1
|
Ye C, Shi D, Zhu Y, Shi P, Zhao N, Sun Z, Zhang Z, Zhang D, Lv Y, Wu W, Yu J, Karimi-Maleh H, Li H, Fu L, Jiang N, Liu J, Lin CT. Graphene electrochemical biosensors combining effervescent solid-phase extraction (ESPE) for rapid, ultrasensitive, and simultaneous determination of DA, AA, and UA. Biosens Bioelectron 2025; 268:116899. [PMID: 39499969 DOI: 10.1016/j.bios.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
Simultaneous monitoring of key metabolites like dopamine, ascorbic acid, and uric acid is essential for early disease diagnosis and evaluating treatment. Electrochemical techniques are increasingly used for precise, point-of-care testing (POCT) of these metabolites. Herein, a sample pretreatment method called effervescent solid-phase extraction (ESPE) was proposed for efficient enrichment of trace analytes for electrochemical detection. In an ESPE process, effervescent tablets made of gold nanoparticle-decorated graphene oxide (Au/GO) were first self-dispersed in a test solution to promote the enrichment of analytes on the Au/GO adsorbents, followed by the addition of flocculant effervescent tablets to cause Au/GO sheets to form self-assembled aggregates, which then can be efficiently collected by the foam electrodes. The entire sample pretreatment process operates without external power and takes only 5 min. With the assistance of the ESPE method, our electrochemical sensors achieve an ultralow detection limit for dopamine, ascorbic acid, and uric acid of 80 pM, 1.8 nM, and 460 pM, respectively, which are two to three orders of magnitude lower than the results obtained by the drop casting technique. The enhancement mechanism of our approach is based on increasing the contact probability with analytes through dynamic dispersion of the Au/GO adsorbents, in contrast to the static diffusion mechanism relied on Brownian motion. We also show that combining the ESPE solution kit with a portable micro-electrochemical workstation can attain the same detection level as HPLC in real urine samples. The proposed ESPE approach holds great promise for POCT applications in 2D material-based biosensors.
Collapse
Affiliation(s)
- Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Diwei Shi
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Zhe Zhang
- Shenzhen Refresh Biosensing Technology Co., Ltd., Shenzhen, 518129, PR China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, PR China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wenqi Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangdong, 510260, PR China; Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangdong, 511495, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; School of Engineering, Lebanese American University, Byblos, 1102-2801, Lebanon
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
2
|
Seo D, Seo S, Kim T. Characterization of Diffusioosmotic Ion Transport for Enhanced Concentration-Driven Power Generation via Charge Heterogeneity in Nanoporous Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70119-70129. [PMID: 39648611 DOI: 10.1021/acsami.4c17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Nanoscopic mass/ion transport through heterogeneous nanostructures with various physicochemical environments occurs in both natural and artificial systems. Concentration gradient-driven mass/ion transport mechanisms, such as diffusioosmosis (DO), are primarily governed by the structural and electrical features of the nanostructures. However, these phenomena under various electrical and chemical conditions have not been adequately investigated. In this study, we fabricated a pervaporation-based particle-assembled membrane (PAM)-integrated micro-/nanofluidic device that facilitates easy tuning of the surface charge heterogeneity in nanopores/nanochannels. The nanochannels in the device consisted of two heterogeneous and in-series PAMs. The device was used to quantitatively measure electric signals generated by DO within the nanochannels with a single electrolyte or a combination of two electrolytes. Then, we characterized ion transport by changing surface charge heterogeneity and applying various electrolytic conditions, characterizing the concentration-driven power generation under these conditions. We found that not only does the charge heterogeneity provide additional resistance to ion transport but also the manipulation of the heterogeneity enables the effective modulation of ion transport and optimization of concentration-driven power generators regarding ion selectivity. In conjunction with the surface charge heterogeneity, the electrolytic conditions significantly affected the net flux of ion transport by enhancing or even negating the ion selectivity. Hence, we anticipate that both the platform and results will provide a deeper understanding of ion transport in nanostructures within complex environments by optimizing and improving practical concentration-driven applications, such as energy conversion/harvesting, molecular focusing/separation, and ionic diodes and memristors.
