1
|
Bidari E, Winardhi CW, Godinho JRD, Frisch G. Role of Oxidants in Metal Extraction from Sulfide Minerals in a Deep Eutectic Solvent. ACS OMEGA 2024; 9:14592-14603. [PMID: 38559972 PMCID: PMC10976405 DOI: 10.1021/acsomega.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Metallurgical applications of deep eutectic solvents (DESs), known as ionometallurgy, have received significant research attention in recent years. While many studies claim that DESs are generally green and enhance process efficiency, others believe that industrial applications of ionometallurgy are generally not viable. Here, we report on leaching experiments of a sulfide flotation concentrate using ethaline, a chloride-based DES, in the presence of common oxidants. Following a mineral-based approach, we compare results with those obtained from aqueous chloride solutions to assess the influence of the leaching medium. We aim to contribute to a basic understanding of key differences between DESs and aqueous solutions and hope that this will help to make informed decisions about the suitability of DESs for leaching applications. Experiments were performed on a feed concentrate comprising a mixture of sulfide minerals along with substantial concentrations of Au, Ag, and Te. We found similar leaching behaviors for ethaline and aqueous solutions in nonoxidative leaching. However, when oxidizing agents were introduced, ethaline exhibited higher leaching efficiencies. Notably, the oxidation rate of pyrite in ethaline was very low, while chalcopyrite exhibited high oxidation rates. Furthermore, the results highlight significant variations in leaching rates depending on the type of oxidant, with the highest rate observed for I2, followed by CuCl2, and FeCl3. H2O2 and O2 were less effective. The leaching of gold-silver tellurides was possible in ethaline. This could be of particular significance, given that Au-Ag-Te compounds pose challenges in conventional cyanide treatment.
Collapse
Affiliation(s)
- Ehsan Bidari
- Institut
für Anorganische Chemie, Technische
Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Chandra Widyananda Winardhi
- Helmholtz
Zentrum-Dresden Rossendorf, Helmholtz Institute
Freiberg for Resource Technology, 09599 Freiberg, Germany
| | | | - Gero Frisch
- Institut
für Anorganische Chemie, Technische
Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
2
|
Zhao Z, Alshareef HN. Sustainable Dual-Ion Batteries beyond Li. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309223. [PMID: 37907202 DOI: 10.1002/adma.202309223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The limitations of resources used in current Li-ion batteries may hinder their widespread use in grid-scale energy storage systems, prompting the search for low-cost and resource-abundant alternatives. "Beyond-Li cation" batteries have emerged as promising contenders; however, they confront noteworthy challenges due to the scarcity of suitable host materials for these cations. In contrast, anions, the other crucial component in electrolytes, demonstrate reversible intercalation capacity in specific materials like graphite. The convergence of anion and cation storage has given rise to a new battery technology known as dual-ion batteries (DIBs). This comprehensive review presents the current status, advancements, and future prospects of sustainable DIBs beyond Li. Notably, most DIBs exhibit similar cathode reaction mechanisms involving anion intercalation, while the distinguishing factor lies in the cation types functioning at the anode. Accordingly, the review is organized into sections by various cation types, including Na-, K-, Mg-, Zn-, Ca-, Al-, NH4 + -, and proton-based DIBs. Moreover, a perspective on these novel DIBs is presented, along with proposed protocols for investigating DIBs and promising future research directions. It is envisioned that this review will inspire fresh concepts, ideas, and research directions, while raising important questions to further tailor and understand sustainable DIBs, ultimately facilitating their practical realization.
Collapse
Affiliation(s)
- Zhiming Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Richter J, Pietsch T, Elsner N, Ruck M. Critical Investigation of Betaine Hydrochloride-Based Deep Eutectic Solvent for Ionometallurgical Metal Production. ChemistryOpen 2023; 12:e202300114. [PMID: 37548281 PMCID: PMC10405249 DOI: 10.1002/open.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
The applicability of a deep eutectic solvent (DES) consisting of betainium hydrochloride, urea and glycerol is examined with respect to ionometallurgical metal extraction and compared with the ionic liquid (IL) betainium bis(trifluoromethylsulfonyl)imide ([Hbet][NTf2 ]). The DES dissolves numerous metal oxides, where not only betaine and chloride act as stabilizing ligands, but also nascent ammonia seems to be essential. From such solutions, cobalt, copper, zinc, tin, lead, and even vanadium can be electrodeposited, demonstrating the feasibility of ionometallurgy. However, repeated recycling of the DES is not conceivable. NMR spectroscopy and mass spectrometry identify numerous decomposition reactions taking place at 60 °C already. The by-products that are formed not only make recycling more difficult, but also pose a toxicity problem. The opportunities and obstacles of DESs and ILs for their application in ionometallurgy are critically discussed. It is shown that a thorough understanding of the underlying chemical processes is critical.
