sensors is restricted in their applicability of analytical chemistry due to a lack of effective carrier probes. Here, we used porous coordination network-224 (PCN-224) composite probes in conjunction with a glass nanopipette (GN) as a sensing platform. The sensor exhibits a good fluorescence signal and a change in GN's ionic current at the same time. Due to the volume exclusion mechanism coming from PCN-224, the detection limit of target DNA reaches 10 fM in a GN with a diameter of up to ca. 260 nm, outperforming a simple probe. The structure of the composite probe is optimized by the probe's pairing efficiency. Furthermore, the sensor can also discriminate between 1-, 3-, and 5-mismatch DNA sequences and capture the target DNA from a complex mixture. Based on the GN platform, a series of techniques for detecting biomolecules are expected to emerge because of its simplicity, robustness, and universality by incorporating advanced nanoprobes.
Collapse
Affiliation(s)
- Jinzheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Shuailong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Shiyi Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Kangyan Yi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Mengya Jin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China.,Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
27
|
Fried JP, Wu Y, Tilley RD, Gooding JJ. Optical Nanopore Sensors for Quantitative Analysis. NANO LETTERS 2022; 22:869-880. [PMID: 35089719 DOI: 10.1021/acs.nanolett.1c03976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanopore sensors have received significant interest for the detection of clinically important biomarkers with single-molecule resolution. These sensors typically operate by detecting changes in the ionic current through a nanopore due to the translocation of an analyte. Recently, there has been interest in developing optical readout strategies for nanopore sensors for quantitative analysis. This is because they can utilize wide-field microscopy to independently monitor many nanopores within a high-density array. This significantly increases the amount of statistics that can be obtained, thus enabling the analysis of analytes present at ultralow concentrations. Here, we review the use of optical nanopore sensing strategies for quantitative analysis. We discuss optical nanopore sensing assays that have been developed to detect clinically relevant biomarkers, the potential for multiplexing such measurements, and techniques to fabricate high density arrays of nanopores with a view toward the use of these devices for clinical applications.
Collapse
Affiliation(s)
- Jasper P Fried
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
28
|
Zhang M, Chen C, Zhang Y, Geng J. Biological nanopores for sensing applications. Proteins 2022; 90:1786-1799. [PMID: 35092317 DOI: 10.1002/prot.26308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Biological nanopores are proteins with transmembrane pore that can be embedded in lipid bilayer. With the development of single-channel current measurement technologies, biological nanopores have been reconstituted into planar lipid bilayer and used for single-molecule sensing of various analytes and events such as single-molecule DNA sensing and sequencing. To improve the sensitivity for specific analytes, various engineered nanopore proteins and strategies are deployed. Here, we introduce the origin and principle of nanopore sensing technology as well as the structure and associated properties of frequently used protein nanopores. Furthermore, sensing strategies for different applications are reviewed, with focus on the alteration of buffer condition, protein engineering, and deployment of accessory proteins and adapter-assisted sensing. Finally, outlooks for de novo design of nanopore and nanopore beyond sensing are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Plaintext-Related Dynamic Key Chaotic Image Encryption Algorithm. ENTROPY 2021; 23:e23091159. [PMID: 34573784 PMCID: PMC8466161 DOI: 10.3390/e23091159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
To address the problems of the high complexity and low security of the existing image encryption algorithms, this paper proposes a dynamic key chaotic image encryption algorithm with low complexity and high security associated with plaintext. Firstly, the RGB components of the color image are read, and the RGB components are normalized to obtain the key that is closely related to the plaintext, and then the Arnold transform is used to stretch and fold the RGB components of the color image to change the position of the pixel points in space, so as to destroy the correlation between the adjacent pixel points of the image. Next, the generated sequences are independently encrypted with the Arnold-transformed RGB matrix. Finally, the three encrypted images are combined to obtain the final encrypted image. Since the key acquisition of this encryption algorithm is related to the plaintext, it is possible to achieve one key per image, so the key acquisition is dynamic. This encryption algorithm introduces chaotic mapping, so that the key space size is 10180. The key acquisition is closely related to the plaintext, which makes the ciphertext more random and resistant to differential attacks, and ensures that the ciphertext is more secure after encryption. The experiments show that the algorithm can encrypt the image effectively and can resist attack on the encrypted image.
Collapse
|