Collapse
Affiliation(s)
- Dongwoo Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Wen Y, Li Y, Chu HCW, Cheng S, Zeng Y. Hydromechanical Modulation of Enzymatic Kinetics Using Microfluidically Configurable Nanoconfinement Arrays. ACS CENTRAL SCIENCE 2024; 10:2059-2071. [PMID: 39634212 PMCID: PMC11613295 DOI: 10.1021/acscentsci.4c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
Confinement of molecules occurs ubiquitously in nature and fundamentally affects their properties and reactions. Developing synthetic confinement systems capable of precise modulation of chemical reactions is critical to understanding the underlying mechanisms and to promoting numerous applications including biosensing. However, current nanoconfinement systems often require sophisticated fabrication and operation. Here we report a simplified nanoconfinement approach termed Configurable Hydromechanical Enzyme Modulation by Nanoconfinement Landscaping of Chemical Kinetics (CHEMNLOCK). This approach exploits a simple micropost device to generate an array of nanogaps with tunable geometries, enabling flexible spatial modulation of the kinetics of surface-bound enzymatic reactions and substantial enhancement of single-molecule reactions. We envision that the CHEMNLOCK concept could pave a new way for developing scalable and practical nanoconfinement systems with profound impacts on biosensing and clinical diagnostics.
Collapse
Affiliation(s)
- Yunjie Wen
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Henry C. W. Chu
- Department
of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department
of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- University
of Florida Health Cancer Center, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Liu L, Liu Z, Xu X, Wang J, Tong Z. Solid-state nanochannels based on electro-optical dual signals for detection of analytes. Talanta 2024; 279:126615. [PMID: 39096787 DOI: 10.1016/j.talanta.2024.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
The sensitive detection of analytes of different sizes is crucial significance for environmental protection, food safety and medical diagnostics. The confined space of nanochannels provides a location closest to the molecular reaction behaviors in real systems, thereby opening new opportunities for the precise detection of analytes. However, due to the susceptibility to external interference on the confined space of nanochannels, the high sensitivity nature of the current signals through the nanochannels is more troubling for the detection reliability. Combining highly sensitive optical signals with the sensitive current signals of solid-state nanochannels establishes a nanochannel detection platform based on electro-optical dual signals, potentially offering more sensitive, specific, and accuracy detection of analytes. This review summarizes the last five years of applications of solid-state nanochannels based on electro-optical dual signals in analytes detection. Firstly, the detection principles of solid-state nanochannels and the construction strategies of nanochannel electro-optical sensing platforms are discussed. Subsequently, the review comprehensively outlines the applications involving nanochannels with electrical signals combined with fluorescence signals, electrical signals combined with surface-enhanced Raman spectroscopy signals, and electrical signals combined with other optical signals in analyte detection. Additionally, the perspectives and difficulties of nanochannels are investigated on the basis of electro-optical dual signals.