Collapse
Affiliation(s)
- Janine Richter
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Tobias Pietsch
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Noah Elsner
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Michael Ruck
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| |
Collapse
|
4
|
Richter J, Pietsch T, Ruck M. Cobalt Deposition from Ionothermally Dissolved Cobalt Oxides. CHEMSUSCHEM 2023; 16:e202300090. [PMID: 36872889 DOI: 10.1002/cssc.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
Owing to the environmental problems of numerous metal production processes, there is a growing need for more energy-efficient approaches. Cobalt is considered a strategic element that is extracted not only from ores but also from spent Li-ion batteries. One promising new approach is ionometallurgy, which is the extraction of metal oxides by ionic liquids (ILs). This study concerns new investigations into ionometallurgical processing of CoO, Co3 O4 , and LiCoO2 in the IL betainium bis(trifluoromethylsulfonyl)imide, [Hbet][NTf2 ]. Three crystal structures of cobalt-betaine complex compounds and combined spectroscopic and diffraction studies provide insights into the dissolution process. In addition, an optimized dissolution procedure for metal oxides is presented, avoiding the previously reported decomposition of the IL. Subsequent cobalt electrodeposition is only possible from cationic complex species, highlighting the importance of a thorough understanding of the complex equilibria. The presented method is also compared to other recently reported approaches.
Collapse
Affiliation(s)
- Janine Richter
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Tobias Pietsch
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| |
Collapse
|
5
|
Chen P, Sun X, Pietsch T, Plietker B, Brunner E, Ruck M. Electrolyte for High-Energy- and Power-Density Zinc Batteries and Ion Capacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207131. [PMID: 36305595 DOI: 10.1002/adma.202207131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Growth of dendrites, limited coulombic efficiency (CE), and the lack of high-voltage electrolytes restrict the commercialization of zinc batteries and capacitors. These issues are resolved by a new electrolyte, based on the zinc(II)-betaine complex [Zn(bet)2 ][NTf2 ]2 . Solutions in acetonitrile (AN) avoid dendrite formation. A Zn||Zn cell operates stably over 10 110 h (5055 cycles) at 0.2 mA cm-2 or 110 h at 50 mA cm-2 , and has an area capacity of 113 mAh cm-2 at 80% depth of discharge. A zinc-graphite battery performs at 2.6 V with a midpoint discharge-voltage of 2.4 V. The capacity-retention at 3 A g-1 (150 C) is 97% after 1000 cycles and 68% after 10 000 cycles. The charge/discharge time is about 24 s at 3.0 A g-1 with an energy density of 49 Wh kg-1 at a power density of 6864 W kg-1 based on the cathode. A zinc||activated-carbon ion-capacitor (coin cell) exhibits an operating-voltage window of 2.5 V, an energy density of 96 Wh kg-1 with a power density of 610 W kg-1 at 0.5 A g-1 . At 12 A g-1 , 36 Wh kg-1 , and 13 600 W kg-1 are achieved with 90% capacity-retention and an average CE of 96% over 10 000 cycles. Quantum-chemical methods and vibrational spectroscopy reveal [Zn(bet)2 (AN)2 ]2+ as the dominant complex in the electrolyte.
Collapse
Affiliation(s)
- Peng Chen
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiaohan Sun
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Tobias Pietsch
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Bernd Plietker
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| |
Collapse
|
6
|
Hamdi R, Rached A, Al–Otaibi AL, Massoudi I, Alkorbi S, Saidi Ben Ali A. Physical, Static, and Kinetic Analysis of the Electrochemical Deposition Process for the Recovery of Heavy Metal from Industrial Wastewater. SCIENTIFICA 2023; 2023:2741586. [PMID: 36647551 PMCID: PMC9840546 DOI: 10.1155/2023/2741586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Through the electrodeposition technique, toxic metals in wastewater can be removed and deposited on a chosen substrate with excellent selectivity. In this work, we use this technique to extract lead cations from simulated wastewater by using fluorine-doped tin oxide (FTO) substrate at various temperatures. In situ tracking of lead nucleation at advanced stages has been achieved by chronoamperometry. According to the experimental results, the theoretical models developed to study the kinetic growth of lead deposits in 2D and 3D are in good agreement. Nucleation rate and growth rate constants, for example, were found to be strongly influenced by temperature. Cottrell's equation is used to calculate the diffusion coefficient. X-ray diffraction, scanning electron microscopy, and energy-dispersiveX-ray techniques were used to investigate and characterize the lead deposits. The reported results could provide insight into the optimization of electrodeposition processes for heavy metal recovery from wastewater and electronic wastes.
