1
|
Liu X, Wang X, Zhou Y, Wang B, Zhao L, Zheng H, Wang J, Liu J, Liu J, Li Y. Novel Ultra-Stable 2D SbBi Alloy Structure with Precise Regulation Ratio Enables Long-Stable Potassium/Lithium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308447. [PMID: 38091528 DOI: 10.1002/adma.202308447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/19/2023] [Indexed: 12/22/2023]
Abstract
The inferior cycling stabilities or low capacities of 2D Sb or Bi limit their applications in high-capacity and long-stability potassium/lithium-ion batteries (PIBs/LIBs). Therefore, integrating the synergy of high-capacity Sb and high-stability Bi to fabricate 2D binary alloys is an intriguing and challenging endeavor. Herein, a series of novel 2D binary SbBi alloys with different atomic ratios are fabricated using a simple one-step co-replacement method. Among these fabricated alloys, the 2D-Sb0.6 Bi0.4 anode exhibits high-capacity and ultra-stable potassium and lithium storage performance. Particularly, the 2D-Sb0.6 Bi0.4 anode has a high-stability capacity of 381.1 mAh g-1 after 500 cycles at 0.2 A g-1 (≈87.8% retention) and an ultra-long-cycling stability of 1000 cycles (0.037% decay per cycle) at 1.0 A g-1 in PIBs. Besides, the superior lithium and potassium storage mechanism is revealed by kinetic analysis, in-situ/ex-situ characterization techniques, and theoretical calculations. This mainly originates from the ultra-stable structure and synergistic interaction within the 2D-binary alloy, which significantly alleviates the volume expansion, enhances K+ adsorption energy, and decreases the K+ diffusion energy barrier compared to individual 2D-Bi or 2D-Sb. This study verifies a new scalable design strategy for creating 2D binary (even ternary) alloys, offering valuable insights into their fundamental mechanisms in rechargeable batteries.
Collapse
Affiliation(s)
- Xi Liu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinying Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiru Zhou
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bingchun Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ligong Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Junhao Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Mater., School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Mater., School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yunyong Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Fu R, Pan J, Wang M, Min H, Dong H, Cai R, Sun Z, Xiong Y, Cui F, Lei SY, Chen S, Chen J, Sun L, Zhang Q, Xu F. In Situ Atomic-Scale Deciphering of Multiple Dynamic Phase Transformations and Reversible Sodium Storage in Ternary Metal Sulfide Anode. ACS NANO 2023. [PMID: 37326660 DOI: 10.1021/acsnano.3c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ternary metal sulfides (TMSs), endowed with the synergistic effect of their respective binary counterparts, hold great promise as anode candidates for boosting sodium storage performance. Their fundamental sodium storage mechanisms associated with dynamic structural evolution and reaction kinetics, however, have not been fully comprehended. To enhance the electrochemical performance of TMS anodes in sodium-ion batteries (SIBs), it is of critical importance to gain a better mechanistic understanding of their dynamic electrochemical processes during live (de)sodiation cycling. Herein, taking BiSbS3 anode as a representative paradigm, its real-time sodium storage mechanisms down to the atomic scale during the (de)sodiation cycling are systematically elucidated through in situ transmission electron microscopy. Previously unexplored multiple phase transformations involving intercalation, two-step conversion, and two-step alloying reactions are explicitly revealed during sodiation, in which newly formed Na2BiSbS4 and Na2BiSb are respectively identified as intermediate phases of the conversion and alloying reactions. Impressively, the final sodiation products of Na6BiSb and Na2S can recover to the original BiSbS3 phase upon desodiation, and afterward, a reversible phase transformation can be established between BiSbS3 and Na6BiSb, where the BiSb as an individual phase (rather than respective Bi and Sb phases) participates in reactions. These findings are further verified by operando X-ray diffraction, density functional theory calculations, and electrochemical tests. Our work provides valuable insights into the mechanistic understanding of sodium storage mechanisms in TMS anodes and important implications for their performance optimization toward high-performance SIBs.
Collapse
Affiliation(s)
- Ruining Fu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Jianhai Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Huihua Min
- Electron Microscope Laboratory, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hanghang Dong
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ran Cai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Fuhan Cui
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuang-Ying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jing Chen
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|