Collapse
Affiliation(s)
- Lingxiao Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xinrui Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
5
|
Xie X, Jin K, Wang Z, Wang S, Zhu J, Huang J, Tang S, Cai K, Zhang J. Constraint Coupling of Redox Cascade and Electron Transfer Synchronization on Electrode-Nanosensor Interface for Repeatable Detection of Tumor Biomarkers. SMALL METHODS 2024; 8:e2301330. [PMID: 38044264 DOI: 10.1002/smtd.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Quantitative analysis of up-regulated biomarkers in pathological tissues is helpful to tumor surgery yet the loss of biomarker extraction and time-consuming operation limited the accurate and quick judgement in preoperative or intraoperative diagnosis. Herein, an immobilization-free electrochemical sensing platform is developed by constraint coupling of electron transfer cascade on electrode-nanosensor interface. Specifically, electrochemical indicator (Ri)-labeled single-stranded DNA on electroactive nanodonor (polydopamine, PDA) can be responsively detached by formation of DNA complex through the recognition and binding with targets. By applying the oxidation potential of Ri, nanosensor collisions on electrode surface trigger a cascade redox cycling of PDA and Ri through synchronous electron transfer, which boost the amplification of current signal output. The developed nanosensor exhibit excellent linear response toward up-regulated biomarkers (miRNA-21, ATP, and VEGF) with low detection limits (32 fM, 386 pM, and 2.8 pM). Moreover, background influence from physiological interferent is greatly reduced by restricted electron transfer coupling on electrode. The practical applicability is illustrated in sensitive and highly repeatable profiling of miRNA-21 in lysate of tumor cells and tumor tissue, beneficial for more reliable diagnosis. This electrochemical platform by employing electron transfer cascades at heterogeneous interfaces offers a route to anti-interference detection of biomarkers in tumor tissues.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
6
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Gao Y, Chen Z, Zhang Y, Wen Y, Yu X, Shan B, Xu B, Chen R. Reorientation of Hydrogen Bonds Renders Unusual Enhancement in Thermal Transport of Water in Nanoconfined Environments. NANO LETTERS 2024; 24:5379-5386. [PMID: 38649277 DOI: 10.1021/acs.nanolett.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziqiao Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yanwei Wen
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaotong Yu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin Shan
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Yang HJ, Kim J, Bae JH. Selectivity of Electrochemical Reactions Based on Adsorption at Nanoporous Electrodes. Anal Chem 2023; 95:16216-16224. [PMID: 37875017 DOI: 10.1021/acs.analchem.3c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Enhancing selectivity is a pivotal area of research when electrodes are utilized as catalysts or sensors. Nanoporous electrodes are representative electrode materials for diverse applications, such as catalysts and sensors. Selectivity arising from nanoporous structures has been applied to systems involving nonfaradaic reactions such as capacitive deionization, electrochemical supercapacitors, and conductometry. Since selectivity in faradaic reactions has primarily been explored based on reactivity and molecular charge and size, we propose that the surface adsorption of reactant molecules can be considered as another crucial factor in achieving selectivity. Our observations reveal that the nonadsorptive reaction of 2-propanol and 2-butanol experienced a more pronounced enhancement compared to the adsorptive reaction of 1-propanol and 1-butanol at nanoporous Pt electrodes, owing to the nanoconfinement effect. Even within the same molecule with a mixture of adsorptive and nonadsorptive reactions, the degree of influence of the nanostructure depends on the adsorptive capacity of the reaction, which affects the overall selectivity. Moreover, the size effect of the reactants in the nanoporous electrode is also dependent on the degree of adsorption. These findings provide valuable insights into the effective utilization of nanoporous materials as catalysts or sensors.
Collapse
Affiliation(s)
- Hyun Ju Yang
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinju Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Je Hyun Bae
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Gao Y, Li M, Zhan C, Zhang H, Yin M, Lu W, Xu B. A Nanoconfined Water-Ion Coordination Network for Flexible Energy-Dissipation Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303759. [PMID: 37410996 DOI: 10.1002/adma.202303759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
Water-ion interaction in a nanoconfined environment that deeply constrains spatial freedoms of local atomistic motion with unconventional coupling mechanisms beyond that in a free, bulk state is essential to spark designs of a broad spectrum of nanofluidic devices with unique properties and functionalities. Here, it is reported that the interaction between ions and water molecules in a hydrophobic nanopore forms a coordination network with an interaction density that is nearly fourfold that of the bulk counterpart. Such strong interaction facilitates the connectivity of the water-ion network and is uncovered by corroborating the formation of ion clusters and the reduction of particle dynamics. A liquid-nanopore energy-dissipation system is designed and demonstrated in both molecular simulations and experiments that the formed coordination network controls the outflow of confined electrolytes along with a pressure reduction, capable of providing flexible protection for personnel and devices and instrumentations against external mechanical impact and attack.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mingzhe Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Chi Zhan