Collapse
Affiliation(s)
- Ridha Hamdi
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Amani Rached
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Amal L. Al–Otaibi
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Imen Massoudi
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Shouq Alkorbi
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Amor Saidi Ben Ali
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
7
|
Wang G, Zhu M, Chen G, Qu Z, Kohn B, Scheler U, Chu X, Fu Y, Schmidt OG, Feng X. An Anode-Free Zn-Graphite Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201957. [PMID: 35581676 DOI: 10.1002/adma.202201957] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The anode-free battery concept is proposed to pursue the aspiration of energy-dense, rechargeable metal batteries, but this has not been achieved with dual-ion batteries. Herein, the first anode-free Zn-graphite battery enabled by efficient Zn plating-stripping onto a silver-coated Cu substrate is demonstrated. The silver coating guides uniform Zn deposition without dendrite formation or side reaction over a wide range of electrolyte concentrations, enabling the construction of anode-free Zn cells. In addition, the graphite cathode operates efficiently under reversible bis(trifluoromethanesulfonyl)imide anion (TFSI- ) intercalation without anodic corrosion. An extra high-potential TFSI- intercalation plateau is recognized at 2.75 V, contributing to the high capacity of graphite cathode. Thanks to efficient Zn plating-stripping and TFSI- intercalation-deintercalation, an anode-free Zn-graphite dual-ion battery that exhibits impressive cycling stability with 82% capacity retention after 1000 cycles is constructed. At the same time, a specific energy of 79 Wh kg-1 based on the mass of cathode and electrolyte is achieved, which is over two times higher than conventional Zn-graphite batteries (<30 Wh kg-1 ).
Collapse
Affiliation(s)
- Gang Wang
- Center for Advancing Electronics Dresden & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute for Microstructure Physics, D-06120, Halle (Saale), Germany
| | - Minshen Zhu
- Center for Materials, Architectures, and Integration of Nanomembranes, TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhe Qu
- Center for Materials, Architectures, and Integration of Nanomembranes, TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
| | - Benjamin Kohn
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069, Dresden, Germany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069, Dresden, Germany
| | - Xingyuan Chu
- Center for Advancing Electronics Dresden & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Oliver G Schmidt
- Center for Materials, Architectures, and Integration of Nanomembranes, TU Chemnitz, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany
- School of Science, TU Dresden, 01062, Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute for Microstructure Physics, D-06120, Halle (Saale), Germany
| |
Collapse
|
8
|
Chen P, Wang X, Li D, Pietsch T, Ruck M. A Kinetically Superior Rechargeable Zinc-Air Battery Derived from Efficient Electroseparation of Zinc, Lead, and Copper in Concentrated Solutions. CHEMSUSCHEM 2022; 15:e202200039. [PMID: 35302711 PMCID: PMC9325370 DOI: 10.1002/cssc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Zinc electrodeposition is currently a hot topic because of its widespread use in rechargeable zinc-air batteries. However, Zn deposition has received little attention in organic solvents with much higher ionic conductivity and current efficiency. In this study, a Zn-betaine complex is synthesized by using ZnO and betainium bis[(trifluoromethyl)sulfonyl]imide and its electrochemical behavior for six organic solvents and electrodeposited morphology are studied. Acetonitrile allowed dendrite-free Zn electrodeposition at room temperature with current efficiencies of up to 86 %. From acetonitrile solutions in which Zn, Pb, and Cu complexes are dissolved in high concentrations, Zn and Pb/Cu are efficiently separated electrolytically under potentiostatic control, allowing the purification of solutions prepared directly from natural ores. Additionally, a highly flexible Zn anode with excellent kinetics is obtained by using a carbon fabric substrate. A rechargeable zinc-air battery with these electrodes shows an open-circuit voltage of 1.63 V, is stable for at least 75 cycles at 0.5 mA cm-2 or 33 cycles at 20 mA cm-2 , and allows intermediate cycling at 100 mA cm-2 .
Collapse
Affiliation(s)
- Peng Chen
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Xia Wang
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Dongqi Li
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Tobias Pietsch
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Michael Ruck
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| |
Collapse
|