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Haozhe Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mengtian Yin
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Weiyi Lu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
10
|
Liu Y, He Y. Real-Time Single-Particle Imaging of a Dynamic Host-Guest Interaction-Initiated Nanoconfinement Effect on Iodine Uptake. Anal Chem 2023; 95:14440-14446. [PMID: 37718547 DOI: 10.1021/acs.analchem.3c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Fundamentally understanding the nanoconfinement effect within porous crystals is crucial for improving and extending their applications. Here, we report the real-time single-particle imaging of dynamic adaptive host-guest interaction between acetic acid (HAc) and covalent organic framework-300 (COF-300) to generate HAc-confined COF-300 (HAc@COF-300) under in situ reaction conditions, which initiates subsequent iodine uptake in an aqueous solution using a dark-field optical microscope (DFM). Operando DFM imaging reveals the adaptive deformation of COF-300 particles during the host-guest interaction process, which is attributed to the Lewis acid-base interaction-induced crystal contraction. Moreover, quantitative analysis shows that the HAc@COF-300 exhibits 65,000-fold higher binding affinity toward iodine than free HAc because of the increase in local concentration and close proximity under the nanoconfinement environment. With the guidance of the nanoconfinement effect, an adsorption reaction system consisting of HAc and COF-300 for capturing I2 is rationally designed and validated by macroscopic ensemble measurements, resulting in significantly improved adsorption performance by 7- to 8-fold. These findings highlight the nanoconfinement effects in adsorption/separation reactions.
Collapse
Affiliation(s)
- Yang Liu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- Sichuan College of Architectural Technology, Deyang 618000, Sichuan, P. R. China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
11
|
Li Y, Ma X, Zhu W, Huang Q, Liu Y, Pan J, Ying Y, Xu X, Fu Y. Enzymatic Catalysis in Size and Volume Dual-Confined Space of Integrated Nanochannel-Electrodes Chip for Enhanced Impedance Detection of Salmonella. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300900. [PMID: 37096928 DOI: 10.1002/smll.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Nanochannel-based confinement effect is a fascinating signal transduction strategy for high-performance sensing, but only size confinement is focused on while other confinement effects are unexplored. Here, a highly integrated nanochannel-electrodes chip (INEC) is created and a size/volume-dual-confinement enzyme catalysis model for rapid and sensitive bacteria detection is developed. The INEC, by directly sandwiching a nanochannel chip (60 µm in thickness) in nanoporous gold layers, creates a micro-droplet-based confinement electrochemical cell (CEC). The size confinement of nanochannel promotes the urease catalysis efficiency to generate more ions, while the volume confinement of CEC significantly enriches ions by restricting diffusion. As a result, the INEC-based dual-confinement effects benefit a synergetic enhancement of the catalytic signal. A 11-times ion-strength-based impedance response is obtained within just 1 min when compared to the relevant open system. Combining this novel nanoconfinement effects with nanofiltration of INEC, a separation/signal amplification-integrated sensing strategy is further developed for Salmonella typhimurium detection. The biosensor realizes facile, rapid (<20 min), and specific signal readout with a detection limit of 9 CFU mL-1 in culturing solution, superior to most reports. This work may create a new paradigm for studying nanoconfined processes and contribute a new signal transduction technique for trace analysis application.
Collapse
Affiliation(s)
- Yue Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyue Zhu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Huang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yameng Liu
- Department of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
12
|
Yi W, Zhang C, Zhang Q, Zhang C, Lu Y, Yi L, Wang X. Solid-State Nanopore/Nanochannel Sensing of Single Entities. Top Curr Chem (Cham) 2023; 381:13. [PMID: 37103594 DOI: 10.1007/s41061-023-00425-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method. During the detection process, solid-state nanopore/nanochannel is easily blocked by single entities, and interfering substances easily enter the solid-state nanopore/nanochannel to generate interference signals, resulting in inaccurate measurement results. In addition, the problem of low flux in the detection process of solid-state nanopore/nanochannel, these defects limit the application of solid-state nanopore/nanochannel. In this review, we introduce the preparation and functionalization of solid-state nanopore/nanochannel, the research progress in the field of single entities sensing, and the novel sensing strategies on solving the above problems in solid-state nanopore/nanochannel single-entity sensing. At the same time, the challenges and prospects of solid-state nanopore/nanochannel for single-entity electrochemical sensing are also discussed.
Collapse
Affiliation(s)
- Wei Yi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Chuanping Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Qianchun Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Yebo Lu
- College of Information Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Xingzhu Wang
- School of Electrical Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
13
|
Kawagishi H, Funano SI, Tanaka Y, Xu Y. Flexible Glass-Based Hybrid Nanofluidic Device to Enable the Active Regulation of Single-Molecule Flows. NANO LETTERS 2023; 23:2210-2218. [PMID: 36879391 PMCID: PMC10804405 DOI: 10.1021/acs.nanolett.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Single-molecule studies offer deep insights into the essence of chemistry, biology, and materials science. Despite significant advances in single-molecule experiments, the precise regulation of the flow of single small molecules remains a formidable challenge. Herein, we present a flexible glass-based hybrid nanofluidic device that can precisely block, open, and direct the flow of single small molecules in nanochannels. Additionally, this approach allows for real-time tracking of regulated single small molecules in nanofluidic conditions. Therefore, the dynamic behaviors of single small molecules confined in different nanofluidic conditions with varied spatial restrictions are clarified. Our device and approach provide a nanofluidic platform and mechanism that enable single-molecule studies and applications in actively regulated fluidic conditions, thus opening avenues for understanding the original behavior of individual molecules in their natural forms and the development of single-molecule regulated chemical and biological processes in the future.
Collapse
Affiliation(s)
- Hiroto Kawagishi
- Department
of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shun-ichi Funano
- Center
for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Center
for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yan Xu
- Department
of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Japan
Science and Technology Agency (JST), CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Seo D, Kim D, Seo S, Park J, Kim T. Analyses of Pore-Size-Dependent Ionic Transport in Nanopores in the Presence of Concentration and Temperature Gradients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2409-2418. [PMID: 36562122 DOI: 10.1021/acsami.2c17925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mass transport through nanopores occurs in various natural systems, including the human body. For example, ion transport across nerve cell membranes plays a significant role in neural signal transmission, which can be significantly affected by the electrolyte and temperature conditions. To better understand and control the underlying nanoscopic transport, it is necessary to develop multiphysical transport models as well as validate them using enhanced experimental methods for facile nanopore fabrication and precise nanoscale transport characterization. Here, we report a nanopore-integrated microfluidic platform to characterize ion transport in the presence of electrolyte and temperature gradients; we employ our previous self-assembled particle membrane (SAPM)-integrated microfluidic platform to produce various nanopores with different pore sizes. Subsequently, we quantify pore-size-dependent ionic transport by measuring the short circuit current (SCC) and open circuit voltage (OCV) across various nanopores by manipulating the electrolyte and temperature gradients. We establish three simple theoretical models that heavily depend on pore size, electrolyte concentration, and temperature and subsequently validate them with the experimental results. Finally, we anticipate that the results of this study would help clarify ion transport phenomena at low-temperature conditions, not only providing a fundamental understanding but also enabling practical applications of cryo-anesthesia in the near future.
Collapse
Affiliation(s)
- Dongwoo Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - Dongjun Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Sinsudong, Mapogu, Seoul04107, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| |
Collapse
|
15
|
Huang X, Lin D, Duan P, Chen H, Zhao Y, Yang W, Pan Q, Tian X. Space-confined growth of nanoscale metal-organic frameworks/Pd in hollow mesoporous silica for highly efficient catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 2023; 629:55-64. [PMID: 36150248 DOI: 10.1016/j.jcis.2022.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
The development of confined growth of metal-organic frameworks (MOFs) in a nano-space remains a challenge mainly due to the spatial size randomness and inhomogeneity of host materials and the limitation of MOF species. In this study, we developed a general "stepwise vacuum evaporation" strategy, which allows the nano-confined growth of MOFs in hollow mesoporous silica nanospheres (HMSN) by the vacuum forces and the capillary effect. A series of nanoscale MOFs including ZIF-8, ZIF-90, HKUST-1, MIL-53(Cr) and UiO-66-NH2 were confinely synthesized inside the cavities of HMSN, resulting in hierarchically porous composites with core-shell structures. Further functionalization was studied by anchoring Pd to obtain UiO-66-NH2/Pd@HMSN catalyst, which exhibited excellent activity in the catalytic reduction of 4-nitrophenol to 4-aminophenol under ambient condition.
Collapse
Affiliation(s)
- Xiaojing Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Duoyu Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Pan Duan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Huiping Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yujuan Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
17
|
Huang Y, Li W, Zheng J, Luo F, Qiu B, Wang J, Lin C, Lin Z. Enhanced Sensing Performance of a Microchannel-Based Electrochemiluminescence Biosensor for Adenosine Triphosphate via a dsDNA Superstructure Amplification Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37222-37228. [PMID: 35917502 DOI: 10.1021/acsami.2c10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sensing performance of a microchannel-based electrochemiluminescence (ECL) biosensor is related to the change ratio of charge density on the surface of microchannels caused by a target recognition reaction. In this study, adenosine triphosphate (ATP) served as a model target. The dsDNA superstructures containing a capture probe (CP, containing an ATP aptamer sequence) and alternating units of ssDNA probes of P1 and P2, CP/(P1/P2)n, were grafted onto the inner wall of microchannels first. The CP in dsDNA superstructures captured ATP molecules, causing the release of dsDNA fragments containing alternating units of P1 and P2, (P1/P2)n. The target recognition reaction significantly changed the charge density of microchannels, which altered the ECL intensity of the (1,10-phenanthroline)ruthenium(II)/tripropylamine system in the reporting interface. The ECL intensity of the constructed system had a linear relationship with the logarithm of ATP concentration ranging from 1 fM to 100 pM with a detection limit of 0.32 fM (S/N = 3). The biosensor was successfully applied to detect ATP in rat brains.
Collapse
Affiliation(s)
- Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Weixin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jianping Zheng
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
18
|
Song N, Zhang Y, Ren S, Wang C, Lu X. Rational Design of Conducting Polymer-Derived Tubular Carbon Nanoreactors for Enhanced Enzyme-like Catalysis and Total Antioxidant Capacity Bioassay Application. Anal Chem 2022; 94:11695-11702. [PMID: 35950310 DOI: 10.1021/acs.analchem.2c02511] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of void-confined tubular nanostructures has aroused significant interest for catalytic applications because of their distinct microenvironment to modulate the reaction kinetics. Herein, we propose a facile wrapping-pyrolysis strategy to confine Fe0 nanoparticles (Fe NPs) inside N-doped carbon nanotubes (Fe@NC NTs) derived from Fe2O3@polypyrrole (PPy) core-sheath nanofibers (NFs). The resultant Fe@NC NTs can act as efficient enzyme mimics and exhibit a significantly higher peroxidase (POD)-like catalytic activity than unconfined Fe NPs and bare NC NTs. Kinetic experiments demonstrate that the optimized void structure benefits the affinity with the POD substrates and achieves excellent catalytic efficiency. The mechanism study reveals that the generation of •OH from H2O2 endows Fe@NC NTs with excellent POD-like performance. Furthermore, we develop a total antioxidant capacity (TAC) sensing platform on account of this efficient POD-like system, expanding their applications in the field of food safety and human healthcare.
Collapse
Affiliation(s)
- Na Song
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yue Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
19
|
Liu J, Wang R, Zhou H, Mathesh M, Dubey M, Zhang W, Wang B, Yang W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. NANOSCALE 2022; 14:10286-10298. [PMID: 35791765 DOI: 10.1039/d2nr02031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of nucleic acid isothermal amplification strategies based on soft nanoarchitectonics offers a new dimension to the traditional electrochemical technique, particularly because of its flexibility, high efficiency, and increased sensitivity for analytical applications. Various DNA/RNA isothermal amplification strategies have been developed for the design and fabrication of new electrochemical biosensors for efficient and important biomolecular detection. Herein, we provide an overview of recent efforts in this research field and the strategies for signal-amplified sensing systems, with their biological applications, current challenges and prospects in this promising new area.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Ruke Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Motilal Mathesh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Mukul Dubey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Wengan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| |
Collapse
|
20
|
Arrabito G, Gulli D, Alfano C, Pignataro B. "Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms. Analyst 2022; 147:1294-1312. [PMID: 35275148 DOI: 10.1039/d1an02295d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, i.e. in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and volume of the ink, and reconfiguring the deposition features in due course. Similar to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps. To this aim, this review article provides an unprecedented analysis of the latest continuous printing methods for bioanalytical chemistry, focusing on ink deposition systems based on specific sets of technologies that have been developed to this aim, namely nanofountain probes, microcantilever spotting, capillary-based polymer pens and continuous 3D printing. Each approach will be discussed revealing the most important applications in the fields of biosensors, lab-on-chips and diagnostics.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| | - Daniele Gulli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo 90133, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| |
Collapse
|
21
|
Jaugstetter M, Blanc N, Kratz M, Tschulik K. Electrochemistry under confinement. Chem Soc Rev 2022; 51:2491-2543. [PMID: 35274639 DOI: 10.1039/d1cs00789k] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the term 'confinement' regularly appears in electrochemical literature, elevated by continuous progression in the research of nanomaterials and nanostructures, up until today the various aspects of confinement considered in electrochemistry are rather scattered individual contributions outside the established disciplines in this field. Thanks to a number of highly original publications and the growing appreciation of confinement as an overarching link between different exciting new research strategies, 'electrochemistry under confinement' is the process of forming a research discipline of its own. To aid the development a coherent terminology and joint basic concepts, as crucial factors for this transformation, this review provides an overview on the different effects on electrochemical processes known to date that can be caused by confinement. It also suggests where boundaries to other effects, such as nano-effects could be drawn. To conceptualize the vast amount of research activities revolving around the main concepts of confinement, we define six types of confinement and select two of them to discuss the state of the art and anticipated future developments in more detail. The first type concerns nanochannel environments and their applications for electrodeposition and for electrochemical sensing. The second type covers the rather newly emerging field of colloidal single entity confinement in electrochemistry. In these contexts, we will for instance address the influence of confinement on the mass transport and electric field distributions and will link the associated changes in local species concentration or in the local driving force to altered reaction kinetics and product selectivity. Highlighting pioneering works and exciting recent developments, this educational review does not only aim at surveying and categorizing the state-of-the-art, but seeks to specifically point out future perspectives in the field of confinement-controlled electrochemistry.
Collapse
Affiliation(s)
- Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus Kratz
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
22
|
Shi L, Kuang D, Ma X, Jalalah M, Alsareii SA, Gao T, Harraz FA, Yang J, Li G. Peptide Assembled in a Nano-confined Space as a Molecular Rectifier for the Availability of Ionic Current Modulation. NANO LETTERS 2022; 22:1083-1090. [PMID: 35049303 DOI: 10.1021/acs.nanolett.1c04154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired nanochannels have emerged as a powerful tool for bioengineering and biomedical research due to their robust mechanical and controllable chemical properties. Inspired by inward-rectifier potassium (K+) channels, herein, the charged peptide assembly has been introduced into a nano-confined space for the modulation of ion current rectification (ICR). Peptide-responsive reaction-triggered sequence changes can contribute to polarity conversion of the surface charge; therefore, ICR reversal (ICRR) is generated. Compared with other responsive elements, natural charged peptides show the merit of controllable charge polarity. By electrochemically monitoring the ICRR as an output signal, one can utilize the peptide assembly-mediated ICRR to construct an ionic sensory platform. In addition, a logic gate has been established to demonstrate the availability of an ionic sensory platform for inhibitor screening. As peptide nanoassemblies may also have various structures and functions due to their diverse properties, the ionic modulation system can provide alternatives for the assay of peptide-associated biotargets with biomedical applications.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Deqi Kuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xuemei Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
23
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
24
|
|